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EVALUATION SUBGROUPS OF FACTOR SPACES

GEORGE E. LANG, JR.

In a series of papers Daniel H. Gottlieb defined and studied
evaluation subgroups of homotopy groups. In this paper we
develop techniques for calculating these subgroups for some
factor spaces. The calculations give information on the
vanishing of Whitehead products and the existence of cross
sections to certain types of fibrations.

The author is indebted to D. H. Gottlieb and J. Siegel for many
suggestions during this work.

With the exception of finite topological groups, all spaces are
assumed to be locally compact, path connected CW complexes with
base point. The base point of spaces A, B, , X, Y will always be
denoted by α0, 60, , x0, yQ. When the domain is clear the symbol x0

will also denote the constant function with image xQ. 1A will denote
the identity map from A to A for any set A. Homology and cohomo-
logy groups are assumed to be singular with integer coefficients.
A V B and A x B will denote the one point union and Cartesian
products respectively.

The following can be found in [7] or [8] unless otherwise stated.

DEFINITION LI. The evaluation subgroup Gn(X) is the subgroup
of πn(X) containing all elements a which can be represented by a map
f:Sn~>X such that lx Vf:XxSn->X extends to a map φ: X x Sn-+X.

The map φ: X x Sn —* X will be called an associated map for a e
Gn(X).

Let M be the path component of the space of maps from X to
X containing the identity map. If co: M—*X is the evaluation map
defined by ω(f) = f(x0), then Gn(X) = a>MM)) c πn(X). Gn(X) is
then clearly a subgroup. This alternate definition motivated the name
evaluation subgroup.

THEOREM 1.2. Gn(X) is the set of all aeπn(X) such that there
is a fibration p:E—>Sn+1 with X as a fiber and a — d(cn+1) where
cn+ί — [l^+i] e πn+1(Sn+1) and d is the boundary homomorphism in the
homotopy exact sequence for p.

COROLLARY 1.3. If Gn(X) = 0, any fibration with base Sn+1 and
fiber X admits a cross section.

DEFINITION 1.4. Pn{X) c πn(X) is the set of elements a e πn(X)
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such that [a, β] = 0 for all β e πm(X), sill m, where [, ] denotes the
standard Whitehead product.

THEOREM 1.5. Gn{X) c Pn{X) for all n.

DEFINITION 1.6. X is said to be a G-space if πn(X) = Gn(X) for
all n.

DEFINITION 1.7. X is said to be a TF-space if Pn{X) = πn{X) for
all n.

It is known [7], that an iJ-space is a G-space and clear from
Theorem 1.5 that a G-space is a TF-space. J Siegel [13] produced a
finite dimensional G-space which is not an iϊ-space. T. Ganea [5] gave
an example of a TΓ-space which is not a G-space. A finite dimen-
sional TF-space which is not a G-space is given in Section III. B of
this paper.

THEOREM 1.8. G^X) is contained in the center of πx(X).

THEOREM 1.9.

Pn(S*) =

0 for n even

Z n = 1, 3, or 7

2Z n odd, nΦl,3, or 7 .

II* Factor spaces of topological and Lie groups* In this sec-
tion machinery is developed for the calculation of certain evaluation
subgroups. Unless otherwise stated Y will denote a simply connected
topological group and G a finite subgroup. G can be considered as a
group of homeomorphisms acting on Y by left multiplication. For
geG and ye Ythe action will be denoted by sg(y) = g y; the orbit an
space of this action will be denoted Y/G. By 2.7.8 of [15] there is
isomorphism ψ: G —• π^( Y/G) and G is the group of covering transfor-
mations of the natural covering projection p: Y-+ Y/G. For any groups
K and L, Z(K) will denote the center of K and ZL(K) will denote
the centralizer of K in L. Let eeG denote the identity element and
the base point of Y. We recall the following theorems from [6].

THEOREM ILL G^X) is isomorphic to the subgroup of the covering
transformations for the universal covering space which are homotopic
to the identity by a fiber preserving homotopy.

THEOREM II.2. If ht: Y-+ Y is a homotopy of 1F, ht is fibre pre-
serving if and only if ht commutes with each covering transformation.
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THEOREM IL3. If geGnZ(Y) then ψ(g) e Gι(Y/G).

Proof. By Theorem II.l it suffices to show that the covering
transformation 4 is homotopic to 1F by a fiber preserving homotopy.
Let σ: I—> Y be a path such that σ(0) = g and σ(l) = e. Consider the
homotopy ht: Y—> Y defined by ht(y) = y σ(t). Then if 4, is any
covering transformation, ht{sg,{y)) = ht{g' y) = g' y βif) ~ sg,(ht(y))
and /̂ ί is fiber preserving by Theorem II.2. Since geZ(Y) by hy-
pothesis, ho(y) = ?/ σ(0) = y.g == g*y = sg(y) for all ye Y. But ^(y) =
2/ σ(l) = y e = y, thus &, is the required homotopy and ψ(g) e G^Y/G).

