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ON ^-COMPACT SPACES AND
GENERALIZATIONS OF PERFECT MAPPINGS

J. H. TSAI

The inverse image preservation problem of incompact
(realcompact) spaces has been studied by R. Blair, N. Dykes,
and T. Isiwata. In this paper their results are drawn to-
gether, and the inverse images of E-compact spaces under
certain kinds of mappings are studied. Actually, a more gen-
eral question, concerning the notion of Imperfect mappings,
is considered. (The inverse image of an incompact space under
an imperfect mapping is incompact.) Classes of hereditarily
E-compact spaces and their inverse images under certain
mappings are also studied.

I* Preliminaries* Throughout this paper spaces are assumed to
be Hausdorff and mappings are continuous onto functions. The reader
is referred to [9] for basic ideas of E-compact spaces. For convenience
we review the terminology and notations. Given two spaces X and E,
C(X, E) denotes the set of all continuous functions from X into E. A
space X is said to be E-completely regular (E-compact) provided that
X is homeomorphic to a subspace (respectively, closed subspace) of
a product Em for some cardinal m. X is said to be hereditarily E-
compact provided that every subspace of X is .E-compact. A subset
A of a space X is said to be E-embedded in X provided that every
continuous function/: A —> E admits a continuous extention f*: X—+ E,
and A is an E-closed subset of X provided that for some positive
integer n there exists a closed subset T of En and a continuous func-
tion /: X-> En such that A = f~ι[T\. Following Frolik [3], a mapping
φ: X—> Y (where X and Y are completely regular spaces) is called a
Z-mapping provided that the image of every zero-set in X is closed
in Y, and following Isiwata [7], φ is called a WrZ-mapping provided
that Cl^γ φ~\y) = Φ~ι(y) for every y in Y, where βX and β Y denote the
Stone-Cech compactifications of X and Y, respectively, and Φ denotes
the Stone extension of φ from βX into βY. A mapping is called
perfect (proper) provided that it is continuous, closed and the inverse
images of singletons are compact. It is well known that if X and Y
are completely regular spaces, then a mapping φ\X-^Y is perfect
iff Φ[βX- X]SβY- Y.

It follows from Theorem 4.14 of [9] that given two E-completely
regular spaces X, Y and a continuous function φ: X—> Y, there exist
E-compact extensions βEX, βEY of X, Y, respectively, and a continu-
ous extension ΦE: βEX—> βEY of ψ. In the sequel, we shall always
use φE to denote such an extension of φ.
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Generalizing the notions of Z-mapping, TF^-mapping and perfect
mapping, we define the following

DEFINITION 1.1. Let X, Y be ^-completely regular spaces, and
φ: X —* Y be a mapping.

(a) φ is E-closed provided that φ maps each ^-closed subset of
X to a closed subset of Y.

(b) φ is weakly E-closed provided that ClβEXφ~ι(y) = ΦE~\y) for
each y in Y.

(c) φ is E-perfect provided that ΦE[βEX - X] S βEY - Y.

REMARK. Let I and R denote the spaces of [0,1] and of all real
numbers, respectively. Then the concept of I-closed (weakly /-closed,
J-perfect) mapping coincides with that of Z- (WZ-, perfect, respectively)
mapping, and the concept of imperfect mapping coincides with that
of real-proper mapping [1].

PROPOSITION 1.2. A closed mapping is E-closed.

PROPOSITION 1.3. If E is a regular space, then an E-closed
mapping is weakly E-closed.

We need the following lemma to prove Proposition 1.3.

LEMMA 1.4. If E is regular and X is an E-completely regular
space, then for each closed subset F of X and each point p in X — F,
there exists an E-closed subset A of X such that p e Int A and A Π F — 0
(Int A denotes the interior of A).

Proof. Since X is Incompletely regular, by [9; Theorem 3.8],
there exists a continuous function / from X into En for some finite n
such that f(p) $ ClEnf[F]. Since En is regular, there exist disjoint
open neighborhoods U, V of f(p), G\Enf[F], respectively. Let A =
f-l[En - V]. Clearly, p e Int A and Af] F = 0 .

