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APOSYNDETIC PROPERTIES OF HYPERSPACES

JACK T. GOODYKOONTZ, JR.

Let X be a compact connected metric space and 2%¥(C(X))
denote the hyperspace of closed subsets (subcontinua) of X. In
this paper the hyperspaces are investigated with respect to the
property of aposyndesis. The main result states that each of
2% and C(X) is aposyndetic. If X is semi-aposyndetic, then each
of 2% and C(X) is mutually aposyndetic. An example is given
of a non-semi-aposyndetic continuum for which C(X) is not
mutually aposyndetic. In an extension of the main result
for C(X) it is shown that C(X) is countable closed set apo-
syndetic. The techniques utilize the partially ordered structure
of 2¥ and C(X).

A continuum will be a compact connected metric space and X
will denote a continuum throughout. Each of 2* and C(X) is endowed
with the finite (Vietoris) topology and since X is a continuum each
of 2*¥ and C(X) is also a continuum (see [5]). If A4, .--, 4, are
subsets of X, then N(4, ---, 4,) = {Be2*| for each i =1, .-+, n,
BNA;# @, and B&UUr, A;}. If n is a positive integer, F,(X) =
{Be2*|B has at most n elements} and F(X) = Ui, F.(X).

For notational purposes, small letters will denote elements of X,
capital letters will denote subsets of X and elements of 2%, and script
letters will denote subsets of 2*. If A= X, then A* (int A) (bd A)
will denote the closure (interior) (boundary) of 4 in X.

The concept of aposyndesis was introduced by F. Burton Jones
[3] and several extensions of this concept have been studied. Let
p,geX,p+*q. X is aposyndetic at p with respect to g provided
there exists a continuum M such that peint M and qe X — M. If
for each ge X — p, X is aposyndetic at p with respect to ¢, then X
is aposyndetic at p. If X is aposyndetic at each of its points then
X is aposyndetic. X is semi-aposyndetic if for each pair (p, q) of
distinct elements of X, X is aposyndetic at p with respect to ¢ or X
is aposyndetic at ¢ with respect to p (L. E. Rogers [9]). X is mutu-
ally aposyndetic if for each pair (p, ¢) of distinct elements of X there
exist disjoint continua M and N such that peint M and geint N
(Hagopian [2]). Let .# be a collection of closed subsets of X. Then
X is & -aposyndetic if for each x e X and each F e . & such that x¢ F
there exists a continuum M such that xeint M and MNF = O
(Bennett [1]). If & is the collection of finite (countable closed) sub-
sets of X and X is & -aposyndetic then X is said to be finitely
(countable closed set) aposyndetic.

Let (X, =) be a partially ordered space. If ze X, then S(x) =
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{ye X|y = o} and T(x) = {yc X|a < y} are called the lower and upper
sets of w respectively. Similarly, if A< X, then S(4) = U {S(a)|a € A}
and T(4) = U{T(a)|ac A} are called the lower and upper sets of A
respectively. If X is compact and the partial order is closed ({(x, y)|
2 < y} is closed in X x X), then S(A) and T(A) are closed whenever
A is closed (Proposition 4, p. 44 of [6]). A is said to be decreasing
if A = S(A4) and increasing if A = T(A).

The following definition is due to L. Nachbin [6]. A partially
ordered space is normally ordered if for each pair A, B of disjoint
closed subsets of X such that A = S(4) and B = T(B), there exist
disjoint open sets U and V such that Ac U and BC V and such
that U= S(U) and V = T(V). Itis known that any compact Haus-
dorff space with closed partial order is normally ordered (Theorem 4,
p. 48 of [6]).

In a partially ordered space, a chain is a totally ordered subset.
An arc which is also a chain is called an order arc.

It is easy to establish that the natural partial order on 2¥(C(X))
induced by inclusion is a closed partial order. If A, Be 2*(C(X)),
then there exists an order arc in 2*(C(X)) from A to B if and only
if A< B and each component of B intersects A (Lemma 2.3 and
Lemma 2.6 of [4]).

