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TRANSFORMATIONS OF SYMMETRIC TENSORS

LARRY CUMMINGS

This paper is about linear transformations of the fc-fold
symmetric tensor product of an ^-dimensional vector space
V which carry nonzero decomposable tensors to nonzero
decomposable tensors. The main theorem shows that every
such transformation is induced by a nonsingular transfor-
mation of V provided both

( i ) the field has characteristic either 0 or a prime
greater than k and every polynomial over the field with degree
at n is a product of linear factors.

( i i ) n>k + l.

Condition (i) includes the important special case where the field
is algebraically closed with characteristic 0.

The linear transformations which preserve decomposable tensors
in the skew-symmetric case have been studied in two papers by
Westwick [6, 8j. In [6] he showed that if the field is algebraically
closed then the transformation is induced by a linear transformation
of V except, possibly, when the dimension of V is 2k. In the latter
case the transformation may be the composition of one induced by a
linear transformation of V and one induced by a correlation of the
^-dimensional subspaces of V. A series of papers [3, 4, 7, 2] has
been devoted to linear transformations which preserve decomposable
tensors in the case of the full tensor product.

Our result partially answers a question first raised by Marcus
and Newman in [5]. They asked for necessary and sufficient condi-
tions in order that every decomposable mapping of the space of fc-fold
symmetric tensors be induced.

1* Preliminaries* Let Vk denote the &-fold Cartesian product
of V where k > 1. A k-fold symmetric tensor space (or rank k sym-
metric tensor space) is a vector space denoted by \/kV together
with a fixed multilinear symmetric mapping σ: Vk —* \f kV which is
universal for multilinear and symmetric mappings of V * V. We assume
that ykV is generated by the image of σ. Thus, if W is any vector
space and g: Vk —» W is both multilinear and symmetric then g has a
unique extension h: \/kV—>W such that

W

(1.1) /^X
vk ^ykv

σ
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is commutative and y kV is isomorphic to any other vector space
with this property. In particular, if A: V—> V is linear then the
assignment

(xl9 , xk) i • Ax, V V Axk

is a multilinear and symmetric mapping of Vk. We will denote its
unique linear extension to V*^ by V ^

The decomposable symmetric tensors or "symmetric products" are
images under σ of fe-tuples in Vk. For convenience we denote
σ(xu , xk) by x1 V V xh A subspace s of ykV is decomposable
if S £ 0 (Ffc). Trivial decomposable subspaces are the zero subspace
and the 1-dimensional subspaces whose elements are scalar multiples
of a single nonzero decomposable symmetric tensor. If V and F satisfy
(i) and (ii) the maximal decomposable subspaces of y kV were deter-
mined in [1].

A symmetric product is zero if and only if at least one of its
factors is zero. More generally, if

x1 V V xk = Vi V V 2 / ^ 0

then there are scalars Xl9 , Xk such that X1 Xk = 1 and

(1.2) Xi = Xiy^i) i = 1, •••, k .

Here π e Sk, the symmetric group on {1, , k}.

A linear transformation / :V*F—•VtFis decomposable if

f(σ(Vk)) a

and

(1.3) kerff]σ(Vk) = 0 .

If V is an w-dimensional vector space then the dimension of

2* Type 1 subspaces and associate mappings* Subspaces in
ykV of the form

(2.1) M = x, V V xk~ι V V k>l

where xu •• ,α?Λ_1 are fixed nonzero vectors in V are always decom-
posable because of the multilinearity of the mapping a. It is con-
venient to call these type 1 subspaces. The 1-dimensional subspaces
<̂ i)> •", <β*-i> a r e called the factors of Λf.

PROPOSITION 1. If F is a field whose characteristic (if any) is
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not less than k then

(2.2) x1 V V %k~i V V = %[ V V x'k-i V V in y kV

implies

<α?x V V %-i> = <α?ί V V a?*-i> iw V*-i V

Proof. This proof requires the choice of a vector not in the
set-theoretic union

(2.3) <^> U U <%-!> .

