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ENERGY BOUNDS AND VIRIAL THEOREMS
FOR ABSTRACT WAVE EQUATIONS

L. E. BOBISUD AND JAMES CALVERT

The abstract wave equation u" — A2u + f(t, u) is considered
on a Banach or Hubert space, where A generates a (Co) group.
Under suitable conditions on /, a representation of the solution
of the initial-value problem is used to establish bounds on
the growth of the energy 1/211 Au(t) 112 + 1/211 u'(t) | |2. For
/Ξ= 0 it is shown that neither the potential energy 1/211 Au(t) 112

nor the kinetic energy 1/21| uf(t) | |2 tends to zero as £->oo,
and necessary and sufficient conditions for the kinetic and
potential energies to be equal for large time are given.

Hille [8] has shown that the Cauchy problem for the abstract
wave equation u" = A2u on a Banach space X is well posed if and
only if A generates a strongly continuous group; hence we shall suppose
throughout that A is the generator of such a group. Hersh [7] has
given a representation theorem for solutions of abstract initial-value
problems in terms of distributional solutions of the Cauchy problem
for certain related partial differential equations in two variables—in
our case, in terms of solutions of Utt — Uxx. Here we shall exploit
his simple, explicit formula for the solution of the Cauchy problem for
u' — A2u + / to establish rather easily some results concerning the
energy of the solution.

In the first part we establish estimates on the growth of the
energy of a solution to the nonhomogeneous problem. The results
here complement and extend some results in [5] and [6].

In part two we consider only the homogeneous linear problem,
and show first that neither the kinetic nor the potential energy can
tend to zero as time increases. We then specialize to Hubert space,
where we establish a necessary and sufficient condition for the kinetic
and potential energies to be equal and constant for large t and data
in some subspace; a similar result may be found in [4]. By utilizing
a consequence of an abstract formulation of Huyghens' principle, we
are able to establish very easily a theorem of Duffin [2] on the equality
of kinetic and potential energies of solutions of the three-dimensional
wave equation with compactly supported data.

I* Energy bounds for abstract wave equations* We shall con-
sider first the energy 1/21| Au(t)\\2 + l/2\\u'(t)\\2 for the abstract wave
equation

u" = A2u + f(t) , u(0) = uoe D(A2) , ^'(0) = uγ e D(A)

27
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on a Banach space ϊ We assume throughout that f(t) is strongly
continuous from [0, °o) to D(A) and that Af(t) is strongly continuous;
instead, we cound assume that / is strongly continuously differentiate
[5, II. 2]. The first part of Theorems 1 and 2 is proved differently
in [5] for A invertible and / = 0.

THEOREM 1. Let A generate the (Co) group T(t) satisfying || T(t)\\ ^
\\f(t)\\dt < CXD. Then u has bounded energy; specifically,

0

^ V T M { \ \ AUO\\> + \\Uι ii
2

Conversely, let A generate a (Co) group T(t), and suppose that
for zero initial data the energy is bounded above by a nondecreasing func-

S oo

\\f(t)\\dt. Then T(t) is uniformly bounded.
o

Proof. By substitution one checks that the solution of (1) is given
by

V T{- t)]u0

( 2 ) * l f i f i _ r

+ — \ Tisju.ds + — T(s)f(τ)dsdτ
2 J-ί 2 JO J-(ί-r)

this is the solution obtained in [7]. Since A is closed and d/dtT(t)v —
AT(t)v = T(t)Av for veD(A), we obtain

Au(t) = —[T(t) + Γ ( - t)]Au0 + — [T(t) - T ( - ί ) K

(3)
M\T(t - r) - Γ(- (t - τ))]f(τ)dτ ,
2 Jo

l [T(ί - r) + T ( - (ί -
2 Jo

Taking norms yield the upper bound in the first part of the theorem.
For the lower bound, one obtains by adding and subtracting (3) and
(4) and appropriate applications of T(t) and T(— t) that
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(- t)]Au{t) - Uτ(t) - T{- t)]u'(t)
Δ

λ\t

[T(τ)- T(- τ)]f(τ)dτ ,
2 JO

Ul = - l[T(ί) - Γ(- t)]Au(t) + hT(t) + T(- t)]u'{t)
Δ Δ

Γ - Γ(- τ))f(τ)dτ ,

whence the lower bound follows by taking norms.
For the converse, observe from (3) and (4) and the postulated

energy bound that

(5)

where C is a nondecreasing function of its argument. Let {Sn(t)} be
a sequence of nonnegative C~(— 1,1) functions converging as n-+ °o
to the Dirac <?-function; let geD(A). Then

T(t - τ)δn(τ - t)gdτ > T(t - t)g

as n —» co for t > t + 1. Also

so (5) implies that

for s ^ 1 and geD(A). Since A generates the (Co) group T{t), we
have that || Γ(ί)|| ^ Meωltι for some constants M > 0, ω ^ 0. Thus

g m a x (C(||flr||), Meω) = JBΓ(||flr||) for t ^ 0; K is nondecreasing.
Let feeϊ and te(— ooy oo) be given. Let

and choose geD(A)(D{A) = X) such that ||flr - Λ|| < e. Then

^ εikfβωί + ίΓ(||flr||) ^ 2^(211*11) , t ^ 0 .