Proof of Proposition 1.3. Let X, Y be Incompletely regular
spaces and φ: X—> Y be an 17-closed mapping. Assume that φ is not
weakly £7-closed. Then there exists a point y in Y and a point p in
ΦE~\V) — G\βEΣφ~\y). By Lemma 1.4, there exists an I?-closed subset
A of βEX such that p e Int A and A Π C\βEZφ~\y) = 0 . Let M =
A Π X. Then M is an I?-closed subset of X, and hence φ[M] is closed
in Y. Now Mf]φ~1(y)= 0 , hence y$φ[M]. On the other hand,
p e Int A s Cl^ x Int A = C\βEX [Int 4 n l ] g Cl^ x [ A ΓΊ X] = Cl^ x M,
hence y = ΦE(p) e ΦE[C\βEZM]SCΪβETΦE[M] = C\βEYφ[M]. This implies

t h a t yedβEYφ[M] ί l Γ = C\γφ[M] = < [̂ikf] which is a contradiction.
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2* Imperfect mappings* The consideration of imperfect map-
pings is motivated by the following obvious results.

PROPOSITION 2.1. Let X, Y be E-completely regular spaces. If Y
is E-compact and if there exists an E-perfect mapping from X onto
Y, then X is E-compact.

For a space E we shall let (£(2£) (Sl(E)) denote the class of all
incompletely regular (respectively, incompact) spaces. The following
theorem is due to Mrόwka [9; 4.1].

THEOREM 2.2. Let E19 E2 be two spaces with (£(2 )̂ = &(E2).
Then B(E,) E B(E2) iff ft2lcext βElX for each Xe&iEJ, i.e., there
exists a homeomorphism h from βEz X into βEl X such that h(p) — p
for each p in X.

In the following we shall always assume that E19 E2 be spaces
with (£(#0 = (£(£72) and ^(E,) E Sl(E2). We are ready to show the
following

THEOREM 2.3. Let X, Y be two E-completely regular spaces,
φ: X—» Y a weakly E-closed mapping. Then φ is E2-perfect iff φ~ι{y)
is closed in βEz X for each y in Y.

Furthermore, if Y is E2-compact, then φ is E2-perfect iff X is
E2-compact.

Proof. Necessity, Since ΦE2[βE2X — X] E βEzY — Y, for each y
in Y, we have <P~\y) — Φ^iv) which is closed in βE2X.

Sufficiency. To show that ΦE2[βE9X - X] S βEftY - Y, it suffices
to show that for any z e βE%X, if ΦEz(z) e Y, then ze X. So let ΦE2(z) =
ye Y. Since φ is weakly ^-closed, we have

zeΦE~ι(y) = ΦE-\y) Π βE.X = C\βEiXφ-ι(y) Π β,2X

= Cl^φ-^y) = φ-\y) S X.

Now assume that Y is ^-compact. If φ is ^-perfect, by Pro-
position 2.1, X is i?2-compact. Conversely, if X is ^-compact, then
βE2X = X. Thus, aβE2Xφ-\y) = C\zφ-ι(y) = φ'\y) for each y in Y.
Hence Φ~ι(y) is closed in βE2X for each y in Y. This shows that φ
is ^-perfect.

Before we give applications of Theorem 2*3, we first show the
following

LEMMA 2O4. Let X, Y be two E-completely regular spaces, φ: X—* Y
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a mapping and y an arbitrary point in Y. If φ~ι{y) is E-compact
and E-embedded in X, then φ~~ι{y) is closed in βEX.

Proof. Since φ~ι(y) is incompact, βEφ~ι(y) — Ψ~ι(y) Consequently,
it suffices to show that QλβEXψ~\y) = βEφ~ι(y). First, ClβEZφ"1(y)9 being
a closed subset of the iJ-compact space βEX, is incompact. Also, since
φ~\y) is i?-embedded in X, it is also i?-embedded in βEX, hence it is
^-embedded in C\βEXφ-\y). Thus, by Theorem 4.14 (b) of [9],

As an immediate consequence of Theorem 2.3 and Lemma 2.4 we
obtain

THEOREM 2.5. Let X, Y be two Ercompletely regular spaces,
φ: X —» Y a weakly Enclosed mapping. If φ~ι(y) is E2-compact and
E2-embedded in X for each y in Y, then φ is E2-perfect.

We now turn to the iϋ-compact (realcompact) case. Throughout
the remainder of this section spaces are assumed to be Hausdorff and
completely regular.

