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EQUATIONS WITH OPERATORS FORMING
A RIGHT ANGLE

R. E. SHOWALTER

The operator B in a complex Hilbert space H is said to
form an angle ¢ with the (stronger) operator A if D(A)cC
D(B) and, for every 2« in D(A), (Ax, Bx)z belongs to the cone
K(0) of all complex z with |arg(?)| <0. If A and B are
closed maximal accretive operators and B forms a right angle
with A, then A + B is closed maximal accretive and the Cauchy
problem for each of the equations u/(f) + (4 + Bu(t) = f(t)
and (I + B)u/(t) + Au(t) = f(t) is well-posed. Applications to
partial differential equations are indicated in the second part.

1. Global perturbations. A linear operator B: D(B) — H, D(B)C
H, is accretive if Re(Bz, )y = 0 for all e D(B) and maximal accre-
tive if is accretive and has no proper accretive extension in H. An
accretive operator B is closed if and only if the range R(I + B) is
closed. A maximal accretive operator is closed if and only if it has
dense domain. For an accretive operator B, R(I + B) = H if and
only if B is closed and maximal accretive. These results are given
in [6].

Let B be a closed and accretive operator in H. Then R(I + B)
is closed in H and I + B is a bijection of D(B) onto E(I + B). Hence
the set J = D(B) with the inner-product {x, ¥), = (I + B)x, (I + B)y),
is a Hilbert space. J is a subset of H and (z, z), = (%, %), for xeJ,
so J is topologically imbedded in H.

Let A be an operator in H and assume D(A) € D(B) and R(4) C

E(I + B). Define by T = (I + B)™'A: D{A) — J an operator in J.
LEMMA 1. If A is closed then T is closed.

Proof. Let z,e D(4) and lim Tz, = y, limz, = 2 in J. These
imply lim Az, = (I + B)y and lim«, = 2 in H, respectively, so the
result follows.

LeMMA 2. If T is accretive in J and R(I + A) D R(I + B), then
R(I + T) is dense in J.

Proof. Let xeJ be orthogonal to R(I + T) and choose z<€ D(A)
such that (I + A)z= (I + B)z. Then 0= Re(z, (I + T)z),=Re((I + A)z,
I+ B+ Az); = |+ Az + Re(Tz 2), + Re(z, B2); — Re (4z, 2),,.
This implies Re (4z, 2), = |(I + A)z|}; and thus 0 = |z|* + Re (4z, 2), +
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|Az|%, so (I + A)z = (I + B)x = 0. Hence % = 0.

THEOREM 1. Let B be a closed accretive operator in H, A a closed
operator with R(A) c R(1 + B) C R(1 + A). Assume I 4+ B forms a
right angle with A: Re (Ax, (I + B)x)y = 0 for all € D(A)  D(B).
Then T is closed maximal accretive on J and R(I + B + A) = R(I + B).

Proof. The right angle condition is precisely the statement that
T is accretive on J. Lemma 1 implies R(I + T) is closed and hence
(by Lemma 2) equal to J.

COROLLARY 1. Let B be a closed maximal accretive operator in
H, A a closed operator with R(I + A) = H, and assume I + B forms
a right angle with A. Then R(I + B+ A) = H. If A is accretive
(hence, maximal accretive) then B + A is closed maximal accretive.

We note here that if any two of the following three conditions
hold, then so does the third: B forms a right angle with A4, 4 is
acceretive (I forms a right angle with A), I + aB forms a right angle
with A for every @ > 0. In particular the Corollary 1 is close to a
result of [4].

The closed maximal aceretive operators are characterized as the
negatives of infinitesimal generators of strongly-continuous semigroups
of contractions, so Corollary 1 gives a sufficient condition for the well-
posedness of a Cauchy problem [5].

COROLLARY 2. Let A and B be closed maximal accretive operators
on H and assume I + B forms a right angle with A. For each u,€
D(A) and continuously differentiable f: [0, co) — H, there is a unique
continuously differentiable u: [0, <) — H with w(0) = u,, u(t) € D(A)
for t >0 and

(1) w'(@) + (A + B)u(t) = f(¢) .