A similar argument works for £ ̂  0. Thus the family {T(t): — oo <
ί < oo} is bounded on each fteX, and hence sup_0 0 < ί < 0 01| T(t)\\ < oo by
the uniform boundedness theorem.

THEOREM 2. Let A generate a (Co) group T(t) satisfying \\ T(t)\\ ^
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Meω]t], ω^O, and suppose \\f(t) \\ ^ Meγt for 7 ^ 0 , ί > 0; then

( 6 ) [\\Au(t)\\2 + ll

βί max (7, α>) , ω ΦΊ

/or certain constants Cly C2 independent of the data.
Conversely, let A generate the (Co) group T(t), and suppose that

for zero initial data the energy inequality (6) is satisfied for all
bounded strongly continuous f e D(A) with Af strongly continuous;
then

\\T(t)\\ ^ Meω]t]

for some constant M.

The proof is similar to that of Theorem 1 and will be omitted.
Small perturbations of the differential equation should cause small

changes in the rate of growth of the energy. This is the content
of the following theorem.

THEOREM 3. Let A generate the (Co) group T(t) satisfying || T(t)\\ ^
MeωW(ω ^ 0), and let f{t) satisfy \\f{t)\\ £ Meγt(y ^ 0). Let g: R+ x
3C —̂ 36 satisfy

( 7 ) \\g(t,u)\\^K{\\Au\\ + \\u\\}

for some constant K and ueD(A), in addition to hypotheses which
guarantee the existence of solutions on [0, °o) to the problem (see [5]
for such conditions)

( 8 ) u" = A2u + g(t, u) + f{t) u(0) = u0 e D(A2), u'(0) = u,e D(A) .

Then for any ε > 0 there exists Ko such that if the constant K in (7)
satisfies 0 < K < KQ, the energy growth estimate

( 9 ) l|M'(ί)ll + \\Au(t)\\ ^ const. e*ι™*ιr,»)+*)

is valid. Conversely, given K > 0, (9) is satisfied by the solution u
of (8) for any ε > AMK max (1, a)"1).

REMARK. If B is a closed operator with D(B)ZDD(A), then || Bu\\ ^
ϋΓ{||Aw|| + \\u\\) for some constant K and ueD(A), and solutions of
u" = (A2 + B)u + / exist [5], so our theorem covers this case of
linear perturbation. Also included is the case where g(t, u) satisfies
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a Lipschitz condition in u uniformly in t.

Proof. We shall treat only the case ω > 0, ω Φ 7; the other cases
are similar. The solution u of (8) satisfies the integral equation

u{t) = Uτ(t) + Γ(- t)]u0 + 1
Δ Δ J—t

(10) + i r Γ p Γ T(s)f(τ)dsdτ
2 Jo J-(t-τ)

( T T(s)g(τ,u(τ))dsdτ ,
2 JO J-(ί-r)

whence we get the estimates

\u(t)\\ ̂  Me4\\uo\\ + - I K I
L ω — 7|

ω Jo

^ Me^[\\Auo\\ + | | ^
ω - 7|

Jo

Set σ — max (7, (o) + ε for convenience; then for the three quantities
above we have the bounds

(11) \\u(t)\\,\\Au(t)\\,\\u'(t)\\

^ Ceσt + MKmax (1, ω"1)! eω{t~τ){\\Au(τ)\\ + \\u{τ)\\}dτ

for a constant C depending on the data and 7, α>. We insist that
K < ε/4Λf max (1, ω"1) and define

ε

Since S > 2C, we see from (11) that

(Λ 2^ 11 ΊL(f\ II II A/ij (t\ II I I '

holds for positive t near zero. Suppose t is the first positive time such
that one of the strict inequalities (12) fails. Thus (12) holds on [0, F),
whence (11) yields for t e [0, t)

| |t*(t)|| f ||At*(t)||f ||i*'(t)|| ^ Ceσt + ±-2MKm*z(l, ω^Se** < \Se°*',
ε Δ

thus 11 w(t) ||, 11 iiw(t) 11, 11 u'{t) \ \ ̂  (l/2)SeaΊ by continuity. But then (12)
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holds at t. This contradiction proves that (12) must hold on [0, oo),
establishing the theorem.

The following theorem sharpens a result of [6] in the case ω > 0,
7 > 0; it is, however, weaker if 7 = 0 or ω — 0.

THEOREM 4. Let A generate a (Co) group T(t) satisfying || T(t)\\ g
Mβω{tι, and let B be a closed linear operator on X such that D(B) Z)
D(A); let u be a strong solution of

u" - (A2 + B)u + f , u(0) = uoe D(A2) , u'(0) = u, e D(A) ,

where f satisfies | | / ( ί ) | | ^ Meγt. Suppose the estimates

\\u(t)\\, \\Au(t)\\ ̂  const. e

{ω+]r~ω])t

are satisfied on [0, oo). Then for any ε > 0

\\u'(t)\\ ̂  const. e

{ω+lr~ω]+s)t

holds for t ^ 0.