Let Eλ = I and E2 = R in Theorems 2,3 and 2.5, we obtain

COROLLARY 2.6. Let φ: X—*Y be a WZ-mapping. Then we have
(a) φ is R-perfect iff φ~ι{y) is closed in the Hewitt realcom-

pactification vX of X for each y in Y.
( b) Let Y be R-compact. Then φ is R-perfect iff X is R-compact.
(c) If φ~ι{y) is R-compact and R-embedded in X for each y in

Y, then φ is R-perfect.

A subset Xo of a space X is said to be ^-embedded in X provided
that for every zero-set Z in Xo there exists a zero-set Z' in X such
that Z = Zf Π Xo, and Xo is said to be R*-embedded in X provided
that every bounded continuous real-valued function on XQ admits a
continuous real-valued extension to X. It is easy to show that every
ί?-embedded subset of X is i?*-embedded in X and every i?*-embedded
subset in X is ^-embedded in X. Conversely, it was shown in [5]
that every ^-embedded subset Xo of X which is completely separated
from every zero-set disjoint from it is i?-embedded. Furthermore, it
was shown in [6] that every Lindelof space Xo in X is ^-embedded
in X. We have the following

LEMMA 2.7. Let φ: X —> Y be a Z-mapping, y an arbitrary point
of Y. If φ~ι{y) is z-embedded in X, then φ~ι{y) is R-embedded in X.

Proof. It suffices to show that φ~\y) is completely separated
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from every zero-set disjoint from it. Let Z be such a zero-set. Then
y§ ψ\Z\ and φ[Z] is closed in Y. Hence there exists an fe C(Y, R)
such that f(y) = 0 and f\φ\Z\\ = 1. Therefore, foφeC(X, R) and
(foφ)[Z] = 1, {foφ)[φ~\y)\ = 0.

With the above information the following corollary is easily
obtained.

COROLLARY 2.8. Let φ: X-+Y be a Z-mapping. If one of the
following conditions holds, then φ is R-perfect.

(a) φ~ι{y) is R-compact and z-embedded in X for each y in Y.
( b) φ~ι{y) is R-compact and R*-embedded in X for each y in Y.
(c) X is normal and φ~~ι{y) is R-compact for each y in Y.
(d) φ~ι{y) is Lindelof for each y in Y.

REMARK. It should be pointed out that somewhat more restricted
forms of Corollary 2.8 can be found in [1], [2] and [7]. In particular,
(a) can be found in [1], (b) in [7], (c) in [1], [7] and (d) in [1] and [2].

3* Hereditarily incompact spaces* In this section we give sev-
eral characterizations of certain classes of hereditarily i?-compact
spaces. As by-products of the characterizations, sufficient conditions
for the preservation of inverse images of hereditarily E'-compact spaces
are derived. The space E in this section will be assumed to have
a continuous binary operation Θ and two fixed distinct points e0 and eL

satisfying the following conditions:
( i ) eθe0 — e0, ege1 = e for each e in E.

(ii) For every closed subset A of En(n is a finite positive in-
teger) and every point p in En — A, there exists an fe C(En, E) such
that f[A] = e0 and f(p) = e,.

(iii) For every two disjoint closed subsets A, B of E, there exists
a g e C(E, E) such that g[A] = e0 and g[B] = eλ.

It is easy to see that a space E which satisfies (ii) (iii) is re-
gular (respectively, normal).

In the sequel all spaces are assumed to be incompletely regular.
For convenience we state two lemmas from [10] which are needed for
the proof of Theorem 3.3. We note that conditions (i), (ii) and (iii)
of the space E are essential for the proof of these lemmas.

LEMMA 3.1. In an E-completely regular space, the union of a
compact subspace with an E-compact subspace is E-compact.

LEMMA 3.2. If X is an E-completely regular space which is the
union of finitely many E-compact subspaces, each of which is E-
embedded in X except at most one, then X is E-compacto
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We are now ready to prove the main theorem of this section.

THEOREM 3.3. The following conditions on an E-completely re-
gular space Y are equivalent.

( 1 ) Y is hereditarily E-compact.
( 2 ) Y — {y} is E-compact for each y in Y.
( 3) For every space X, if there exists a mapping φ: X —> Y such

that φ~ι{y) is compact for each y in Y, then X is E-compact.
( 4 ) For every space X, if there exists a one-to-one mapping

φ: X-+ Y, then X is E-compact.
( 5 ) For every space X, if there exists a mapping φ:X~>Y

such that φ~\y) can be expressed as the union of finitely many E-com-
pact, E-embedded subspaces of Xfor each y in Y, then X is E-compact.