THEOREM Π.4. // Z(G) lies in a path component of ZY(G) then
s Z(G).

Proof. Let geZ(G) then geZγ(G). Since Z(G) lies in a path
component of ^F((τ) there is a path σ: I—• Fsuch that σ (O) = #, σ(l) = e,
and σ(t)eZγ{G) for all ί e l . Consider the homotopy ht{y) = σ{t)*y
for all yeY. For any g'e G, ht{/g,(y)) = σ(ί) -g'. y ^ g'*σ(t) *y =
Sg>{ht{y)) since σ(t) e ZY(G); thus /i, is fiber preserving by Theorem
Π.2. Now ho(y) = σ(0) 2/ — g y = sg(y) and A^y) = cr(l) ?/ — e y ^ y.
Thus Aί is a homotopy from 4 to 1F and by Theorem II. l , ψ(g) e

The following theorem is due to J. Siegel [12]. In this theorem
G need not be finite.

THEOREM II.5. Let Y be a Lie group and G any closed subgroup.
If p: Y~> Y/G is the quotient map, p^π^Y) c Gt(Y/G) for all i.

Proof. Consider the natural pairing μ\ Y/G x Y-+ Y/G. If ae
there is a map /: S*-> F such that a = [pof]. Then the

map φ: Y/G x S* > Y/G x Y*—̂ -> Y/G is an associated map for α
and aeGi(Y/G) by Definition I.I.

COROLLARY II.6. For G a finite subgroup Gn(Y/G) = πn(Y/G) for

Proof. Consider the long exact sequence for the fibration p: Y—>
Y/G:

> πn{Y) ̂ U πn(Y/G) -±» π^(G)

For n > 1, πn^(G) — 0 since G has the discrete topology. Then by
exactness p* is onto and Gn(Y/G) = πn(Y/G).

It can now be shown that many factor spaces of Lie groups are
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G-spaces.

THEOREM IL7. If Y is a compact simply connected Lie group
and G a finite subgroup contained in a torus T in Y, then Y/G is a
G-space.

Proof. Z(G) c T and thus in a path component of ZY{G). By
Theorem IL4, G^Y/G) = Z{G) = π^Y/G) since G must be abelian.
That G^Y/G) = π^Y/G) follows from Corollary IL6.

DEFINITION IL8. G is a [p]-subgroup of Y for p prime if G is
the direct sum of a finite number of copies of Zp (the integers, mod p).

DEFINITION II.9. Y is said to be without p-torsion is the coho-
mology groups of Y do not contain any nonzero elements of order
divisable by p.

COROLLARY ILIO If Y is a compact connected Lie group with-
out p-torsion and G is a [p]-subgroup of Y then Y/G is a G-space.

Proof. By Theorem 3.2 of [2], G lies on a torus in Y. Then
Y/G is a G-space by Theorem IL7

COROLLARY 11.11. If Y is a compact simply connected Lie group
and G is of the form Zp or Zp 0 Zp, then Y/G is a G-space.

Proof. For Y simply connected any group of the form Z or ZP@ZP

must lie on a torus.

Ill* Calculations of evaluation subgroups*

A. Orbit spaces of S3. The following theorems calculate the
evaluation subgroups for the orbit spaces of S3 under the action of a
binary polyhedral group. These spaces provide a nice demonstration of
the use of Theorems IL3 and II.4.

DEFINITION III.l. < I, m, n > will denote the binary polyhedral
group generated by R, S, and T and satisfying relations Rι = Sm —
Tn = RST.

These groups will be finite in the cases < 2, 2, n >, < 2, 3, 3 >,
< 2, 3, 4 >, and < 2, 3, 5 > having order An, 24, 48, and 120 respec-
tively. The following classical result is due to H. S. M. Coxeter (see
[2] or [3]).
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LEMMA III.2. The finite binary polyhedral groups are subgroups
of S\

The orbit space S3/< 2, 3, 5 > is the dodecehedral space which
provided the original counterexample to the first form of the Poincare
conjecture (see [1], p. 217).

THEOREM III.3. G1(S3/G) = Z2forG = <2,2,n>,n^2,<2,3,S>,
< 2, 3, 4 > and < 2, 3, 5 >.

Proof. In these cases Z(G) — Z2 which can be taken as the sub-
group {1, —1} of the quaternians. But {1, —1} is also the center of
S3 so by Theorem II.3, Z2 c G^S'/G). By Theorem 1.8, Gι(SΛ/G) c
Z(G), thus G^SVG) = Z(G) = Z2.