By Lemma 12 of [1, p. 73] we know that if V were the union (2.3)
then the cardinality of F could not exceed the finite integer k — 1.
This would mean that the characteristic of F exceeds the cardinality
of F. Accordingly we may choose v in V not in the union (2.3) and
(2.2) implies the existence of a u in V satisfying

Xι V ' ' V Xk-i V 11 = X[ V ' V X'k-i V V .

By the choice of v and (1.2) there is a nonzero scalar λ for which

u — Xv and

Xi = λ i ^ ( ί ) i - 1, •••, A: - 1

where π e Sk^ and 1 = λi7λiβ Therefore,

λa?! V V a?jfe-i — »ί V V #ί_i

in V * - i ^

Hereafter we will assume that F satisfies the hypothesis of
Proposition 1.

A type 1 mapping is a decomposable mapping of ykV for which
the image of every type 1 subspace is again a type 1 subspace. If
/ is a type 1 mapping and M is the type 1 subspace (2.1) then we
may choose nonzero vectors yu ** ,yk-γ in V such that

(2.4) /(if) = ftV 'Vft- ι VF..

We obtain a well-defined linear mapping A of V by setting
Au — v if

(2.5) f(xt V V %-i V w ) = K i V ' V 2/Λ-i V v .

The mapping A will be called an associate mapping of / with
respect to M. In general, the associate map defined by (2.5) depends
not only on M and / but the choice of the vectors yl9 * ,yk-ι as
well.



606 LARRY CUMMINGS

PROPOSITION 2. Any two associate mappings of a type 1 mapping
with respect to the same type 1 subspace are multiples.

Proof. This follows easily from Proposition 1 and (1.1).

PROPOSITION 3. Every associate of a type 1 mapping is non-
singular.

Proof. Let A be an associate of a type 1 mapping / with
respect to (2 1) and suppose A(u) = A(u') for some vectors u, uf in
V. Prom (2.5) we have

f(Xi V V xk-ι V u) = f(x1 V V Xk-! V O .

Since / is linear and decomposable we have

xtV V %k-i V (u — vf) = 0

which implies w = u'.
Two type 1 subspaces will be called adjacent if they have exactly

k — 2 common factors (counting multiplicity). Accordingly a typical
pair of adjacent subspaces may be written in the form

(2.6) Mi = x, V V %k-ι V Zi V V i = 1, 2

where ^, 22 are two independent vectors of V and a?!, •• ,α?Jfc_1 are
arbitrary nonzero vectors.

Two arbitrary type 1 subspaces are always connected by a chain
of adjacent subspaces; explicitly, if

(2.7) M = xλ V V #*_! V V

and

iV = 2/i V V 2/*-! V F

then Mv is adjacent to Mp+1 where

(2.8) Mp = x, V V Xk-p-i V ^ V V ^ V F p = 1, , & - 2

and we take M = Mo and N — Mk^.

PROPOSITION 4. Two type 1 subspaces M and N are adjacent if
and only if dim M Π N = 1. Otherwise M f) N = 0 whenever M and
N are distinct.

Proof. Consider the adjacent type 1 subspaces (2.6). If teMιΠMz

then there exist vectors u and v in V such that
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(2.9) t = x, V V %k-2 V Zi V u = a?! V »t-2 V £2 V v

Now the multilinear and symmetric mapping gP(x): Vp—> VP+ίV defined
for each p — 2, , k — 1 by

(2.10) (vl9 , vp) i • a? V Vi V V vp

extends as in (1.1) to a linear mapping hp(x): VpV—> \ZP+ιV. If the
vector x in (2.10) is nonzero then each hp(x) is injective and so is the
composite

h = h^x,) &*-<(&*) h2{xk_2) .

Thus (2.9) is just

hfa V u) = h(z2 V v)

and so

«! V Vi = ^2 V V .

Since ^ and z2 are independent (1.2) implies that u is a scalar multi-
ple of zz. Therefore

(2.11) M1 Π M2 = <a?x V V &*-a V ^ i V 2̂> .