LEMMA 1. Let Ae2* and Me C(X). Then T(A), T(M) N C(X),
and S(M) N C(X) are continua. Consequently, if &7 is a closed set
wm 2%(C(X)), then T(7) is a continuum in 2%(C(X)).

Proof. T(A) is a continuum in 2¥ because T(A4) = {Be2*| A< B}
is the continuous image of 2*f under the function C— AU C. If
Ne T(M) N C(X), there exists an order arc & in C(X) from N to
X, and ¥ < T(M) N C(X). It follows that T(M) N C(X) is connected,
and since the partial order is closed, T'(M) N C(X) is a continuum.
S(M)N C(X) = C(M), so SM)N C(X) is a continuum. For each
Ae. o7, T(A) is a continuum in 2*(C(X)) and Xe T(A). It follows
that T(.o7) = U{T(A)|Ae .o} is a continuum in 2*(C(X)).

LemMMmA 2. 2%(C(X)) ts locally connected at X.

Proof. Let Z be an open set containing X and N(U,, ---, U,) be a
basic open set such that Xe N(U,, ---, U,)Cc%. If Ae N(U,, -+, U,),
then there exists an order arc & in 2% (C(X)) from A to X. Since
A, XeNU,.--,U,), each element of & is in N(U, ---, U,). It
follows that N(U, ---, U,) is connected. Hence 2*(CX)) is locally
connected at X.
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The following theorem of Nachbin [6] will yield a useful method
for constructing continua in the hyperspaces.

THEOREM A. Let X be a nmormally ordered space with closed
partial order and A be a compact subset of X. Then every continu-
ous, order-preserving, real-valued function on A can be extended to X
i such a way as to remain continuous and order-preserving.

We now have the necessary equipment to prove the main result.
THEOREM 1. FEach of 2* and C(X) is aposyndetic.

Proof. Let Ae2*(C(X)). We will show that 2*(C(X)) is apo-
syndetic at A with respect to each of the other points of 2*(C(X)).
If A= X, then by Lemma 2, 2%(C(X)) is locally connected at A and
hence aposyndetic at A. So we will assume that A is a proper closed
subset (subcontinuum) of X.

Let Be2*(C(X)), B+ A. If Bc A or if B and A are not related
under inclusion, then there exists v € A such that x¢ B. Let U be
an open set containing « such that U* N B = @. Let V be an open
set containing A — U such that ¢ V*. Then Ae N(U, V) and B¢
N(U*, V*)= N(U, V)* (Lemma 2.3.2 of [5]). By Lemma 1, T(N(U, V)*)
is a continuum, and 4 e int T(N(U, V)*). Furthermore, B¢ T(N(U, V)*).
Hence 2%(C(X)) is aposyndetic at A with respect to B.

Now suppose A, Be C(X) and Ac B. Let & = {4} U {B} U F(X).
Then & is a compact subset of C(X). Define f: & — [0, 1] by

0 if C=A4 or CeF(X)

FO=1 i c=B.

Since A is a proper subset of B, f is continuous and order-preserving,
so by Theorem A, f has a continuous extension 7 CX)—R (reals)
which is also order-preservmg Since C(X) is a continuum, Fex)
1s a closed interval, and since f is order- preservmg, for some b=1,
F(C(X)) = [0, b]. Lette(0,1) and consider 70, ¢)). If Le7(o0, ¢]),
then S(L) c 70, t]). By Lemma 1, S(L) is a continuum. Moreover,
S(L) N F(X) + @. Since F(X)Cf“l([O ¢) and F1(0,¢) = U {SW)|
Le 70, t])}, it follows that 7740, t]) is connected, and since f is
continuous, it follows that 7 ([0, ¢]) is a continuum. Furthermore,
Ac int 771([0, t]) and B¢ f ([0, t]). Hence C(X) is aposyndetic at 4
with respect to B. This concludes the proof that C(X) is aposyndetic.

