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ON BOREL PRODUCT MEASURES

W. W. BLEDSOE AND C. E. WILKS

It has been known for many years that the product of two
regular borel measures on compact hausdorff topological spaces
may not be borel in the product topology. The problem of
defining a new product measure that extends the classical
product measure and carries over this borel property has been
approached in different ways by Edwards, by Bledsoe and
Morse (Product Measures, Trans. Amer. Math. Soc. 79 (1955),
173-215; called PM here.) and by Johnson and Berberian.
Godfrey and Sion and Hall have shown that all three of these
methods are equivalent for the case of Radon measures on
locally compact hausdorff spaces.

Elliott has extended the results of PM by defining a
product measure for a pair, the first of which is a (generalized)
borel measure and the second a continuous regular conditional
measure (generalization of conditional probability), and proving
a corresponding Fubini-type theorem.

The purpose of this paper is to extend the results of PM
in a manner similar to Elliott's, but with his continuity condi-
tion replaced by an absolute continuity condition and by a
"separation of variables" condition. It is still an open question
whether Elliott's continuity condition is necessary.

1. DEFINITIONS AND NOTATION1. By a measure (outer measure) μ
on a space M is meant a nonnegative countably subadditive function
on 2M, the subsets of M. In a topological space (M, m), an m-borel
measure on M is any measure on M for which the open sets are
(Caratheodory) measurable, and the borel sets of (M, m) are the members
of the smallest tf-algebra containing m. If G is any family of sets,
let σG be the union \JaeGa of the family G. If Hξ^2M and g is a
nonnegative function on H, then mss gMH is defined to be the func-
tion on 2M such that mss gMH (A) — iniG^aeGg(a) where G varies over
all countable subsets of H for which A g σG. ψ = mss gMH is called
the measure generated by the gauge g, and H is called the basis of ψ.

2* Product measures* If μ measures M and v measures N, we
call a subset D of M x N a nilset (more correctly a μv-nilset) if

j\CrD(x, y)μdxvdy = 0 = UCV^, y)vdyμdx ,

where CrD is the characteristic function on D. The ordinary product
measure of μ and v is given by

1 Most of the notation used here is taken from [2] and
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ψ = mss g(M x N)R

where R is the set of μv-measurable rectangles, and g(a x δ) = μ{a) v{b)
for α x be R. The extended product measure of μ and v given in [2] is

^ = mssg(M x iV)(J? U 3)

where Z denotes the set of μv-nilsets, and

g(D) = U C r ^ , y)μdxvdy

for Z> e (β U Z). (i.e., #(.D) = 0 for DeZ, and #(α x b) = ̂ (α)
for α x δe JB).

It was shown in [2] that

φ is an extension of ψ ,

(i.e., if A is α/r-measurable then A is ^-measurable and φ(A) =
In cases where the nilsets are immeasurable then, of course, φ and
ψ are identical; but the ^r-measurability of nilsets is still an open
question in the interesting case when μ and v are regular borel
measures on compact hausdorίf spaces.

A result from [2], (Thms. 5.11-5.13), is

THEOREM 2.1. If μ measures M and v measures N and φ is the
extended product measure of μ and v, then

•1 φ is an extension of the ordinary product measure of μ and v,
.2 μv-measurable rectangles are φ-measurable,
.3 μv-nilsets have φ measure 0, and
A (Fubini) if f is φ-integrable, then

= γ{z)φdz = J]/fo y)vdyμdx .

Elliott, in [4], has generalized this result by replacing the measure
v by a regular conditional measure, defined as follows. Let & be
a family of subsets of N for which σ& e &. v is called a regular
conditional measure on M x <% if v is such a function on M x &
that

(i) for each %eM> vx = v{x, •) is a measure for which members
of & are immeasurable, and

(ii) for each δ e ^ ? , the function v( , b) is μ-integrable (i.e.,

\v(x, b)μdx <^ ooj .

A rectangle a x b is a μv^-basic rectangle if α is //-measurable,
δe ^ , and
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\Cra(x)v(x, b)μdx < oo .

A set C £ M x N is called a μv-nilset if

= 0 .

The μv&-product measure (of Elliott) is defined as mss g(M x
where F is the family consisting of all /^^?-basic rectangles and
μv-nilsets, and

g(C) = uOtffo y)vxdyμdx

for Ce F. A corresponding ordinary (conditional) product measure
for μ and v can be defined on M x N using only μv-basic rectangles [9].

