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INTEGRATED ORTHONORMAL SERIES

JAMES R. MCLAUGHLIN

Throughout this paper the author defines

FJf) = Σ \φ^) \a = Σ I (t(p™(χ)dχ
m=i ra=l I Jα

where 0<a^2,a^t^b, and {^m} is a sequence in U[ay 6],
usually orthonormal. In this paper, Fa(t) is studied for the
Haar, Walsh, trigonometric, and general orthonormal sequences.
For instance, it is proved that for the Haar system Fa(jt)
satisfies a Lipschitz condition of order a/2 in [0,1] and that
this result is best possible for any complete orthonormal
sequence. An application is also given regarding the absolute
convergence of Walsh series.

Previously, Bosanquet and Kestelman essentially proved [3, p. 91]

THEOREM A. Let {φm} be orthonormal. Then the Fourier coef-
ficients of every absolutely continuous function are absolutely convergent
if and only if Fx{t) e L°°[a, b].

Also, applying ParsevaΓs equality to the characteristic function
of [α, t], we obtain

THEOREM B. Let {φm} be orthonormal. Then {φm} is complete in

L2[a, b] if and only if F2(t) = t — a, a ^ t ^ b .

For certain systems, such as the Haar system, the following ex-
tension of Theorem A is possible.

THEOREM 1. Assume {φm} is orthonormal, Φm{t) has constant sign
on [a, b] for each m = 1, 2, , and Σ \ Φm(b) | < °o. Then the Fourier
coefficients of every absolutely continuous function f(t), such that
f'(t) e Lp, are absolutely convergent if and only if F^t) e L\ 1 ̂  p <£ °o,

Proof. Necessity. Integrating by parts we obtain

\hΓ(t)±\Φm(t)\dt

exists for every f'eLp. Hence, Fγ{t) e Lq [7, p. 166].

Sufficiency. By Holder's inequality
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Σ \\bf'(t)Φm(t)dt ^ Ϋ\f'{t)\±Φm{t)\dt ^ \\f'M\FA\q.
m=i I Jo Ja l

If an orthonormal sequence {φm} is not complete we still obtain
F2(t) continuous since the " completed " series converges to a continuous
function and hence (i.e by Dini's theorem) the convergence must be
uniform. In fact, we have

THEOREM 2. If {φm} is orthonormal, then F2{t) e Lip (1/2).

Proof. Let x, ye [a, b]. Using BesseΓs inequality, we obtain

\F2(x)-F2(y)\ = [Φm(χ)Y - [Φm(y)Y

£ Σ \Φ~(χ) -

{ oo

Σ [Φm(χ) - Φ
^ 1/2

Σ [ΦΛ)Y\

- a\lί2\x- y \ l ί 2 .

REMARK 1. This result is best possible in the following sense:
For every ε > 0 if we set φ^x) = (1- xY£~l)l\ 0^x< 1, then φ1 e L2[0, 1]
but [Φ,{t)f £ Lip (1/2 + ε).

REMARK 2. It would be interesting to know if F2(t) is absolutely
continuous and if F2(t) e U for any orthonormal sequence {φm}.

THEOREM 3. For any complete orthonormal system {φm}, Fa(t) g
Lip (a12 + ε) for any ε > 0.

Proof. Let te [α, 6]. By ParsevaΓs equality

= (t- a)]l\ 0 < a ^ 2 ,

since for any nonnegative sequence {αm}, [Σaa

mγla is a non-increasing
function of a for a > 0.

We will now determine which Lipschitz class Fa(t) belongs to for
the Haar, Walsh, and trigonometric systems.

DEFINITION. If 0 < a ^ 1, set

Na(f) = s u p \fix) - fiy)\ I x - y \~a f o r x Φ y a n d x , y e [a, b] .

LEMMA 1. Let a > 0 and 0 < a - β ^ 1. If
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and

then

fit) = Σ:=i/Λ*)

Proof. Let 2""-1 < h ̂  2~\ Then

= Σ + Σ =

L
P = θ\h«

L

LEMMA 2. (a) // Σ ϊ ί +i |α. |m β = 0(2"'), ίΛen

Σ | α . l =0(n>-"),/3- α < 0 .

(b) // Σ K = 0(2"'), ίAew Σ K I W = 0(»«+'), α + /3 > 0

Proof. Straightforward.

LEMMA 3. Let 0 < 7 ̂  1 cmd suppose fe Lip 7.
(a) I / 0 < α ^ 1, |/|«eLip(α7).
(b) Ifa> 1, |/|«eLip7.

Proof. We may assume /(£) ^ 0 because

P α r ί (a). Since \x + y\a <: \x\a + \y\a, 0 < a < 1, we obtain

| / β ( ί + h) - f"(t) I ̂  \f(t + h)- f(t) |« = O(h«r) .

Part (b). Since |α;rt - τ/rt| ̂  | | α Γ ~ ] \Ux - y\, a ^ 1, it follows t h a t

|/«(ί + h) - f«(t)\ ^ \\aΓ-\t)Uf{t + h) -f{t)\ - O(h'0 .