Finally, suppose A, Be2* and Ac B. Let U be an open set such
that AcU and B— U* # @. Let 9% = N(U)* UN(X — U). Ob-
serve that Aeint .92 and B¢.22". Now F(X)N .2 is densein .97
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We will show that F(X) N .2 is connected.
Let {x, -+, #,} € N(X—U). Then foreachi=1,.--, 0,2, X—U*
or z;ebd U. Let

C - the component of X — U* containing #; if x,e X — U*
e if x,ebdU.

Then Cf Nbd U+ @, because C; is a component of the open set X— U*
and hence meets bd (X — U*)=bd U. Let #;cCfNbd U. Let &, =
ooy, +oe, @iy, ¥, Xigry +++, 22} ly € CF}. Now &; is the continuous image
of the continuum C¥, so &; is a continuum in N(X — U) containing
(@, <o, @y, @, iy, +++, 20} and {x, «--, @, i, 54y, -+, @,}). Then for
each 1=2,.--, 10,2, N2+ . So UL & is a continuum in
N(X — U) containing {z,, ---, z,} and {2, ---,2,}. For each 7 =1,
cee,m—1, let &= {{a, ---, 2}, y}|lye X}. Then <& is a continuum
in 2" containing {«;, ---, @}, «},,} and {«], -+, 2;}, and for each 7 = 2,
ceeom—1, %N+ @. Hence Uin! &5 is a continuum in %
containing {#, ---, 2.} and {2}, Let .# = {{y}|lyeCf}. Then _~ is
a continuum in N(X — U) containing {z;} and {z}. So

(Uz)u(U=)u.r

is a continuum in .2  containing {x, ---, «,} and {x}.

If {«, ---, z,} € N(U)*, we can use a similar construction to show
that .2¢" contains a continuum containing {x,, ---, z,} and {z,}. So if
CeF(X)n .2 and ceC, there exists a continuum in F(X)N %
containing C and {c}. Hence F(X) N % can be written as a union
of continua, each of which meets F,(X). Since U*U (X — U) = X,
it follows that Fy(X)c F(X) N %", and since F,(X) is connected, it
follows that F(X)N .9 is connected. Furthermore, F(X) N .2 is
dense in .97, so .2  is connected. Hence 2" is a continuum con-
taining A in its interior which misses B. This concludes the proof
that 2% is aposyndetic.

A continuum X is said to be umnicoherent provided that whenever
A and B are proper subcontinua such that X = A UB, then ANB
is connected. S. B. Nadler, Jr. [7] has proved that each of 2* and
C(X) is unicoherent. D. E. Bennett [1] has shown that a unicoherent
aposyndetic continuum is finitely aposyndetic. These results and
Theorem 1 imply the following corollary.

COROLLARY 1. FEach of 2* and C(X) is finitely aposyndetic.

THEOREM 2. Let X be a semi-aposyndetic continuum. Then each
of 2% and C(X) is mutually aposyndetic.
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Proof. Let M, Ne C(X), M = N. Suppose M c N or that M and
N are not related under inclusion and that N¢ F(X). Let & =
{M}U{N}U F/(X) and define f:.o7 —[0,1] by

0 if A=M or AeF(X)

TA=1 & a=n.

Then f is continuous and order-preserving, so by Theorem A f has a
continuous extension f : C(X) — R which is also order-preserving. Let
Flex)) = [0,0](b=1) and ¢,%,€(0,1),t <t. As in the proof of
Theorem 1, ([0, ¢,]) is a continuum containing M in its interior
which misses N. Now suppose L e f~ ([t, b]). Observe that T(L)c
F7[t, b]) and Xe T(L). By Lemma 1, T(L) is a continuum. Since
F[t, b)) = U{T(L)| L e f([t, b])}, 7([t,, b]) is a union of continua,
each of which contains X. Hence f ~*([t., b]) is a continuum containing
N in its interior which misses M. Since f~([0, t]) N F~'([&, b)) = @,
it follows that C(X) is mutually aposyndetic at (M, N).