( 6 ) For every space X, if there exists a mapping φ: X-+Y such
that φ~ι{y) is an E-compact, E-embedded subspace of X for each y in
Y, then X is E-compact.

Proof. It is obvious that (1) implies (2), (3) implies (4) and (5)
implies (6).

( 2 ) implies ( 3 ) . Let X and φ satisfy the assumptions of (3).
It follows from (2) and Lemma 3.1 that Y is ^/-compact. Hence φ
admits a continuous extension ΦE: βEX—> Y. Now consider any point
y in Y. By 4.9 of [9], the set Xo = ΦE-ι[Y - {y}] is ^-compact,
hence by Lemma 3.1 again, the set XQ U <P~\y) is also lϊ-compact.
Since I g I 0 U Ψ~\y) S βEX, we have Xo U <P~\y) = βEX In other
words, ΦE maps no point of βEX — X to y. As this holds for every
y in Y, we have βEX — X = 0 . This shows that X is i?-compact.

( 4 ) implies ( 1 ) . Let F be any subspace of Y. Enlarge the
topology of Y by making both F and Y — F open. The new space
X thus defined is ^-completely regular and the relative topology on
F is the same in X as in Y. Since the identity function from X onto
Y is continuous, (4) implies that X is incompact. Therefore F, which
is a closed subset of X, is also iί-eompact.

( 2 ) implies ( 5 ) . This is analogous to the proof of (2) implies
(3). Here instead of using Lemma 3.1, we apply Lemma 3.2 to show
that Xo U Ψ~γ{y) is incompact.

( 6 ) implies ( 4 ) . If φ is a one-to-one mapping, then for each y
in Y, φ~\y), which is a singleton, is clearly incompact and i?-embedded
in X.

As an immediate consequence of Theorem 3.3, we have

COROLLARY 3.4. Let Y be a hereditarily E-compact space. If
there exists a mapping φ\X—*Y which satisfies one of the following
conditions, then X is hereditarily E-compact.
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( 1 ) For each y in Y, φ~ι{y) is finite.
( 2 ) φ is one-to-one.
( 3 ) For each y in Y, φ~\y) can be expressed as follows: φ~\y) =

Fx U * U Fn (n is a finite positive integer) where Ft is hereditarily
E-compact and each subspace of Fi is E-embedded in X for i — 1, , n.

( 4 ) For each y in Y, φ~\y) is hereditarily E-compact and each
subspace of φ~ι(y) is E-embedded in X.

REMARK. It is obvious that the space R and N (N denotes the
discrete space of nonnegative integers) satisfy conditions (i), (ii) and
(iii)o Therefore, all results in this section hold true for hereditarily
ϋί-compact and hereditarily iV-compact spaces. In fact, for E — R,
the equivalence of (1), (2), (3) and (4) of Theorem 3.3 was proved by
Gillman and Jerison [4, p. 122]; the equivalence of (1) and (6) was
proved by Blair [1, 3.1]; Corollary 3.4(2) was proved by Shirota [11,
Theorem 6] and Corollary 3.4(4) was proved by Blair [1, 3.2]. For
E = N, Corollary 3.4(2) was proved by Mrόwka [8, p. 599].

To see that our results in this section are applicable to other
classes of hereditarily ϋ7-compact spaces, we state the following

THEOREM 3.5. All results in this section hold true if E is an
arbitrary O-dimensional chain.

This theorem follows immediately from the following lemmas
whose proofs can be found in [10].

LEMMA 3.6. Every O-dimensional chain which has first and last
elements satisfies conditions (i), (ii) and (iii) of the space E.

LEMMA 3.7. Let Xo be an E-embedded subspace of a spce X, and
Er be a space homeomorphic to a subspace of Em for some cardinal
m. If Ef is a retract of Em, then Xo is E'-embedded in X.

LEMMA 3.8. For every O-dimensional chain E, there exists a
O-dimensional chain Ef which has first and last elements such that

(1) «(#) - W),
( 2 ) Ef is a retract of E2 (hence every E-embedded subspace of

a space X is E'-embedded in X).
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