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FUNCTION ALGEBRAS OVER VALUED FIELDS

G. BACHMAN, E. BECKENSTEIN AND L. NARICI

In this paper we consider primarily algebras F(T) of
continuous funtions taking a topological space Tinto a complete
nonarchimedean nontrivially valued field F. Some general
properties of function algebras and topological algebras over
valued fields are developed in §§1 and 2. Some principal
results (Theorems 6 and 7) are analogs of theorems of Nachbin
and Shirota, and Warner: Essentially that F(T) with com-
pact-open topology is F-barreled iff unbounded functions exist
on closed noncompact subsets of T; and that full Frechet
algebras are realizable as function algebras F{^) where ^^
denotes the space of nontrivial continuous homomorphisms
of the algebra.

Nachbin and Shirota's well-known result provides a necessary and
sufficient condition for an algebra of realvalued continuous functions
on a topological space to be barreled when it carries the compact-
open topology. To develop an analog of Nachbin's theorem for F-valued
functions, it is necessary to bypass the heavily real-number-oriented
machinery on which his proof depends. We accomplish this in part by
developing an ordering of the elements of a discretely valued field
(Sec. 3, Def. 2) which serves to take the place of the usual ordering
of the reals. We also consider a notion of "support" of a continuous
F-valued linear functional on F{T) (Sec. 3, Def. 3). The support notion
is developed without measure theory or representation theorems for
continuous linear functionals.

The results of the paper depend heavily on theorems proved by
Ellis ([3]), Kaplansky ([7], [8]), and van Tiel ([14]), as well as the
proofs of the major theorems as originally presented by Nachbin ([10])
and Warner ([15]) which provided the ideas for this line of approach.

Throughout the paper "algebra" (denoted by X or Y) includes
the presence of an identity and commutativity. The underlying field
F is assumed to be a complete nonarchimedean rank one nontrivially
valued field. Unless otherwise stated, Tdenotes a O-dimensional (abase
for the topology consisting of closed and open sets exists) Hausdorff
topological space and F(T) the algebra of continuous functions from
T into F with pointwise operations. The terms Banach space or
Banach algebra are used throughout in the sense of [12].

1* Topological algebras over valued fields* In this section we
discuss some basic properties of topological algebras over fields with
valuation. We assume throughout that the underlying field F is a
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complete nonarchimedean rank one nontrivially valued field.

DEFINITION 1. A topological algebra X over F is nonarchimedean
locally multίplicatίvely F-convex (NLMC) if there exists a base &
of neighborhoods U of 0 in X such that for each U e &, (1) U is
F-convex (i.e if λ and μ are scalars such that |λ|, \μ\ <£ 1, then
XU+ μUaU), and (2) UUczU.

DEFINITION 2. A seminorm p on X is nonarchimedean and mul-
tiplicative respectively if for all x, ye X (1) p(x + y) ̂  max
and (2) p(x?/) ^ p{x)p{y)-

PROPOSITION 1. A topological algebra X is an NLMC algebra iff
the topology on X is generated by a family P of nonarchimedean
multiplicative seminorms.

Proof. Given such a family P generating the topology on X, the
sets {x\Pi(x) ̂  ε, pl9 • • • , ^ € P , 0 < s ^ l } form a base at 0 satisfying
the condition of Definition 1.

Conversely, if & is a base at 0 satisfying the conditions of
Definition 1, then, letting pσ(x) = inf {| μ \ \ x e μ U, μ e F} the seminorms
(Pu)ue& constitute the desired family P.

PROPOSITION 2. If the valuation on F is discrete and X is an
NLMC algebra, then there exists a family Pf or nonarchimedean
multiplicative seminorms generating the topology on X such that
p'(X) d\F\ for each pf e P'.

Proof. Let P be a family of nonarchimedean multiplicative semi-
norms generating X'& topology. For each p e P let p'(x) = inf {| μ \ \ | μ \ ^
p(x)}. Each such pf is clearly nonarchimedean and multiplicative.
Moreover since p(x) ̂  p'(x) ^ \μ~ι\p(x) for any nonzero μeF such
that I μ I < 1 and | μ \ generates the value group of F, Pf will also
generate the topology on X.