THEOREM III.4. (?1(S3/< 2, 2,1 » = < 2, 2,1 > = Z4.

Proof. The group < 2, 2,1 > can be taken to be the subgroup
{1, i, — i, — 1} of the quaternians. The centrilizer of < 2, 2,1 > in S3

is the set of quaternians of the form a + bi, a copy of S1. In parti-
cular Zsz(< 2, 2,1 >) is path connected. Then, by Theorem II.4,
G1(SV<2,2,1» = Z4.

THEOREM III.5. For G any of the binary polyhedral groups
GΛ(S>/G) = πn(S*/G) ~ πn(S*) for n > 1.

Proof. This is immediate from Corollary II.6 and the fact that,
since G is finite, S3 is the universal covering space of S3/G.

B. Complex protective spaces. Let CPn, n ^ 1 denote complex
protective %-space. Let p: S2n+ί —• CPn denote the usual fibration with
fiber S1. The base point of S2n+1 will be taken as (1, 0, 0, , 0) and
S1 will be embedded in S2n+1 by i(z) = (z, 0, 0, , 0).

THEOREM III.6. G2(CPn) = 0 for all n.

Proof. Assume φ: S2 x CPn —> CPn is an associated map for a e
π2(CPn). Consider the following diagram:

E

r
S* x CPn -ϊ-» CP% —^ K{Z, 2) * K(Z, 2n + 2)
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where t e H*(Z, 2; Z) is the fundamental class, E is induced from the
path fibration by cn+\ u e H2(CPn) is a generator and u a lift of u. Let
σeH(S2) be a generator and a*u = mσ. Since ΰ lifts tt,
0. By direct calculation we have

= {mσ (x) (g) ^ ) % + 1 =

The second equality follows from the fact that φ | S2 x * = a and
0|* x CPn = 1, the others are standard. But un e H2n(CPn) is a gen-
erator, so (w + l)mσ (x) un = 0 implies m = 0. Thus a is null homo-
topic. This proof was suggested by the referee.

In [1] it is shown that for all n, Pτ(CPn) c p*Pr(S2n+ί) if r > 2.
In particulas CP3 is a T7-space. Since G2(CPS) Φ π2(CP5), CP5 is an
example of a finite dimensional space which is a TF-space but not a
G-space. Since Gr(CPn) c Pr(CPn) the above result implies:

COROLLARY III .7. G2n+ί(CPn) c P 2 . + 1 (CP % ) c p*P2n+1(S2«+1) = 2Z for

nΦ 2, 3.

Using Theorem II.5 a lower bound for G2n+1(CPn) can be obtained.
A new representation of CPn will be needed. Let U(n) be the space
of all n x n unitary matrices. Let ί: U(n) x S 1 ^ U(n + 1) be given
by

i(A, z) =

z 0 O Oϊ

0

0

: A

o

Using 7.3 of [17] it is easy to check that CPn = U(n + 1)/U(ri) x S1

and there is a fibration U(n) — ^ U(n + 1) - ^ CPW.

THEOREM IIL8. %! Z c G2n+1(CPn).

Proof. The above fibration yields an exact sequence

π2n+ί(U(n+l))^π2n+1(CP«)^π2n(U(n)x >π2n(U(n+1)) .

Now π2n+1(CPn) = Z and π2w(t7(n) x S1) = 7Γ2w(J7(^)) - Znl. By the ,Bott
Periodicity Theorem π2n(U(n + 1)) = 0 and τr2 w + 1(ί7+ 1)) = Z. The

above segment of the exact sequence then reduces to Z —^U Z •
Znl > 0. Thus Ker 3 = n\Z and by exactness Im p* = w!Z. Then
by Theorem II.5, nlZd G2n+ί(CPn).
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C. The Stiefel manifolds. In this section some evaluation sub-
groups of the Stiefel manifolds are computed and the inplications of
the evaluation subgroups on the James number is explored. A number
of these groups can be shown to be nonzero by checking the boundary
homomorphisms of the various fibrations used by Paechter (see [11])
in his extensive calculations of the homotopy groups of the real Stiefel
manifolds. This technique however yields a complete calculation for
very few groups. The Lie groups of the orthogonal, unitary, and
symplectic n x n matrices will be denoted respectively by O(n), U(n),
and Sp(w). There are natural embeddings O(ri) —> O(ra), U(n) —» U(m),
Sp(^) —* Sp(m) for n ^ m.

DEFINITION 111.13. The real, complex, and quaternic Stiefel mani-
folds are defined respectively by

Vnyh = 0(n)/0(n - k), Wn,k = U(n)/U(n - k) ,

and

- k) .