Elliott [4, Thms 1.0, 1.4], generalized 2.1 as follows:

THEOREM 2.2. If μ measures M, & is a σ-algebra of subsets of
N, σ& — Ne &, v is a regular conditional measure on M x ^ , and
φ is the μv^-product measure, then

•1 φ is an extension of the ordinary (conditional) product measure
of μ and v,

.2 μv&-basic rectangles are φ-measurable,

.3 μv-nilsets have φ-measure 0, and
A (Fubini-like) if f is φ-integrable, then

y(z)φdz = ]]/(», y)vxdyμdχ .

3* Topological measures* Let (M, m) be a topological space
with a measure μ on M. /i is said to be an m-borel measure if
members of m (open sets) are ^-measurable. If, additionally, for each
Aem,

μ(A) = sup μ(C) ,

where C varies over all closed subsets of A for which μ(C) < oo, then
μ is called an m-inner regular borel measure, m is said to be μ-
almost lindelof if for each subfamily H of m for which M = σiJ, and
for each S £ ilί for which μ(S) < oo, there is a countable subfamily
G of H for which μ(S - σG) = 0.

A regular conditional measure on M x & is said to be m-continuous
if, for each be&, v( , 6) is an m-continuous function.

3.0. Throughout the remainder of this paper we shall assume
that
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.1 (M, m) and (JV, n) are topological spaces and that (P, p) is
their topological product.

.2 μ is a finite,2 m-inner regular borel measure on M, and m is
//-almost lindelof. i/ is a finite,2 w-inner regular borel measure on N,
and 7i is i/-almost lindelof.

.3 & is a tf-algebra of subsets of iV such that wgΞ^?.

.4 v is a regular conditional measure on M x &, with the
properties that for each xe M,vx is a finite %-inner regular borel
measure, n is ivalmost lindelof and each member of & is ^-measurable.

It should be noted that conditions 3.0 are satisfied if (M, m) and
(N, n) are locally compact hausdorff spaces, and μ and vx are finite
regular borel measures on M and N respectively, for xe M.

One of the principal results (Th. 7.7) of [2] is the following:

THEOREM 3.1. If μ and v' are measures satisfying conditions
3.0.1 and 3.0.2, and φf is the extended product measure of μ and i/,
then

.1 φ' is a p-inner regular borel measure on P, and

.2 p is φf-almost lindelof.

Elliott, in 2.3 of [4], generalized this result as follows:

THEOREM 3.2. If μ and v satisfy conditions 3.0, and φ is the
μv^-product measure, and if v is m-continuous, then

.1 φ is a p-inner regular borel measure on P, and

.2 p is φ-almost lindelof.

The continuity condition of 3.2 can be replaced by an absolute
continuity condition, as follows:

THEOREM 3.3. // μ, v, and vf satisfy the conditions of 3.0, &
is the set of vr measureable sets, φ is the μv<%-product measure, and if

vf < < vx < < 2/

for each xe M, then
.1 φ is a p-inner regular borel measure, and
.2 p is φ-almost lindelof.

Proof. Let v"(x, B) = ι/(J3) for each xeM, Be &. Then v" is
a regular conditional measure which is constant in x and therefore
continuous. Let φf be the (Elliott) μv"&-product measure and com-
plete the proof in Parts V, VI and VII below.

Many of the results that follow hold also for non-finite measures.
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Part I. φ(A) = 0 *-> φ'(A) = 0
—> A is a μy-nilset ^ 4 is a μi/'-nilset.

Proof. 0(A) - 0
is a μv-nilset (by 2.2.4, .3)

C^(^ y)v*dyμdx = 0

AJ = 0 for μ-almost all a; e Af, where Ax = {y\ (x, y) e A}
ι/(Ax) — 0 for ^-almost all x (since vf < < v < < v')
i)'J(Ax) = 0 for /^-almost all x

A is a μi/'-nilset
- 0. (by 2.2.4, .3)

Part II. ψ' <<φ << φ'

Proof. Use Part I.

Part. III. If A e p (an open set) then for some countable sub-
family G of mw-open rectangles, σG S A, and ̂ '(A — σG) = 0.

Proo/. This is Th. 2.2.3 of [4].

Part IV. m^-open rectangles are ^-measurable.

Proof. This follows from 2.2.2.

Part V. φ is a borel measure.