DEFINITION 3. An NLMC algebra X is discrete if there exists a
family P of nontrivial nonarchimedean multiplicative seminorms genera-
ting the topology on X such that each p in P is discrete [the only
limit point of p(X) is 0].

PROPOSITION 3. A Hausdorff NLMC algebra X is discrete iff F
is discretely valued.

Proof. Use Prop. 2.
If X is a topological algebra over C, the complex numbers, then

we can identify the nontrivial continuous homomorphisms of X into
C with the closed maximal ideals in X ([9, p. 13]). This is no longer
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true for noncomplex algebras, and we single out those algebras in
which the 1 — 1 correspondence still obtains for special attention.

DEFINITION 4. A commutative Hausdorίf NLMC algebra X with
identity e is a Gelfand algebra if for every closed maximal ideal
MdX the factor algebra X/M (with quotient topology) is topologically
isomorphic to F.

Associated with the nontrivial nonarchimedean multiplicative semi-
norms p generating the topology on an NLMC algebra X, are nonarchi-
medean normed algebras X/Np where Np is the ideal ^(O) where
X/Np is normed by taking \\x + Np || = p(x). The completions Xp of
these normed algebras are referred to as factor algebras.

PROPOSITION 4. If X is a Gelfand algebra and X/Np is complete,
then X/Np is a Gelfand algebra.

Proof. Let πp denote the continuous homomorphism x —• x + Np

from X onto X/Np. We observe that if M is a maximal ideal in the
Banach algebra X/NP, then M is closed; thus πp

λ(M) is a closed maximal
ideal in X containing Np. For any xeX there exists μeFsuch that
x-μeeπ-^M) (X is a Gelfand algebra), so that πp(x) — μπp{e) e M
where e is the identity of X. Thus (X/Np)/M is algebraically isomorphic
to F. Since M is closed, the factor structure is a one-dimensional
Hausdorff topological vector space and is therefore topologically iso-
morphic to F.

PROPOSITION 5. Let P be a saturated family of semίnorms gen-
erating the topology on the NLMC algebra X and let (Xp)peP denote
the associated factor algebras. If each Xp is a Gelfand algebra, then
X is a Gelfand algebra.

Proof. Let M be a closed maximal ideal in X. By [1, p. 466]
there exists peP such that MZDNP and inf {p(e — x)\xeM} > 0.
Consequently πp(M) is a proper ideal in X/Np and πp(e) is not an
adherence point of πp(M). Thus πp{M) is a proper ideal in Xp and
is therefore contained in a closed maximal ideal NaXp. Since Xp is
a Gelfand algebra, N is the kernel of a continuous nontrivial homo-
morphism fp taking Xp into F. Hence / = fpπp is a continuous
nontrivial homomorphism taking X into F. It follows from elementary
considerations that the kernel of / is equal to M. Consequently X/M
is seen to be algebraically—hence topologically—isomorphic to F.

A result similar in spirit to this can be found in [2, p. 175]
We turn next to some examples.
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EXAMPLE 1. Let ί1 be a local field, let T be a O-dimensional
Hausdorff space and let F{T) carry the topology of uniform conver-
gence on compact sets. The topology on F(T) is generated by the
nonarchimedean multiplicative seminorms pκ where K is a compact
subset of T and for any x eF(T), pκ(x) — sup ί e* |#(ί) |. We may
identify F{T)jpiι{ϋ) with a subalgebra of F(K). Moreover we may
construct a'Stone-Cech' compactification βFT of T as is done in
[3, p. 243] utilizing the compact valuation ring V of F in place of
the compact interval [0,1]. Since V is Hausdorff and O-dimensional,
βFT will be compact, Hausdorff and O-dimensional. Thus the Ellis-
Tietze extension theorem ([4]) applies and any function continuous on
K may be extended to a function continuous on βFT. It follows that
F(T)/pp(0) = F(K).