The notation On>k will be used for any of these manifolds; in this
case d will denote the dimension of the scalar field over the reals.
There is a fibration Om_uk^ > Om,k > S d m - 1 . The following defini-
tion, due to I. M. James (see [9] and [13]), uses the boundary homomor-
phism of the long exact homotopy sequence of this fibration. ίdm_γ e
Kdm-ι{Sdm~ι) will denote the class of the identity.

DEFINITION 111.14. The James number 0{m, k) is defined to be
the order of 3(^m_i) in πdm~2{Om-uk-<) for 2 ^ k ^ m and in the real
case m ^ 3. By convention 0{m, k) = 0 if 3(^w_i) is of infinite order
and 0{m, k) — 1 if k = 1 or in the real case if m = 2.

DEFINITION 111.15. If 2 ^ k g m where m ^ 3 in the real case,
let 0<m, k> be the order of Grfm_2(Ow_1,A;_1). By convention 0<m, k> —
0 if Gd1ll-.2(Om-i,fc-i) is infinite and 0 < m, k > = 1 if k = 1 or in the
real case if m = 2.

THEOREM III.16. (a) If 0 < m, k > Φ 0, then 0{m, k) divides
0 < m,k>.

(b) If 0 < m, k > = 0 and (?dm_2(Om_1,fc_1) is torsion free, 0{m, k) =
0 or 1.

(c) If 0{m, k) = 0, £ / ^ 0 < m, & > = 0.

Proof. By Theorem 1.2, 3(^w_0 is in Grfm_2(Ow_1,fc_1) and thus if
0 < m, & > Φ 0 the order of the group generated by d(^w_i) must
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divide the order of Gdw_2(Om_1,A;_1) proving (a) If 0 < m, ft > = 0 and
Gdm-.2(Om^1)k_1) is torsion free, d(cdm_2) must be 0 or generate an infinite
group, thus 0{m, ft} — 0 or 1 proving (b). Part (c) is clear from
Theorem 1.2.

THEOREM 111.17. If ft ^ 1, m odd, then Gm(Vm+lίk) is infinite.

Proof. V{m, k] = 0 for k ^ 2, m odd, by §25.6 in [17]. Then
by Theorem 111.16, (c) V < m, k > = 0 and Gm_2(Fw_1,,_1) is infinite
and the result follows by a simple shift of indices.

THEOREM 111.18. G2i+1(Wnyk) is infinite for n — k = 2, 2<^i<^
n — 1.

Proof. Consider the fibration U(n - k) -ϊ-> ?7(^) -£-> Wn,k. The
homotopy exact sequence contains

>πu+ι(U(n - ft)) — π2i+1(U(n)) - ^ U πu+ί(Wntk)

By §24.5 in [17], 17(2) is homeomorphic to S3 x S1. Thus for i ^ 2,
π2i+1(U(n - ft)) = π2i+1(S3) is finite (see p. 318 in [9]). For i <^ n — 1,
^2i+i(U(n)) — Z since it is in the stable range of the Bott Periodicity
Theorem. But then i* must be trivial and p* a monomorphism. But
then i>*7r2«-i(Z7(w)) is infinite and so is G2i+1(Wn>k) by Theorem II.5.

The first nonvanishing homotopy group of Vn,k occurs in dimen-
sion n — ft and is given by πn_k(Vn,k) = Z if n — ft is even or ft = 1
and πn_k(Vn>k) = Z2 otherwise (see §25.6 in [17]).

THEOREM 111.19.

(Z ft = 1, n = 2, 4, or 8

2UΓ ft = 1, n even, nΦ2, 4, or 8

0 n — k even

Z2 ft > 1, n - ft = 1 or 3 .

Proof. For ft = 1, F»,i = S^"1 and the first two results follow
from Theorem 1.9. If n — ft is even the Hurewicz homomorphism is
an isomorphism in dimension n—ft and by Theorem 5.1 in [7], Gn-k(Vn,k)
must be torsion. But πn_k(Vn,k) is torsion free for n — ft even and
thus G»-fc(V»ffc) = 0. When n — ft = 1, ft > 1, V*,* = SO(n), the special
orthogonal group and Vn>k is a G-space. Thus πn-k(Vn,k) = Z2 for
n — ft = 1. Now assume w — ft — 3 and consider the fibration
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O(n - k) > O(n) > Vn,k .

There is a long exact sequence containing

> πz(O(n)) — π3(Vn,k) -?-> π2(0(n - k))

Since O(n — k) is a group, π2(0(n — &)) = 0 and p* is onto. But then
by Theorem IL5, Gn-h(Vn,k) = πw_^(F%,fc) - # 2 for n - Λ = 3, k > 1.
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