Proof. Let A € p. By Parts III and IV we can find a family G
for which σG S A, <7(? is ^-measurable and ̂ '(A — σG) = 0. But by
Part I, φ(A — σG) = 0, and hence A is ^-measurable.

Part VI. p is ^-almost lindelof.

Proof. Use 3.2.2 and Part I.

Part VII. φ is ^-inner regular.

Proo/. Let A e p and ε > 0. Check that φ'(A) ̂  μ(M) y'(iV) < oo,
and use 3.2.1 to secure such a sequence c of p-elosed sets that e^ϋ
c i + 1 £ i , and

φ'{A) = lim '̂(Ci)
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Let C = [Jieω oiy and using Parts I and V, observe that φ'{A — C) — 0,
φ(A - 0 = 0, φ(A) = l i m ^ φfa).

Consequently, φ is p-inner regular.

It is interesting to consider whether the conclusions of Theorem
3,3 remain valid when the condition vf < < vx < < vf is lessened to
vx < < 2/, or when this condition is removed altogether. The authors
have been unable to settle these questions.

Theorems 3.4 and 3.5 below are further results in the spirit of
3.2 and 3.3, in which the continuity hypothesis has been replaced by
a "separation of variables" condition.

THEOREM 3.4. // μ and v satisfy conditions 3.0, and φ is the
μv&-product measure, and if there exist a μ-integrable function f
and a measure ψ on N such that

for each xeM and be&, then
.1 φ is a p-inner regular borel measure on P, and
.2 p is φ-almost lίndelof.

Proof. For each set C, let

C, = {y\(x,y)eC}.

If f(x) ~ 0 for each xe M, or if ψ(N) — 0, then the conclusions hold
trivially. So we assume that f(x0) > 0 for some x0 e M and that f(x) < oo
for all xeM. Hence ^(6) = v(x0, b)/f(x0), for all be &, and by 3.0.4,
we conclude that ψ is an %-inner regular borel measure and n is ψ-
almost lindelof. Let G be the family of /^-measurable sets, and for
each AeG, let

h(A) = \ f{x)μdx and 7 = mss hMG .

This defines a measure 7 on M, and y(A) — h(A) for AeG. Since ψ
is m-continuous (indeed it is constant on M) we can define the 7^^?-
product measure, φ', and conclude from 3.2 that φf has the desired
properties .1 and 2. We complete the proof by showing that φ' = φ.

Let F be the family of μv&-basic rectangles and μy-nilsets, let
F' be the family consisting of 7Ί/Γ^?-basic rectangles and 7ψ-nilsets,
and let

g(C) = l\Crc(a;, y)vxdyμdx ,

g'(C) = \\Crc(x, y)fdyydx ,
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for CeF.
First, if a x b is a μv&-basic rectangle, then

g'(a x b) = j \Craxb(x, y)ψdyydx

τ(α)

f(x)μdx

= 1 u(flc,

= I I lvβyμdx
Jajb

= j\Crβx6(a?, y)vxdyμdx

= βr(α x 6)

Secondly, if C is a //v-nilset, then for //-almost all a?,

0 - ^Crc(x, y)vxdy - v(x, C.) = f(x)

and hence,

^'(C) = f [Crc{x, y)ψdyΊdx

= 0 = g(C) .

Thus g'(Q = g{C), for CeF.
Now let Z — {x eM\f(x) = 0} and observe that Z is //-measurable,

and

(1) Zx NeF' and g\Z x N) = 0.

Let

F1 = {(a U s) x b\a is //-measurable, 2 ϋ Z , and 6

and check that ^ = F'.
Therefore,

= m s s β

= mssgrPF1

= mssg'PF (using (1))

= mss
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The result in 3.4 leads to the following

THEOREM 3.5. If μ and v satisfy conditions 3.0 and φ is the
μv&-product measure, and if there exist, for each ieω, μ-integrable
functions /< and measures ψi on N such that

(2) Φ,b) = Σ.fi(x)'Ψi(b)
ieω

for each xeM and be&, then
•1 φ is a p-inner regular borel measure on P, and
.2 p is φ-almost lίndelof.

Proof. For each ieω, xeM, and be&, let

»&, b) = fi(x) ψm ,

φi = (the μVi& -product measure) ,

Φ' = ΣiΦi

By 3.4 learn that, for each ieω ,

Φi is a ^-inner regular borel measure on P, and

p is ^-almost lindelof ,

and hence, since these two properties carry over to countable sums,
we have

φf is a p-inner regular borel measure on P, and

p is ^-almost lindelof .