The continuous nontrivial homomorphisms of F(K) into F are in
1 — 1 correspondence with the points t of K ([11]) and using this
result it can be shown [9, p. 31] that the points of T generate the
continuous nontrivial homomorphisms of F(T) into i*7.*

Topological algebras X for which all homomorphisms of X into
F are continuous are called functionally continuous [9, p. 51]).

What follows is an example of such an algebra.

EXAMPLE 2. Let F be any complete nonarchimedean nontrivially
valued field and T & O-dimensional Hausdorff space. F(T) carries the
compact-open topology. A subalgebra X of F(T) is "closed under
inverses" if when α e X a n d x"1 eF(T), x^e X. We apply Michael's
proof [9, p. 54] and observe that if Conditions 1 and 2 below are
satisfied, then the homomorphisms of X are generated by the points
of T and therefore X is functionally continuous.

1. For any xu , xn e X such that n?=i ^rl(0) = 0 , there exists
Vi, , Vn e -X" such that Σx^ = e where e is the constant function
e(t) = 1 for all t e T.

2. For some positive integer m there exists xl9 , xm e X such
that for all μl9 •••, μmeF, Π (xt - /^"'(O) is compact.

We note that if X = F(T), then by the results of a sequel to
this paper [16], it follows that X satisfies statement 1. If, in addition,
there exists a bijection xeX, then X satisfies 2. Hence if we take
T — F and let T carry any O-dimensional Hausdorff topology finer than

* The result of Example 1 actually obtains if F is any complete nonarchimedean
nontrivially valued field as it can be shown in this case that a bounded continuous function
defined on a compact subset K of T mapping into F can be extended to a bounded con-
tinuous function mapping T into F. The same comment applies to Example 1, parts
(c), (d), and (e) of Sec. 2.
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the valuation topology on F, the nontrivial homomorphisms of the
algebra F(T) taking values in F are generated by the points of T.

2* Function algebras over valued fields* In this section we
discuss function algebras over valued fields. First we prove a version
of a theorem of Kaplansky ([7, p. 173]) which is relevant to the
material to follow; we include this proof because there seems to be
an inconsistency in the use of "totally disconnected" in [7].

LEMMA 1. (Kaplansky) Let T be a topological space and let F(T)
be endowed with the topology of uniform convergence on compact sets.
I is a closed ideal in F(T), iff there is some closed subset H of T
such that I— {f eF(T)\f(H) = {0}}. I is a closed maximal ideal in
F(T) iff there is some teT such that I = {/[/(«) = 0}.

Proof. Suppose I is closed in F(T) and let H = ΠfeiflΓXO).
Letting J(H) = \f\f{H) = {0}}, we see that IaJ{H), and that J(H)
is a closed ideal. We show that if feJ(H), then fel.

Let K be any compact subset of T. If y e if, then as I is an
ideal, there exists gy e I such that gy(y) — f(y). Since the clopen sets
{Uy\yeK} where Uy = {xe T\ \f(x) - gy(x)\ < ε} cover K for any
fixed ε > 0, there exist yu , yn such that if c(J£=i Uy.. Since the
sets Uy. are clopen, we see that there exist pairwise disjoint clopen
sets Wi such that if c U£=i Wi where Wi c Uy. for each i. Letting kA

denote the characteristic function of the set A, we see that if h =
Σt^QyJcψ.y then he I and suτpteK\h(t) — f(t)\ < ε. As ε > 0 can be
made arbitrarily small, it follows that fel — I..

In the proof to follow, "totally disconnected" is used as in [13,
p. 380]: distinct points may be separated by clopen sets.

THEOREM 1. (Kaplansky) Let S and T be ̂ -dimensional Hausdorff
spaces. Let F(S) and F(T) carry their compact-open topologies and
suppose that F(T) is topologically isomorphic to F(S). Then S and
T are homeomorphic.