This is a perturbation of the Cauchy problem for the equation
(2) w'(t) + Au(t) = f(0)

by an (unbounded) operator B which is weaker than A [2]. This
result is known to hold when B is replaced by a strongly continuously
differentiable map ¢ — B(f) of [0, «) into the space of continuous linear
operators on H [5]. Thus the term B(t)x(t) can be added to (1) and
a well-posed problem is obtained. Perturbations of a “local” type
are known without our right angle condition [1, 2, 4]. See [1, 3, 6]
for applications of (1) to parabolic and hyperbolic differential equa-
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tions.

In the proof of Theorem 1 we showed that 7 is closed maximal
accretive on J, so — T generates a strongly continuous semigroup of
contractions on J. This yields the following result.

COROLLARY 3. Let B be a closed accretive operator in H, A a closed
operator with R(A) C R(I + B) € R(I + A). Assume I + B forms a
right angle with A. Then for wu,c D(A), continuously differentiable
f: [0, ) — H and strongly continuwously differentiable B(+) from
[0, ) to the space of continuous linear operators from J to H, there
is a unique continuously differentiable u: [0, o) — J with w(0) = Uy,
u(t) € D(A) and u'(t) € D(B) for t > 0 and

(3) u'(t) + Bu'(t) + Au(t) + B@)wu() = f(@) .

Proof. It suffices to note that (3) is equivalent to the equation
w' () + Tu®) + I + B)"'Bd)u(t) = (I + B)f(b).

The equation (3) arises in applications wherein B =cA4, A is a
realization of partial differential operator in spatial variables, and ¢
is a complex number [7, 9]. Our hypotheses hold if A is a closed
accretive operator and Re (¢) = 0.

Our second major result is a refinement of Theorem 1 under the
(stronger) hypothesis that I + B forms an acute angle with A.

THEOREM 2. Let B be a closed accretive operator in H, A a closed
operator with R(A) c R(I + B) Cc R(I + A). Assume I + B forms an
angle 0 < /2 with A. Then — T generates an analytic semigroup on
J.

Proof. Since T is closed maximal aceretive, (\ + T)™" is in the
space .~ (J) of bounded linear maps on J and ||[(A + T)7'|| < Re (W)™
whenever Re (A) > 0. It suffices to show that the operators {A\(x + T)™:
Re (A) > 0} are uniformly bounded in .<~(J) [10].

The acute angle assumption implies the existence of a £ >0 such
that

(4) Re (T, x), = k|Im (Tx, 2),|, € D(4) ,

and we may assume k < 1. Letting A =0 + iz, > 0, and x € D(A)
we have

(5) Re (A + T)z, x); = o(z, x); + Re (Tx, ),
and

(6) Hm (v + T)x, )| = |7](x, 2); — [Im (T, 2),] .
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If it were not true that
(7) HIm (v + Tz, v), | = (71/2)(2, 2), ,
then from (4), (6) and the negation of (7) we have
(8) Re (T, x); = (k[7]/2)(®, ), -
Thus, at least one of (7), (8) holds and this gives

O+ T, @), = (R[7]/2)(@, ), -
From this last estimate follows the inequality

o+ )7 = @/kIT)) -

But we already have this quantity bounded by (1/o) (cf. (5)), so we
obtain finally,

AN + T) | < 4/k,Re (0) > 0.

COROLLARY. For each u, € D(B) and Holder continuous f: [0, co)—
H, there is a umnique continuously differentiable wu: [0, o) — H for
which u(0) = u,, u(t) € D(A) for t > 0 and (3) is satisfied [1, 2].

2. Applications. The applications of the abstract Cauchy prob-
lem for (2) are well known [1, 3, 6] so we shall restrict our discus-
sion to applications of (3). No attempt will be made to be comprehen-
sive in any sense, but we shall give three elementary examples for
which generalizations are obvious.