We complete the proof by showing that φ — φf.
Let F be the family consisting of all μv&-basic rectangles and

μv-nilsets. For each ieω and C e F, let

rc(^, y)vixdyμdx

g(C) = ^Crc(x, y)vβyμdx .

Thus

g(C) = Σ Λ(C)
ieω

for CeF, and

Φ(A) = mss g(M x N)F(A)

= mss ( Σ 9i)(M x
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Mx N)F(A)
ieω

= Φ'{A),

for ASM x N. The third step above follows from Theorem 3.8 below
and the fact that F is disjunctive (See Definition 3.7), and the fact
that the Qi are nonnegative and countably additive on disjointed
subsets of F.

The desired conclusion is at hand.

Questions that naturally arise are: when can a representation of
the type (2) be obtained? How useful therefore is Theorem 3.5? No
satisfactory answer to these questions is known to the authors at this
time.

Theorem 3.2 (Elliott) generalizes Theorem 3.1 (Morse-Bledsoe) in
yet another way, in that it uses one-sided nilsets C, where

I \Crc(x, y)vxdyμdx = 0 ,

instead of two-sided nilsets D, where

U C r ^ , y)vdyμdx = 0 = \ \CrD{x, y)μdxvdy .

Thus Theorem 3.1 is equally valid if the definition of μv-nilset given
in §2 is amended to read: a subset D of M x N is a μvΛett nilset if

\ \CrD(x, y)vdyμdx = 0 .

Similarly, we could use μy-right nilsets.
The remainder of the paper gives results needed in the proof of

Theorem 3.5.

LEMMA 3.6. If T is a directed set with respect to the relation <
and if 0 ^ Aw ^ Ait whenever ieω, te T, V e T, and t < f, and if
ΣήeωAitQ < co for some toe T, then

ieω teT teT ieω

Proof. Let ε > 0 and select Ne ω so that

Σ Ait0 < ε/2 ,
i=N
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and then choose t e T so that

Ait ^ inf Ait, + —τ , for t <t,i<N
t ' e r 2iSΓ

Thus for t < t, t0 < t, we have

JV—1 oo

L̂ι -^ΐt — Z J Ait + ^ j -^-iί
i e ω i=0 i=i\r

JV-1 oo

^ Σ Ait + Σ A,.,

^ Σ,1 A1( + e/2
ί=0

ΣΪ
»=o Veer

Σ, inf Au, + ε
*=1 ί ' e Γ

Therefore

inf Σ 4 ^ Σ
teT ίe ω ieω teT

Since the reversed inequality is well known, the desired conclusion
is at hand.

DEFINITION 3.7. We say that a family H is disjunctive if for
each Gλ and each G2 which are countable subfamilies of H, there is
a countable pairwise disjointed subfamily G of H which is a refinement
of both G1 and G2 and such that aG = σGγ Π σG2.

THEOREM 3.8. If

.1 H is disjunctive,

.2 for each i e ω, gζ ^ 0,
^ is subadditive* on H,
g{ is countably additive on disjointed subfamilies of H,

.3 ASS, and
A mss (Σieco 9i)SH (A)< oo,

then

Σiea> 9i)SH (A) =

Proo/. Let

3 A function / is said to be subadditive on H if for each B and each countable
subfamily G of H for which B g <τG, we have /(J5) ^ Σ«e <?/(«).
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HA — [GI G is a countable subfamily of H for which A gΞ σG) .

Since H is disjunctive it follows that HA is a directed set with respect
to the refinement relation. Also using .2 it follows that

0 ^ Σ OM) ^ Σ &(α)
αeG' αεG

whenever ieω, Ge HA, G' e HA, and G' is a disjointed refinement
of G. Furthermore, from .4 we know that for some (?0 e H^,

Σ Σ 9i(a) < - .
aeGβieω

Thus by Lemma 3.6 (identifying HA with T, and it i t with Σ«eσ
we conclude that

Consequently,

Σ inf Σffi(α)"= inf Σ Σ
ieωGeHActeG GeHAieωaeG

mss (Σ 9.)SH{A) = inf Σ Σ Λ(α)
ieω GeHAaeGieω

= inf Σ Σ Λ(α)
GeHA ieω aeG

Σ inf Σ Λ(
GH G

= Σ Σ
•ieω GeHA aeG
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