Let A, Be2*, A+ B. Suppose that Ac B or that A and B are
not related under inclusion and B¢ F(X). Let x€ B — A and y€ B,
¢+ y. Let U be an open set containing A and y such that x¢ U*.
Let V, be an open set containing y such that Vc U. Let V., be
an open set containing « such that V} cint (X — U). Let W be an open
set containing B — (V,U V,) such that x,y¢ W*. IfB—- (V,UV,) =
@, replace N(V,, V,, W) by N(V,, V,) in the remainder of the argu-
ment.) Then Be N(V,, V,, W) and N(V,, V,, W) is disjoint from
the sets N(U)* and N(X — U). As in the proof of Theorem 1,
N(U)* U N(X — U) is a continuum containing A in its interior which
misses B. By Lemma 1, T(N(V,, V,, W)*) is a continuum, and Be
int T(N(V,, V,, W)*). If Ce T(N(V,, V,, W)*), then C meets V} and V7,
so C meets U and int (X — U). Therefore C¢ N(U)* U N(X — U).
So T(N(V,, V,, W)y N (N(U)* U N(X — U)) = @. Hence 2% is mutu-
ally aposyndetic at (A4, B).

Finally, suppose A, Be F\(X), A+ B. We will write 4 = {p},
B = {gq}. Since X is semi-aposyndetic, we assume that X is aposyndetic
at p with respect to ¢. Then there exists a subcontinuum M of X
such that peint M and gqe X — M. Let V be an open set contain-
ing ¢ such that V*N M = @. By Lemma 1, T(N(V)*) is a continuum
in 2%(C(X)) and {g} eint T(N(V)*). Now 2¥(C(M)) is a subcontinuum
of 2%(C(X)) and {p}eint 2¥(C(M)). Moreover, 2¥(C(M)) and T(N(V)*)
are disjoint, since M and V* are disjoint. Hence 2*(C(X)) is mutually
aposyndetic at ({p}, {¢}). This concludes the proof.

In the preceding theorem we have shown that if X is any con-
tinuum and at least one of A and B is not an element of F,(X), then
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each of 2¥ and C(X) is mutually aposyndetic at the pair (4, B). We
now give an example of a non-semi-aposyndetic continuum for which
C(X) fails to be mutually aposyndetic at certain pairs of elements
belonging to F,(X).

ExaMpPLE 1. Let X be the planar continuum which is the union
of S'={(r,0)|r=1}and S={(r,0)|6 =0 and r=1+1/A +6)}. J.T.
Rogers, Jr. [8] has shown that for this X, C(X) is homeomorphic to
the cone over X. Moreover, the homeomorphism carries F,(X) onto
the base of the cone.

Observe that if p, ¢ S, then X is not semi-aposyndetic at (p, q).
To show that C(X) is not mutually aposyndetic at ({p}, {¢}) it will
suffice to show that X x I(I = [0, 1]) is not mutually aposyndetic at
(»', ¢') where p’ = (p, 0) and ¢’ = (g, 0).

Suppose M, and M, are disjoint continua containing p’ and ¢’
respectively in their interiors. Let N, be the component of (S* x I) N
M, which contains p'. Let U, ---, U, be a finite cover of N, by
spherical open sets such that (Ui, U) N M, = @. Using the fact
that each component of (S' x I) — (U, U;) is arcwise connected, it
can be established that no component of (S' x I) — (Ui, U;) meets
both S* x {0} and S' x {1}. It follows that |J, U; contains a simple
closed curve C which separates S' x I between S' x {0} and S' x {1}.
Furthermore, for some ce C, 7, U; contains an arc [p’, ¢] such that
[#,elN C = {c}.

Let N, be the component of (S* x I) N M, which contains ¢’ and
let V,, .-+, V,, be a finite cover of N, by spherical open sets disjoint
from U7, U;. In the analogous manner, U7, V; contains a simple
closed curve D which separates S' x I between S* x {0} and S* x {1}
and for some de D, U, V; contains an arc [¢’, d] such that DN|[¢, d] =
{d}. It can now be shown (this involves a consideration of some pro-
perties of S% that ([»,¢]UC)N (¢, dlU D)+ &, a contradiction.
Hence C(X) is not mutually aposyndetic at ({p}, {g}).