Proof. Let A be a topological isomorphism from F(S) onto F(T).
If if is a closed subset of S and J{K) denotes the ideal of functions
that vanish on K, note that a mapping Af is defined by A(J({s})) =
j({ί}) = J({A'(s)}) for some t e T; i.e. A': S-* T is such that A'(s) = ί,
and is well-defined as T is totally disconnected. Since A is injective
and S is totally disconnected, then A* is injective as well. For any
16 T, J({t}) = A(M) where M is a closed maximal ideal in F(S).
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Since M — J({s}) for some s e S, A' is seen to be surjective.
Clearly (A')"1 = (A"1)' so to show that A' is a homeomorphism,

it suffices to show that A! is a closed map. To this end, since S
is 0-dimensional, K — n*ej<*> 9^(0); since J(K) = Πse^^({s}), it
follows that A{J{K)) = J{A'{K)) = Π.*κJ({A'(8)}). If t$A'(K), then
t = A'(s) where sg iΓ. Thus /(if) £ J({s}) and J(A'(J5Γ)) <Z J({ί}). As
J(A'(iJQ) = J(A'(if)) £ J({t}), we see that t g A'(if) and therefore A'(if) =

EXAMPLE 1. Let T be a totally disconnected Hausdorff space and
let JP(T) carry the compact-open topology. We note immediately that
the set of evaluation maps constitutes a set of distinct continuous
homomorphisms of JP(Γ) into F. Moreover properties (a)—(e) also hold

(a) If K is a compact subset of T, pκ is as in Ex. 1 of Sec. 1,
and Nκ = Pκι(0), then the completion of the normed algebra F(T)/NK

is F(K).

Proof. Since T is totally disconnected, the characteristic func-
tions in F(T) separate the points of T. Thus the functions f\κ as /
runs through F{T) separate points in K. The desired result now
follows from an application of Kaplansky's Stone-Weierstrass theorem
([8] or [12] p. 161).

(b) With "F*-algebra" as in [12, p. 148], if T is locally compact,
then F{T) is the projective limit of F*-algebras as in [9, p. 17].

Proof. The complete NLMC algebra F(T) is the projective limit
of the factor algebras F(K) as K runs through the compact subsets
of T and each F{K) is a F*-algebra.

(c) If T is ultranormal and F is a local field, then F(T)/NK =
F(K).

Proof. Use the Ellis-Tietze extension theorem of [4].
(d) If T is 0-dimensional and F is a discretely valued field, then

F(T)/NK = F(K) for any compact subset K of T.

Proof. Apply a modification of the Ellis-Tietze extension theorem
to functions feF(K) and thereby extend / continuously to a 'Stone-
Cech' compactification βHT where H is any local field. Where Ellis
used local compactness of the field F, we use discreteness of the
valuation on F, and compactness of βHT.

(e) The points of T constitute all continuous homomorphisms of
F(T) into F when F is discretely valued.

Proof. See Ex. 1 of Sec. 1 and use (d).
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3* Main results* Let X be a NLMC algebra over a discretely
valued F. Then, as in the classical case ([9, p. 33]), if X is the pro-
jective (dense inverse) limit of a family (F(Kn)) of Gelfand F*-algebras
by mappings πmn: F(Kn) —> F(Kn), m > n, where (Kn) is a family of
compact O-dimensional Hausdorff spaces (it following that Kn is homeo-
morphically embedded in Km), then X is topologically isomorphic to
F(\J Kn) where* F(\J Kn) carries the compact-open topology. More-
over in this case U Kn can and will be identified with the set of all
nontrivial continuous homomorphisms of X into F and carries the weak
topology generated by (Kn).

DEFINITION 1. Let ^/S denote the nontrivial continuous homo-
morphisms of an MLHC algebra X over F into F, and let ^/S carry
the weak-* topology. Let F{^//) denote the algebra of continuous
functions mapping ^// into F with compact open topology and con-
sider the map ψ: X—*F(^f/) where, for any xeX, ψ(x)(h) = h(x) for
each h e ̂ //f. X is called a full algebra if the homomorphism ψ is
an isomorphism of X onto F{^//).