Now consider an arbitrary pair of type 1 subspaces (2.7) and
suppose they have nonzero intersection. Let

t = xί V V α?*-i Vw = i/1V V m_i V v

be a nonzero element of the intersection. If ζμ) = <v> then by (1.2)
we have ik^ = M2 and otherwise Mx and M2 must have exactly Λ — 2
common factors.

PROPOSITION 5. The images of adjacent type 1 subspaces under

type 1 mappings are adjacent provided the underlying field satisfies

(i)

Proof. Consider the adjacent type 1 subspaces (2.6). We know
from Proposition 4 that

M, Π M2 = (x, V V %-2 V ^ i V £2> .

If / is a type 1 mapping then /(Λfi) Π /(ikQ is nonzero and Proposi-
tion 4 yields the desired conclusion provided /(MJ and /(ΛΓ2) are
distinct. We complete the proof by showing that the images of
adjacent subspaces are always distinct.

Consider the two linear mappings At: V—>\/kV defined by
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AM = /(» i V V xk-i V Zi V v) i = 1, 2 .

It follows that they are injeetive because / is linear and decompo-
sable. Suppose range Ax — range A2 and let A2

ι: range A2 —> V be
the inverse of A2. Then A2~

ίAί is a well-defined linear transformation
of V. Because of (i), A2

ιAγ has at least one characteristic value, say
λ. If u is a corresponding characteristic vector then A{n — XA2u.
That is,

f(Xι V V Xk~i V Zι V u) = Xf(xt V V %_L V z2\f u) .

Since / is linear and decomposable we obtain z1 = Xz2, contradicting
the assumption that M1 and M2 are adjacent.

Any collection of two or more type 1 subspaces in \/kV(k>2)
will be called an adjacent family if there are vectors xu , xk_2 in
V such that any subspace in the collection can be written as

x1 V V %k-2 V u V V

for some vector ueV. When k = 2 any collection containing at least
two distinct type 1 subspaces will be called an adjacent family. Of
course every pair of adjacent type 1 subspaces constitutes an adjacent
family, but a collection of three or more need not be, as is easily seen
by example.

PROPOSITION 6. Any collection of more than k pair-wise adjacent
type 1 subspaces in ykV is an adjacent family.

Proof. We assign to each type 1 subspace (2.1) the set

which always contains k — 1 distinct elements even if (2.1) does not
have distinct factors.

The proposition now follows from the combinatorial result that a
collection of more than k finite sets each containing k — 1 elements
which intersect pair-wise in k — 2 elements always intersect in the
same set of k — 2 elements:

If k = 2 there is nothing to prove. If k > 2 let X and Y be
any two sets of the collection. There are elements a and b such that

X= ( i n Y)Ό{a)

and

Y= ( in Y)Ό{b} .
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Because any two sets in the collection intersect in k — 2 elements,
any set of the collection not containing X Π Y must contain both a
and b and intersect X Π Y in exactly k — 3 elements. But there are

at most k — 2 = , Q ) distinct such sets. Therefore, the collection
\rv — o/

must contain at least one set Z distinct from X and Y but which
contains X Pi Y. Let

z = xn YU{C}

and suppose there exists a set W in the collection not containing
I f l Γ . Then {α, δ, c} £ W, contradicting the hypothesis that XΠ W
has & — 2 elements.

3* Main results* A collection of vectors in an %-dimentional
vector space is said to be in general position when any n vectors
chosen from the collection form a basis of V. The following well
known lemma about vectors in general position will be used in showing
that any two associate mappings of a type 1 mapping are multiples
whenever n > 2 and the underlying field is infinite.

LEMMA 1. If m Ξ> n then an n-dimensional vector space over an
infinite field always contains m vectors in general position.

LEMMA 2. Let zl9 , zm be any finite set of vectors in an n-
dimensional vector space over an infinite field. If A: V —* V is non-
singular and B is any other linear mapping of V satisfying

(3.1) (A{x)y = (B(x)>

for all vectors x not in S = <^) U U <2m) then there is a scalar
λ such that B = XA.

