
PACIFIC JOURNAL OF MATHEMATICS
Vol. 44, No. 1, 1973

SEMICLOSED OPERATORS

S. R. CARADUS

Elementary wellknown examples show that the sum of
two closed operators need not even have a closed extension;
the same is true for products, as one can see by taking the
composition of maps / - » / ' followed by / - » / ( 0 ) defined on
the obvious domains in C[0, 1]. The natural question which
then arises concerns the complexity of operators which might
arise by taking repeated sums and products, starting with
the closed operators. Somewhat unexpectedly, the answer is
very simple: all can be reduced to products of two closed
operators. Because of this, we shall distinguish this latter
class by the name "semiclosed".

The most convenient proof of this theorem is obtained by first
showing that semiclosed operators can always be decomposed in cer-
tain special ways.

LEMMA 1. (Canonical Decomposition), Let X and Y be Banach
spaces and let T: X—+ Y denote a semiclosed linear operator. Then
there exists a Banach space Z and closed operators U: Z —* Y and
V: X—> Z with the following properties:

(a) T = UV
(b) U is defined and continuous on all of Z and the range of

U is exactly the range of T.
(c) V has the same domain as T and maps this domain one-to-

one onto Z.

Proof. Since T is semiclosed, there exists some decomposition
T — PQ where P: W —> Y and Q: X —> W are closed linear mappings
and W is some Banach space. Then define

Z = {(x, Qx, PQx): x e D{T)}

where D(T) denotes the domain of T and Z is considered as a sub-
space of X x W x Y. Next take

V: x i > (x, Qx, PQx)

and

U: (x, Qx, PQx) i > PQx

with D(V) = D(T) and D(U) = Z. Then the properties (a), (b) and
(c) are easily verified.
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We shall reserve the special notation T — UV(Z) to represent
the decomposition described in the above lemma It is clear that,
given T, the space Z is unique up to isomorphism. When T is a
bounded operator with D(T) = X, we have T — TI{X) and when
T is closed, we can write T = PG(G(T)) where <S(T) denotes the
graph of T, (3 is the mapping x H* (α, Γx) and P the projection
(%, Tx) t—> Tx. Another immediate consequence of Lemma 1 is the
fact that a semiclosed operator with closed domain is continuous.

Finally, it is interesting to recall the well-known procedure of
"making a closed operator continuous" by renorming it domain with
the graph norm |α;|Γ = |ίc| + |Γα;|. Lemma 1 implies that the
existence of such a procedure characterises semiclosed operators. We
make this precise as follows:

COROLLARY 1. Let T: X —* Y denote an arbitrary linear oper-
ator. Then T is semiclosed if and only if there exists a norm
x—*\x\τ onD(T) such that (a) the normed space Xτ = (D(T), | |Γ) is
complete (b) the induced operator T: Xτ—+Y is continuous.

Proof. If T is semiclosed and T = UV(Z), then define \x\τ =
Vx\. Conversely, if | \τ exists with properties (a) and (b), then

define T = UV(XT) with Vx = x and Ux = Tx.

THEOREM 1. If Tι and T2 are semiclosed operators, then so are
TΊ + T2 and TiT2 (whenever the latter are defined).

Proof. Suppose we have T̂  = UiVi{Z^, i = 1, 2. Then we simply
construct the required decompositions.

( i ) Let W = {(x, Vxx, V2x): xeD{Tλ + T2)} s X x Z, x Z2;
V: X -» W, D(V) - DiT, + Γ2), Vx = (x, V,x, V2x); D (U) = W,
U(x, Vxx, V2x) = (2\ + T2)x. Then T, + T2 - UV(W).

(ii) Let W = {(x, V2x, V.T.x): xeDiT.T,)} £ Xx Z2 x Z,\ V:
W, D(V) - Di^T,), Vx - (XIVMVΉX); D{U) =W, U(x,V2x,
TxT2x. Then T,T2 - UV(W).

Verifications of the above assertions are straight forward.
The above theorem shows that the property of being semiclosed

is algebraically stable. In addition, it persists in other useful ways.

THEOREM 2. Let T: X—+ Y denote a semiclosed operator. Then
( i ) if X is separable (or more generally, if X admits quasi-

complements [7], [5]) then T has a densely defined semiclosed exten-
sion.



SEMICLOSED OPERATORS 77

(ii) if Xo is a subspace of X and Xo is the domain of some
closed operator', then To, the restriction of T to XQ, is a semiclosed
operator.

Proof, (i) Suppose D(T) is not dense in X and write D = D{T).
Then if D is a quasicomplement of D, we can define the projection
map π: D 0 Z) —> Zλ It is easy to verify that π is closed so that
Tπ is a semiclosed extension of T. Finally, straight forward argu-
ments show that Tπ is densely defined, (ii) If Xo is the domain of
some closed operator, then Xo is also the range of a closed operator
S: Z—*X for some Z. Hence Xo is also the range of a one-to-one
closed operator S: Z/N(S) —•X. Now SS"1 is semiclosed and is the
restriction Io of the identity operator to Xo. Hence TI0 = To is semi-
closed.