In [9] E. A. Michael stated that he did not know whether or not ψ
was a topological isomorphism in the case where X is a Frechet full
algebra. S. Warner proved that this was true in the classical case
([15, p. 269]). In this section we show that ψ is a topological iso-
morphism if F is a local field (Theorem 7). It then follows according
to some results of van Tiel [14] that X is the projective limit of a
sequence (F(Kn)) of Gelfand F*-algebras where Kn = V°n ΓΊ ̂ (V»° is
the polar of a neighborhood Vn of 0 in X coming from a base of jP-convex
closed neighborhoods of 0). Thus we will have a partial converse of the
result which was described in the opening paragraphs of this section.
We also note that by Prop. 5 of Sec. 1, X is a Gelfand algebra
under the hypothesis just mentioned.

In what follows F is assumed to be discretely valued. In some
cases it will also be assumed that F is a local field so that certain
standard results from the duality theory of topological vector spaces
([14]) may be used.

DEFINITION 2. Let F be discretely valued and let (aμ)μeH be a
system of distinct representatives of the cosets in the residue class
field of F. We may assume that H is totally ordered where μQ corre-
sponding to a.jQ — 0 is the first element. Let π e F be such that
πI < 1 and \π\ is a generator of the value group of F. If a and b

are any two elements of F there exist (aμ.) and (aλ.) such that a =
ΣΪ=N

 aμiπi a n ( i fr — 1LJ?=N^irf1'. We now define the supremum, sup (α, 6),

* We may assume Kn c K*+i as there exist sets K'n such that ^^ — U K'n with
'n c K'n+i, and K'n homeomorphic to Kn for all n.
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of a and b as:

a i f \a\ > \b\

δ if | δ | >\a\
sup (a, b) =

a it a — b

a if \a\ = I 61, α .̂ = α^ for i — N, , i — 1 and ft- > λy

LEMMA 1. Let T be a topological space and let f and g be
continuous functions mapping T into F. Then the function defined
at each te T by sup (f(t), g{t)) and denoted by sup (/, g) is continuous.

Proof. Suppose (ts) is a net in T converging to t. We show that
sup (/, g)(ts) converges to sup (/, g)(t). Letting f(t) = a and g(t) = b,
we need only consider the last possibility for sup (α, b)9 the first three
being trivial. Choose ε > 0 such that ε < \π\j. For r such that
\f(t*) ~ f(t)\ < e and \g(ts) - g(t) \ < ε for s ^ r, it follows that

f(ts) - fit) - Σ αj .π* and .gr(ίβ) - g(t) = Σ α 5 ^

where M > j . We may also write

/(ί.) = Σ aμp + Σ αj^* and g(ts) = Σ ^ ^ ' + Σ α;.π*.
i=iV i=i+i * = ^ i-j+i

Thus, since a;ι. — aλ. for i = JV, , i — 1, and ^ > λ5 , it follows that
sup (/, g)(ts) = f(ts) for s ^ r. Thus sup (/, g)(tβ) - /(ίβ) — /(ί) =
sup (/, flr)(ί).

LEMMA 2. Lei JP(Γ) denote the algebra of continuous functions
mapping the ^-dimensional Hausdorff space T into the discretely
valued F, with compact-open topology. If V is an F-barrel {closed
absorbent F-convex set) in F(T), then there is some δ > 0 such that
supteτ\f(t)\ ^ d implies that f e V.

Proof. Let B be the sup-norm Banach space of all bounded
functions from T into F. We note that V Π B is an .F-barrel in B.
Since B is .F-barreled ([14, p. 268]) there is some δ > 0 such that
sup t e Γ | /(ί) | ^ δ which implies that f e V Π B.

LEMMA 3. Let V, F, T and F(T) be as in Lemma 2, and suppose
that for some compact subset K of Γ, {f\f{K) = {0}} c V. Then there
is some μ > 0 such that whenever supteK\f(t) \ < μ, then f e V. Thus
V is a neighborhood of 0 in F(T).

Proof. Let aeF and denote the function sending each te Tinto
a by a. With δ as in Lemma 2, choose aeF such t h a t 0 < \a\ ^



FUNCTION ALGEBRAS OVER VALUED FIELDS 53

δ/2. Choosing an integer n so that δ/n < \a\, let feF(T) be such
that snpteκ\f(t) | <̂  d/n. With g = sup (/, a) — a, it follows that g(t) =
0 for each ί in if. Thus geV. Since |/(ί) - flr(ί) | ^ |α | ^ δ/2 for all
t e T, it follows that f - geV. Since V is F-convex, # + (/ - g) =
f eV> and the proof is complete.