THEOREM 4. Lei 0 < 7 ̂  1 and assume fe Lip 7 and is of period
b — a.
(a) If 0 < α ̂  1, 0 < on - δ ̂  1,

ΣK
m=rί
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then

fa(t) = Σ am \f(mt) \* 6 Lip (art - 8)
m—l

(b) If a > 1, 0 < 7 - 8 ^ 1, and

/«(«) = Σ a . l/(wί) |α e Lip (7 - δ) .
m = l

Proof. Part (a) By hypothesis and Lemma 3 (a)

Σ ΛΓβrK|/(mί)|β] =
m = l

Also, by Lemma 2 (a), if 0 < cry — δ, then

Σ IIαj/(mt) NL -

and so our result follows by Lemma 1.

Part (b). By hypothesis and Lemma 3j(b)

Σ N7[am\f(mt)\a] = θ(± \am\mΛ =
m = l \ 1 /

Also, by Lemma 2 (a), if 0 < 7 — δ, then

Σ \\am\f(mt)n =

and so our result again follows from Lemma 1.

THEOREM 5. Let 0 < a ^ 2 αm£ assume ψ e L°*[a, 6], ̂ m(eτ) = <p(mx),
and Φ^t) is of period b — a. If

Proof. Φm{t) = m~ιΦγ(mt) and so
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Now let 7 = 1 and am = bmm~a in Theorem 4. Then, if 0 < a ^ 1,
our result follows by Theorem 4 (a) with δ = /3.

If α > 1 and α — /S < 1, then by Lemma 2 (b)

Σ

Thus, utilizing Theorem 4 (b) with <5 = β — a + 1, we obtain

Ga(t) e Lip [1 - (β - a + 1)] - Lip (a - β) .

oo I rt

COROLLARY 1. (a) Σ 1 s ί n m x d x

m = l I JO

e L i P (α — 1), 1 < α < 2,

[0, 2τr].

(b) If Ka<2 and {wm(x)} and {rm(x}} = {r1(2
m~1α

and Rademacher functions (defined in [1]), then

oo I rt

Σ \ wm(x)da
n = 0 I Jo

— fa _J_

since

e Lip (a - 1) on [0, 1] ,

for 2k~ι ̂ m <2k, k = 1,2, ---, as\ wjx)dx =
Jo

be easily seen directly.
(c) If 0 < a < 2 and {hm} denotes the Haar system (defined in [1]),
then

Σ

since

= ί" Lip (a/2) o^ [0, 1] ,

hm(x)dx = 2{k-])al2\ rk(x)dx for k = 1, 2,

REMARK 3. For the Haar system jFί(£) has no finite derivative
anywhere [5, p. 279].

THEOREM 6. Let 0 <

is of period b — a.
(a) Σ K i m - * < o o i /

(b) // Σ \am\m~a = c o

i < °°,

Σ

mW = φ(mx), and assume Φ,(t)

W |Φ«(ί)Γe Lι[a; b].
m(^)|α = °° almost everytvhere.

Proof. Part (a). Since Φm(t) = m^Φ^mt), we obtain

\b\Φm(t)\adt = πΓaΫ\Φγ(mt)\adt = m
J α J α

Pαrί (b). Applying Fejer's Lemma [7, p. 49], we obtain for every
set E of positive measure
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lim ( I Φ(mt) \adt = M^) [{φtf) \*dt > 0 as m — oo ,
J# b — a Ja

and so by a theorem of Orlicz [1, p. 327]

ΣlαJm-IΦΛmί)!* = Σ K I |Φm(ί)|β = -

almost everywhere.

COROLLARY 2. There exists an absolutely continuous function
whose Walsh-Fourier series is absolutely divergent.

Proof. For the Walsh system Fx(t) £ L°° by Theorem 6 and so
the result follows from Theorem A.

It now seems appropriate to prove

THEOREM 7. Let

ω*(δ, f) = s u p \[[f(x Λ-h)- f(x)Ydx}112 .

If Σ2 w / V(2^, /) < oo, then the Walsh-Fourier series of f converges
absolutely.

Proof. Let {cn} denote the Walsh-Fourier coefficients of / and
let x + y = Σ»=i I χn - Vn \2~n where x = Σ χn%~n and y = Σ ?/n2~" are
the binary expansions of x and y (where for dyadic rationals we choose
the finite expansion). N. Fine proved [4, p. 395]

2n-ί

Σ
1 el £ \\f(x + 2-) - f(x)fdx .
-1 JO

Also, by definition of + , we obtain

\[f(x + 2-) - f(x)Ydx
Jo

= ( [f(x + 2-) - f(x)fdx + J [/(« - 2-") - f(x)Ydx

where ^ = {O G [0, 1]: xn = ̂ } for ^ = 0, 1. Hence,

2 W - 1

and so by Schwarz's inequality

vl/2/2Λ-l \l/2

Σ
2/27l-l \l

( Σ l )
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REMARK 4. Previously N. Fine [4, p. 394] and N. Vilenkin [6,
p. 32] proved that if fe Lip#, a > 1/2, then the Walsh-Fourier series
of / converges absolutely. By Theorem 7 it follows that all of the
sufficiency theorems on absolute convergence for trigonometric series
[2, p. 154-161] in terms of modulus of continuity carry over completely
for the Walsh system.
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