Let H=L*0, 1), the Lebesgue square-summable (equivalence classes
of) functions on the unit interval, and let H*(0, 1) be the Sobolev
space of elements of L*(0, 1) whose derivatives through order & are
in L*0,1) [1]. Let ¢ be a complex number with |¢|] £ 1 and define
B=d/dxz on D(B)={¢<c H* 0, 1): $(0)=c¢¢(1)}. Then B is closed maximal
accretive in H. Let A = B; then we have

Re (49, (I + Bp)y = (L= [eP) o) /2 + | |4'F

for ¢ e D(A) = D(B), so I + B forms a right angle with A. J = D(B)
is a closed subspace of H'(0,1), so we may define B(t):J— H by
B(t)¢ = b,(t)¢" + b*(t)¢. B(-) is strongly continuously differentiable if
b, and b, are continuously differentiable. Finally, let F' be continu-
ously differentiable on [0, 1] x[0, <) and define f(t) = F(+,t). Then
f is continuously differentiable from [0, «o) to H. Thus, Corollary 3
implies that for each wu,c D(B) there is a unique (generalized) solution
u(z, t) of
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(9) Wy + Uy + Uy, + O(R)U, + b(D)u = F

in (0, 1) x (0, o) for which wu(x, 0) = u,(x) and %(0, t) = cu(l, t) for ¢ =
0. Thus our results apply to the hyperbolic equation (9) with boundary
conditions specified on the characteristics. Furthermore, we can use
the Poincaré inequality

Lok =2isr + 4| 158 s B0, D

to show that I + B forms an acute angle with A when |¢| < 1. This
permits us to relax the smoothness requirements on B(f) and f(¢) in
9).

For our second example we take H, B, B(t) and f(¢) as above and
define A = — (d/d=)* on D(A) = {¢ € H*0, 1): $(0) = ¢c¢(1), ¢¢'(0) = ¢'(1)}.
Then A is closed maximal accretive in H and

Re (49, (I + B)g) = | |8/ + |5/ O (L — ef)2,

for ¢ € D(A) < D(B), so I + B forms a right angle with A. As before,
we have for each u,e D(A) a unique solution of

(10) Uy + Uy + b(O)u, + b(O)u = F

in (0, 1) x (0, ) for which u(z, 0)=wu.(z) and %(0, t)=cu(l, t), cu.(0, t)=
u,(1, t) for t = 0. We cannot improve the result to obtain an acute
angle above, but this is expected since we would then have a regu-
larity result (see below) too strong for the hyperbolic equation (10).

For our final example let G be a bounded open subset of R with
G on one side of its infinitely differentiable boundary 0G. H*(G) is
the Sobolev space of (equivalence classes of) functions all of whose
derivatives through order k are in L*G). Let 4 = 3.7 ,(0/6x;)* be the
Laplacian operator on the domain D(4) = {¢ € H¥G): ¢ = 0 on 0G}.
Then for each complex b with Re (b) = 0, the operator B = — b4 with
D(B) = D(4) if b+ 0 and D(B) = H if b = 0 is closed maximal accre-
tive in H = L*G&). Let Re(a) = 0 for the nonzero complex number
a and define A = a4®* on D(A) = {p€ H*(G): ¢ = 4¢ = 0 on 0G}. Then
A is closed maximal accretive in H. From the divergence theorem
we obtain

(43, (I + B)g)n = a(dp, 49)y = ab | |odgjon.
for ¢ € D(A). Thus I+ B forms a right (acute) angle with A4 if Re(ab) >

0 (resp., Re (ab) > 0 and Re(a) > 0), and for each u,c D(4) (resp.,
u, € D(B)) there is a unique (generalized) solution of
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(11) U, — bdu, + ad*u = 0

in G x (0, ) for which u(z, 0) = u,(x) and u(z, t) = du(x, t) = 0 for
2€0G and ¢ > 0. Nonhomogeneous terms and perturbations by first
order spatial derivatives can be added to (11) when b 0. When
Theorem 2 applies, the solution of (8) with B(f) = f(t) = 0 belongs to
the domain of every power of the generator — 7. Hence, when 1 — b4
forms an acute angle with a4? the solution u(t) = u(z, t) of (11) belongs
to (1 — b4)'ad’)~"[D(A)] < H****(G) for every t > 0 and % > 0. Thus
u(z, t) is by Sobolev’s lemma a C= function of z. Further, one can
show by standard techniques [1, 3, 8] that u(z, f) is infinitely differ-
entiable in # and ¢ and is a genuine (pointwise) solution of (11).

The last example illustrates the technique when A is a poly-
nomial with coefficients in the right half-plane in a self-adjoint operator
B.
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