We continue towards nonarchimedean analogs of theorems of
Nachbin (Theorem 3) and Warner (Theorem 7). First we consider a
notion of support of a linear functional which serves to replace the
classical notion used by Nachbin.

In Lemmas 4 and 5 F(T) again denotes the algebra of continuous
functions from the O-dimensional Hausdorff space T into F with
compact-open topology and φ denotes a member of the continuous dual
F(TY of F(T). For any subset S of T, ks denotes the characteristic
function of S taking values in F and we note that ks e F(T) iff S is
clopen. Let S? denote the family of subsets U of T such that U is
clopen and φ(fkσ) = 0 for all feF(T).

LEMMA 4. The family 3^ has the following properties: (1) If
U is a clopen subset of Ge S^> then Ue S^\ (2) S^ is a ring of sets.

Proof. To prove (1) we observe that kπ = kGkΌ. (2) follows readily
from (1).

DEFINITION 3. The support of φ, Fφ, is defined to be C(U
We observe that since φ is continuous there is some compact set

KdT and an integer N such that if feF(T), then \φ(f)\^N
sup ί e Jr|/(ί)|. Thus, if / vanishes on K, then φ(f) — 0.

THEOREM 1. In the same notation as above (1) FφdKand therefore
Fφ is compact, (2) if φ is nontrivial, then Fφ is not empty, and (3)
if GaT is open and G Π Fφ is not empty, then there exists feF(T)
such that f(CG) = {0} and φ(f) = 1.

Proof. (1) If G is a clopen subset of CK, then—since kG vanishes
on K—φ{fkG) = 0 and G e y .

(2) If FΨ is empty, T = U Sf, and it follows that for some IT* e ^ ,
ifc: U?=iE/i = G. Since y is a ring of sets, GeS^ and since CG
is clopen and contained in CK, φ{f) = φ{fkCG) = 0 for all f eF(T).
But then 9? is trivial.

(3) If GnFφΦ 0, there is some teGf]Fφ. Since Γ is 0-
dimensional, teUciG where U is clopen. Since UΠ Fφ ^ 0 , then
U £ £S and there is some geF(T) such that 2>(#&</) =£ 0. We of
course may assume that φ{gku) — 1. Letting gkυ = f, (3) is seen to
be proved.
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In order to apply this notion of support to our version of Nachbin's
theorem (Theorem 3) we require that FΨ have the property that if /
vanishes on Fφ, φ(f) = 0. We now develop a case where this is true
and which makes the notion applicable to Theorem 3 as well as
settling Michael's question in this setting (Theorem 7).

LEMMA 5. Suppose that φ(g) = 0 for any g e F(T) which vanishes
on any clopen set G containing Fφ. Then if f vanishes on Fφ,
Ψ{f) = 0.

Proof Suppose that / e F(T) vanishes on Fφ, and let An = {t e
T\ \f{t) I < 1/n} (n = l,2, -.). As FφaAn for any n and An is clopen
9>(f) = <P(fkAi) + φ(f(l - JcAJ). By the hypothesis, since /(I - kj
vanishes on An, φ(f) = φ(fkAn). Let K be a compact subset of T
such that \φ{f)\^N sup ίβ*l/(«)|. Hence \φ{f)\ = | φ(fkAJ\^N
8wptBK\fkΛn(t)\ < N/n. Since this is true for every n9 φ(f) — 0.

THEOREM 2. Let T be a Lindelof space. Then if f vanishes on

Fφ, φ(f) = 0.

Proof Let G be a clopen subset containing FΨ. Since CG is
closed, CG is Lindelof. Since CG c CFφ = U Sf, there exist t/* e <9*
such that CGa \jT=iUi Since £f is a ring, we may assume that the
sets Ui are pairwise disjoint. Since CG Π C7i = Vt is clopen and con-
tained in Ui then F< e ^ . Thus A:w = ΣΓ=i AV| ίn the topology of
point wise convergence on F(T). We claim that the "point wise con-
vergence" of the preceding sentence may be replaced by "uniform
convergence on compact sets."