Proof. Since F is infinite Lemma 12 of [1] and induction show
the existence of a basis of V disjoint from the set S. If bu •••, bn

is such a basis let Xl9 , λn be scalars such that

(3.2) Bfa) =λ 4A(δ ί) i = l, . . . , * * .

Since F is infinite we may choose a vector v = Σ afii not in S but
all of whose coordinates with respect to bl9 , bn are non-zero. Then
(3.1) and (3.2) imply the existence of a scalar λ such that

Since A is nonsingular we have X1 = λ2 = = λn = λ .

REMARK. In (i) we assume that every polynomial of degree at
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most n splits completely over the underlying field. This means that
the field is necessarily infinite since the polynomial ring over a finite
field has irreducible elements of every degree. Thus Lemmas 1 and
2 are immediately applicable in the following theorems.

THEOREM 1. The associate mappings of a type 1 mapping of
\fkV are a 1-dimensional subspace of the linear mappings of V, pro-
vided dim V > 2 and F satisfies (i).

Proof. We show first that an associate map of a type 1 mapping
/ with respect to one of type 1 subspaces (2.6) is always a scalar
multiple of every associate mapping of the other. By Lemma 1 we
complete the vectors zl9zz to a set zl9 , zm in general position where
m = Max {k, dim V). As in the proof of the Proposition 1 we may
choose a vector zm+ι not in the set-theoretic union (z^) (J U <£»>•
Then the subspaces

Mi = xι V V a*-* V ZiV V i = 1, , m + 1

are an adjacent family. The images of these subspaces form a family
of pair-wise adjacent subspaces by Proposition 5. They form an
adjacent family by Proposition 6 and the choice of m. Thus we
may choose vectors ylf , yk^2; wly , wm+ί in V such that

(3.3) f(Mi) = yx V V y*-« V w, V V ΐ = 1, , m + 1 .

We proceed to examine the effect of / on the intersections
Λf4Πilf +1; i = l,2.. By (3.3)

f(%i V V Xk-2 V Zi V zm+1) = 2/i V V 2/*-2 V ^ V A ^ + x )

= 2/i V V 2/fc-2 V wm+1 V Am + 1fe)

i = 1, 2 .

where At denotes any associate map of Mi under / and Am+ί is an
associate of Mm+1. It follows that {wm+1} — (Ai(zm+1)y for i = 1, 2
because wm+1 is not in (w^} U < 2̂> Since zm+1 is restricted only by
its exclusion from <^) U U (zm} Lemma 2 applies and yields a
scalar 7 such that Aι — ΎA2.

To complete the proof we need only consider an arbitrary pair of
type 1 subspaces (2.7) and a chain (2.8) of adjacent subspaces between
them. If Ap is an associate map of Mp then we have just shown
the existence of a scalar j p such that

Ap = ΎPAP+1 p = 0, , k — 2 .

Therefore, Ao = y0 yk^2Ak^.
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REMARK. If dim V= 1 then V W = 1 and L{\fkV, VW) = F.
Hence L(\/ kV, VW) consists of induced mappings if and only if
every polynomial of the form xh — a has a root in F.

THEOREM 2. Every type 1 mapping of \f kV is induced by an
associate mapping, provided dim V > 2 and F satisfies (i).

Proof. Let x = x, V V %k be any nonzero product of \f kV.
The trivial subspace <α?> is the intersection of the k type 1 subspaces

(3.4) Ti = a?x V V Xi V V xk V F i = 1, , k .

By Theorem 1 the associate mappings of a type 1 mapping / with
respect to the subspaces (3.4) are scalar multiples of one another. If
A is any one of them then Theorem 1 and definition (2.5) show then
that Axi must be a factor of f(x) for each i = 1, , k. Thus, if x has
distinct factors it follows from (1.2) and Proposition 3 that

(3.5) f{x) = XxAx, V V Axk

for some scalar Xx and

(3.6) f(Ti) = Ax, V V Axi V V Axk V V i = 1, , k .