The final theorem extends the main result and Corollary 1 for
C(X). First we need the following lemma.

LEMMA 3. Let MeC(X) and &7 be a countable closed set in
C(X). Then there exists a decreasing open set 7 in C(X) such that
MeZ and bd Z)N & = @.

Proof. Let ¢ > 0 and let d denote the metric on X. For each
xeM let S.(x) = {ye X|d(=,y) <¢c}. Let U, = U,ex Si(®) and Z, =
N(U,). Then % is a decreasing open set in C(X) which contains M.
If Lebd Z., then there exists y € L such that
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ey 50 - (y 560)-

It follows that for each x € M, d(x, y) = ¢ and for some x, € M, d(x,, y) =
. Therefore if ¢, + ¢, and L, e bd (%) and L, € bd (%.,), then L, # L.
Since .o is countable there exists ¢ > 0 such that bd (%) N . = @.

THEOREM 3. C(X) is countable closed set aposyndetic.

Proof. Let MeC(X) and .o~ be a countable closed set in C(X)
such that M¢ .o, If M = X, then by Lemma 2, C(X) is locally con-
nected at M and hence C(X) is countable closed set aposyndetic at M.

Suppose M is a nondegenerate proper subcontinuum of X. Let
Y = % NS(M). By Lemma 3, for each L €.y there exists a
decreasing open set %, such that L € Z7, and bd (Z,) N (&7 U {M}) = @.
Since .97 is compact there exist %/, - -+, %, such that .o c UL, %7,.
Let o = Fi(X) N 7. For each xe . let 7, be a decreasing open
set such that {#}e 7; and (bd 7)) N (.7 U {M}) = @. Since .o is
compact there exist 77, .-+, 7; such that .o Cc U, 7;.

Let

= o ()0 (©72)] = 0 (0 ) o (3 7)]

and let . = &% — .%%. Then .94 and .o/ are disjoint closed subsets
of .o7. Define f:. o7 U{M} U F(X)—[0,1] by

0 if Ae.os orif AeF(X)
A =112 it A=M
1 if Ade.o.

Then f is continuous and order-preserving, so by Theorem A, f has
a continuous extension f: C(X)—1[0,b] (b =1) which is also order-
preserving. 7 has the property that if ¢e[0, b], then f ({0, t]) and
F7U([t, b]) are subcontinua of C(X). Since C(X) is unicoherent,
740, 3/4]) N F([1/4, b]) is a continuum containing M in its interior
which misses .o7.

Now suppose that for some z,€¢ X, M = {x}. Let .o = .o N
F\(X). For each {z} € .o let %, be a decreasing open set such that
{z}e %, and (bd %) N (5 U{M}) = @. Since .o is compact there
exist v, -+, @, such that .o c U, %.,. Let &f = .orn (U, U,y =
N (Ui, %7) and let .o = o7 — 4. Then .94 and .91 are disjoint
closed subsets of .o7. Define f: (Ui, %) U . U Fy(X)—[0, 1] by

0 if Ae(LzJ?/;j)UFI(X)
1 if Aess.

f(4) =
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Then f is continuous and order-preserving, so f has a continuous,
order-preserving extension f: C(X) —[0, b] (b = 1). Lette(0,1). Then
7 ([0, ¢]) is a continuum containing M in its interior which misses .27

Let .7 = C(X) — Ui #%.;» -~ is a closed set containing M in
its interior which misses .o4. Since each of #/,, -+, 4, is decreas-
ing, it follows that _/ is increasing. So .7 = T(_) and by Lemma
1, T(_#) is a continuum. Observe that C(X) = fFY(]o, t) U .. Since
C(X) is unicoherent, ([0, ¢]) N .7 is a continuum containing M in
its interior which misses .o~. Hence C(X) is countable closed set
aposyndetic.
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