REMARK. It is known that not every subspace is the domain of
a closed operator. Kaashoek [3] draws attention to this point by
giving a simple construction in Banach space of a dense subspace of
finite codimension. A wellknown theorem [4] indicates that such a
subspace cannot be the range of any closed operator and hence can-
not be the domain of any closed operator.

We now introduce a topology in the class £*(X, Y) of semiclosed
operators X—+Y. Let TeS^(X, Y) and suppose a denotes a canoni-
cal decomposition T = UV(Z) for T. Then, for ε > 0, write

; a, ε) = {Se^(X, Y): D(S) = D(T),

S has canonical decomposition S = UV(Z),

\\U- U\\ < ε } .

The topology generated in £f{X, Y) by the semibasic sets Λ^{T\ a, e)
will be denoted by τ. Since applications visualized and examples in
the current literature (e.g. [8]) involve families of operators which
are all defined on the same domain, the above definition is not as
restrictive as would appear. It is also possible to show that it suf-
fices to choose, for each T, just one canonical decomposition aτ; the
topology generated is the same.

The next thing to observe is that, if B(X, Y) denotes the space
of bounded operators defined on all of X, then τ restricted to
B(X, Y) is the uniform operator topology. For, on the one hand, it
is evident that {Se B{X, Y): \\ S - T\\ < ε} g ^Γ(T; a, ε) where
TeB(X, Y) and a is given by T = TI(X). Conversely if β is any
canonical decomposition for TeB(X, Y) then, by uniqueness, β has
the form Tφ. φ~\Z) where φ is an isomorphism of Z onto X. Hence
if Se<yΓ(T; β, ε) Π B(X, Y), then S can be written Sφ Φ~\Z) and
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thus ^r(T;/3,e)ΓlB(X, Y)S{SeB(X, Y): \\S- T\\ < ε | | ^ 1 | | } .
The relationship between τ and class of closed operators in

*9*{X, Y) is not so evident. A well known "generalised convergence"
for closed operators is throughly treated in [4]. An application of
Theorem IV, 2.29 of [4] shows that if {Tn} is a sequence of closed
operators converging to closed operator T in the topology τ, then {Tn}
also converges to T in the generalised sense.

Returning now to the study of τ on S^(X, Y), we can show that
τ has all reasonable properties for which one might hope.

THEOREM 3. τ is a locally convex Hausdorff topology on

Proof. We will show, in fact, that each <sK(T; a, ε) is convex.
Let Si e ̂ Γ(T; a, ε), i = 1, 2 with a given by T = UV(Z). Then S{

can be written UiV(Z) with || U— J7<|| < ε. If α4 > 0 with a1 + a2 — 1,
then aιS1 + a2S2 = UV(Z) where U(Vx) = a^ + a2S2x. Hence

\\(U- U)Vx\\ = \\<h(U- UdVx + OtiU- U2)Vx\\ ^ e | | F a ? | | .

Secondly, suppose Tt and T2 are semiclosed operators not separat-
ed by Γ. Then in particular, for each ε > 0 and canonical decom-
positions at and a2, respectively, for 2\ and T2, there must exist
SeΛ^iT,; au ε) n ^ r ( Γ 2 ; a2, ε). Evidently DiT,) = D(T2) and with-
out loss of generality, we may restrict considerations to ax and a2

acting through the same intermediate space Z. So we have T* =
Ui Vi(Z) and S has two decompositions S — Ui Vi(Z) such that
|| Ui — Ui II < ε, i = 1, 2. By uniqueness, there exists an automorphism
Φ of Z such that V± = φV2 and Ϊ72 = J7^. Hence, for any x
D(T2), we have

^ 6 ( | | Via?|| + || Vtα?||).

By holding the at fixed, we see that, for each x, Ttx — T2x can be
made arbitrarily small. Hence Tγ—T2.

THEOREM 4. The mappings (Tl9 Γ2)-* Γx + T2 and (λ, T)->XT
are jointly continuous in S*(X, Y). Moreover if X — Y, then
(Tl9 T2)—+ TXT2 is separately continuous.

Proof. (Sketch) Using by now familiar methods, we can obtain
relations such as

^ΓiZ; au εθ + ^T(T2; ai9 ε2) e ^r(T, + T2; a, + α2, εx + ε2)
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where ar + a2 is obtained from ax and a2 by the construction of
Theorem 1. Similar relations for multiplication are obtained.

We now turn attention toward possible applications. Our ultimate
goal would be to subsume portions of the theory of partial differential
operators with constant coefficients in a sufficiently general under-
standing of the topological algebras generated by the closed operators
which can be obtained from the differentiation operations. We would
therefore be considering commutative topological algebras obtained
by fixing n commuting generators D1 Dn in £^{X, X), all defined
on the same domain. The development of the theory of such algebras
has almost exclusively involved additional assumptions which have
the effect of making the spectrum of each element in the algebra a
compact subset of the complex plane. See for example [1] and [6],
In our case, however, we must allow unbounded spectra if we are
to obtain information about spectral properties of differential oper-
ators. While it is true that some progress in this direction has been
made in [9] and [10], much work is yet required before the applica-
tions envisaged above can be carried through.
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