To prove this last statement, let L be a compact subset of T
and consider L Π CG. As L Π CG is compact and contained in (JΓ=i Vt

there is some integer NL such that n Ξ> NL implies that L Π CG is
contained in (JίU Vζ. But CGc UΓ=i F< so L Π CG = L f] ( ( JLI Vi). Thus
for n ;> iVi, CG and \Jt=xVi have the same points in common with L,
and sup ί 6 Z I (kCG — Σf^iAv^ίί) I = 0 for w ̂  iSΓ̂ . Since L was an arbitrary
compact set, the series is seen to converge in the compact-open topology
and φ{fkCG) = Σ?-i ΨifK%) = 0.

We now present a version of a theorem of Nachbin ([10, p. 472])

THEOREM 3. Let F(T) denote the algebra of continuous functions
mapping the ^-dimensional Hausdorff space T into the discretely valued
field F, with compact-open topology. Suppose that for each φ e F{T)'',
/ vanishing on Fφ implies φ{f) = 0. Then F(T) is F-barreled iff for
every EaT which is closed and not compact there is some f eF(T)
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which is unbounded on E.*

Proof. Suppose that the condition holds and let V be an F-
barrel in F(T). To show that V is a neighborhood of 0 in F(T) we
begin by letting K = \Jψev^FΨ. If K is not compact, let / be un-
bounded on K and consider the sets An = {t e T\ \f(t) | > n}, n = 1, 2,
• . Each An is clopen and Anΐ\Kφ 0 . Thus there is some FΨn c
K such that Anf] FΨnΦ 0 . By Theorem 1 (3) there exists fn e F(T)
such that fn vanishes outside of An and <Pn(fn) = 1. Since Π ~=i An = 0 ,
the function / = Σ~=i α»/n is a continuous function for any choice of
an e F. As it is clear that Am Π FΨn = 0 for all sufficiently large m, we
may (by considering a subsequence) assume that <Pn(fm) = 0 for all
m>n. By a proper choice of αw we see that | <pn(f) \ —> oo and as <5\ e F°,
α/ cannot belong to F 0 0 = V no matter how small |α | is. Thus we
contradict the fact that V is absorbent and K must be compact.
If / vanishes on K, then / vanishes on Fφ for all φ e F°. Thus / e
V00 — V so, by Lemma 3, V is a neighborhood of 0.

To prove the converse, let F(T) be F-barreled and E be a closed
noncompact subset of T. Let F = {/1 sup ί e £ | f(t) \ ^ δ}, 3 > 0, and let ϋΓ
be a compact subset of T. As EΓΪCKΦ 0 , using /S^Γ as in Sec. 2
Ex. 1 (d) we may assert the existence of a sequence (fN) of functions
which vanishes on K but | fN{tN) \ ̂  N for any positive integer N and
some tN G £7. Thus the set {/1 sup ί e ί : | f(t) \ ̂  ε} ζz! V for any ε > 0 and
F is not a neighborhood of 0. It follows that F is not absorbing and
there exists f eF(T) which is unbounded on E.

COROLLARY. Let T be a 0-dimenional Hausdorff Lindelof space
and F a discretely valued field. Then F(T) is F-barreled.

Proof. We refer to Theorem 2 and the construction of the func-
tion in the proof of Theorem 6 for the proof of the corollary.

THEOREM 4. Suppose the 0-dimensional Hausdorff space T = (J"=i K»
where each Kn is compact, Kna Kn+1, and each compact subset of T is
contained in some Kn (i.e. T is hemicompact). Then denoting T
endowed with the weak topology ([3], p. 131) generated by the sets (Kn)
as Tw, F(T) is dense in F(TW), each algebra carrying its compact-
open topology.