We next verify (3.6) when the factors < î>, •••,<%> are not
necessarily distinct. To this end consider a chain of adjacent sub-
spaces (2.8) where we suppose Mk^ has arbitrary factors and take
the factors of Mo as distinct and distinct from the factors of Mk^.
This we may always do since any field satisfying (i) must be infinite.
(See the remark following Lemma 2.) Thus (3.6) may be applied to
Mo which contains zx = xx V V Xt-ι V Vi By Theorem 1 there is
a scalar λ for which

(3.7) /fa) = XAx, V V Axk^ V Ay, .

Therefore the k — 1 factors of /(Afi) must be among the factors of
(3.7). Now {Ay,} could not be excluded because then MQ and Mί

would have the same type 1 subspace as image, contradicting Prop-
osition 5. If, say, Ax, were excluded then

f{M,) = Axz V V Axk-! V Ay,V V

and Theorem 1 yields

(3.8) /fa) = \Ax2 V V A ^ V Axk^

for some scalar \.

Comparison of (3.7) and (3.8) shows that Axk^ would be a scalar
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multiple of either Ayι or some Ax{ with 1 ^ i < k — 1. Hence

/(ΛfO = ^ V V Aα?M V 4 V F .

Suppose it has been shown that

(3.9) f(Mp) = Aa?! V V i α * - ^ V ^ V V Ayp V F

for some p, 1 < p ^ k — 2. Since

Λfp Π Mp+ί = <ίcιV V a?*-P-i V ^ i V V yP+i>

(3.9) implies that f(Mp+ί) contains

(3.10) Ax, V V Aα^p-! V 4 V V Ai/P+1

and so the k — 1 factors of f(MP+1) are among the factors of (3.10).
Arguing as before we see that Ayp+1 must be a factor of f(Mp+1)
since otherwise the images of f(Mp) and f(Mp+ι) would coincide. If,
say, Ax1 were not a factor then

f(Mp+1) = Ax2 V V A a ^ ^ V 4 V V A ^ + 1 V F

and by Theorem 1 there is a scalar μ for which

(3.11) f{xx V V »*_,_! V ϊ i V V Vp+d

= μAx2V --- V AXk-j,-! V -4^ V V Ayp+1 V - 4 ^ ^ ^ .

Comparison of (3.10) and (3.11) shows that Axh^p_x would be either a
multiple of some Ayi91 ^ i ^ p + 1, or some Aa^ , l ^ i < & — p — 1,
contradicting the assumption that the factors of Mo are distinct and
distinct from the factors of Mk^.

Since any product x is in some type 1 subspace we have shown
that f(x) = Xx(ykA)(x) for some scalar λa . If x and y are products
in the same type 1 subspace a simple comparison argument shows
that λx = Xy. Denote the common value by λ. When x and y are
arbitrary products we obtain the same result by considering type 1
subspaces containing them and a chain (2.8) between the subspaces
since any two of the latter have 1-dimensional intersections. Because
the field always contains a root of xk — λ = 0 by (i), we have shown
that / is induced by λ1/fc A.

THEOREM 3. Every decomposable mapping of ykV is induced
by a nonsingular mapping of F, provided V is a finite dimensional
vector space satisfying (i) and (ii).

Proof. Because of the previous theorem we need only show
with the additional hypothesis that every decomposable mapping of
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ykV is type 1. If M is any type 1 subspace and / decomposable
then f(M) is a decomposable subspace and hence contained in a
maximal decomposable subspace of \f kV. In [1] the maximal decom-
posable subspaces of \/kV were determined for the case when V
satisfies the hypothesis of this theorem. The subspaces are

(a) type 1 subspaces
(b) type r subspaces which are of the form

Xι V V %k~r V S V V S

where 1 < r ^ k and S is a 2-dimensional subspace of V.
Those subspaces of type r > 1 have dimension r + 1. If the

maximal decomposable subspace containing f(M) was one of these
types then dim V^r+l^k+1 by (1.3) because every type 1 sub-
space has the same dimension as V. The hypothesis dim V > k + 1
thus implies that the maximal decomposable subspace containing f{M)
is type 1 and therefore / is type 1.
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