Proof. Since the topology of Tw is clearly stronger than that of T,
F{T)(zF{Tw). We note that the topology of Tw restricted to Kn is

* In a sequel to this paper we show that Theorem 2 is true for any 0-dimensional
Hausdorff space T and any complete nonarchimedean nontrivially valued field F. Thus
Theorem 3 is true for all spaces T. We also show that the result of Theorem 3 holds
of F is spherically complete ([16]).
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equal to the topology Kn inherits from T and the compact subsets of
Tw lie in the sets Kn. Thus F(T) is a topological subspace of F{TW).
Using Sec 2 Ex. 1 (d), F(T)/NK = F(K) for any compact set KaT
and it follows that F{T) is dense in F(TW).

THEOREM 5 Let everything be as in the preceding theorem. If
F(T) is complete then T = Tw iff Tw is O-dimensional.

Proof. If F(T) is complete, then F{T) = F{TW). Since they are
topologically isomorphic under the identity map by the proof of
Theorem 4, if Tw is O-dimensional, then T = Tw by Theorem 1 of
Sec. 2. We may also observe that the functions of F{T) generate
the topology of the space T while those of F(TW) generate the topology
of Tw. Thus as F(T) = F(TW)9 the topologies are equal.

THEOREM 6. Let F(T) denote the algebra of continuous functions
mapping the O-dimensional Hausdorff space T into the local field F
and suppose that F{T) is a complete locally F-convex metric space
with topology ̂ Γ. If the homomorphisms determined by the points
of T are the ^-continuous homomorphisms, then ^~ is the compact-
open topology.

Proof. Let the set of evaluation maps determined by T be denoted
by T* and let T* carry the Gelfand topology (i.e. the weakest topology
for ϊ7* with respect to which the maps t-^x(t) of T* into F are
continuous for each xeF(T)). Since T is O-dimensional the Gelfand
topology coincides with the original topology on T, i.e. T and T* are
homeomorphic. Since (F(T), ^~) is F-barreled ([14, p. 268]), the polar
of any compact subset of T* is a neighborhood of 0 in F(T). Thus,
identifying T and T*, ^~ is seen to be stronger than the com-
pact-open topology on F(T). If F(T) with compact-open topology
could be shown to be F-barreled, the closed graph theorem could be
applied to complete the proof. To show that F{T) is .F-barreled, let
E be a closed noncompact subset of T. Since F{T) is a Frechet space,
T* is O-dimensional and Lindelof and therefore T is O-dimensional and
Lindelof. Thus E is Lindelof and there exists a denumerable clopen cover
(Un) from which no finite subcover can be extracted. We may assume
the family (Un) to be pairwise disjoint. Since CE is open in T, CE =
U Vμ where each Vμ is clopen so that T = (\Jn=iUn) U (\Jn=ιVμJ where
the (VμJ may be assumed to be pairwise disjoint. Defining H2n =
Vμn,Hκ+1=U% and setting Lm = Hm - [JZ? H< then T=\Jn^Ln

where each Ln is clopen and (Ln) is pairwise disjoint. We note that
E must intersect infinitely many Ln

9s lest E turn out to be covered
by finitely many of the Z7<. Now consider the function / : T—>F
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defined by f(t) = ΣS=i<&*&*<(*) where \a\ > 1. We observe that / is
unbounded on ϋ7 and therefore F(T) with compact-open topology is
.F-barreled.*

We now prove a nonarchimedean version of a theorem of Warner
([15, p. 267]).

THEOREM 7. Let the set of nontrivial continuous homomorphisms
on the Frechet full algebra X be denoted by ^/ί. Let ^€ carry the
weak-* (Gelfand) topology and F ( j f ) the compact-open topology. Then
X is topologically isomorphic to F(^/?).

Proof. Carrying the topology of X over to F(^£) via the iso-
morphism ψ (Def. 1 of Sec. 1) and noting that ^€ constitutes the
set of nontrivial continuous homomorphisms of F(^f) into F, we see
by the previous theorem that the proof is done.

For complex algebras, Warner ([15]) has proved that the "Λ£"
of Theorem 7 is a &-space {^/ί carries the weak topology generated
by a sequence of compact sets). This question as well as an attempt
to develop a substitute for concept of "Q-space" ([5, p. 271]) is
investigated in subsequent papers ([16]).
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