Outline of proof: Set Ca — A — al for a — \ 7 — ω \ + ε; then u
satisfies

(13) u" = Clu + [2αA + B - α 2 /)^ + / .

Cα generates the (Co) group Γβ(t) = e~atT(t), where || Γβ(t)|| ^ Meω!ίlβ-αί.
Also 2? satisfies the estimate ||JBt&|| ^ ίΓ{||iltt|| + ||^||} for some con-
stant K and u e D(A). After converting (13) to the integral equation

u(t) = l.[Γ(ί) + T{- t)]u0 + i-f
i J —ί

- aU}u{τ)]dsdτ ,
JθJ-(ί-r)

standard estimates yield the result, as in the preceding proof.

II Virial theorems for u" = A*u. Studying the solutions of
u" = A2u on a Hubert space where A generates a unitary group,
Shinbrot [9] and Goldstein [3] have established conditions under which
the potential energy 1/21|Au(t)\\2 and the kinetic energy l/2\\u'(t)\\2

approach a common limit. This virial theorem fails for solutions of
the one-dimensional wave equation on [0,1] with zero boundary data,
where the lim inf of both the kinetic and potential energy can be zero.
A weaker, related result is true, however; namely, that neither the
kinetic nor the potential energy can have limit zero as time increases.

THEOREM 5. Let A generate a norm-preserving group T(t) on the
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Banach space X. Let u be the solution of

(14) u" = A2u , u(0) = u0 , w'(0) = uγ ,

), i ^ e D(A), and | |wo | | + ll^ill > 0. Then | |%'( ί) | | -*> 0,

0 as t —+ oo unless uγ — 0 cmd A2%0 — 0.

Proof. Assume to the contrary that u'{t) —* 0 for certain initial
data u0, ^61. From (4) we have that

T(t)[AuQ + u,\ - T(- t)[Au0 - u,] > 0 ,

whence (3) implies that

(Γ(ί) [Auo + i*

\T(- t)[Au0 - uX

From (4) we also get

= 2 | | T(t)u'(t)\\ = || T(2ί)[A^0 + ux] - [A^o - w j | | > 0 ,

21| w'(ί) || = 21| ΪX- ί)w'(t) || - II T ( - 2ί)[A^0 - wj - [Au0 + wj || > 0;

from this it follows that T(t)[Au0 + uλ] — > [AuQ - u,], T(- t)[AuQ -
Ui] —* [Au0 + wj. Thus Au(t) converges to both Au0 + ux and Au0 —
tex, which is impossible unless ux — 0.

Suppose then that ux = 0 The argument above shows that
T(t)Au0 —> A^60, so we have that

|| T(h)Au0 -

^ || T(ί + fc)Awo - Ano\\ + \\Auo - T(t)Auo\

as t • oo. Thus T(h)Au0 — Au0 for all h, and so

A X = lim
h

This proves the theorem, for a similar argument holds if Au(t) —• 0.
In the case A SL skew-adjoint operator on a Hubert space, A2uQ —

0 implies that AuQ = 0, and hence the total energy vanishes.
Huyghens' principle for the hyperbolic equation

utt = L[u] ,

where L is an elliptic operator in n space variables, asserts that for
compactly supported data the solution will be zero at any fixed point
in space for all sufficiently large time [2]. This principle is known
to be valid for L — An1 the ^-dimensional Laplacian, for n — 2m + 3,
m = 0,1, . We shall give an abstract Hubert space formulation
of Huyghens' principle in order to derive information about the group
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generated by a square root of the Laplacian
Let Sίf be a Hubert space, and let {i?,}~=0 be a sequence of linear

submanifolds of ^f such that Ho c jffi c iJ2 . We shall say that
Huyghens' principle is valid for the abstract wave equation (14) rela-
tive to {Hj} provided:

1. D(A) Π H, is dense in Hjy j = 0,1, , and A(D(A) Π Hj) c Hό

2. for each j = 0,1, ••• there exists a T, such that | ί | > Ts

implies (%(ί), λy) = 0 for h,- e Hj if u0 e D(A2) Γ) HQ9 ux e D(A) Γ) HQ.

EXAMPLE. Let 3ίf = ^2(R3), A2 = 4 , iϊ,- = £f\Bs), where J3, is
the ball of radius C(j + 1) for some constant C > 0. Define the Fourier
transform by

F{f}(ξ) =

where a? = (^, a?2, x3), f = (ξlf ξ2, ξ3), and (a?, ζ) = ^ ^ + #2f2 + a^ί8 Then
we can define

Af - iF-^ίfϊ + ίϊ + ίs)1/2^{/}} ,
D(A) = {/•€ =^2(i23): / ' exists and / ' 6 .

it is easy to see that A2 = 4*. A simple computation using the identity
\F{f}g = \ fF{g) shows that A is skew-adjoint and thus generates a
(Co) unitary group on £ίf (Stone's theorem). The validity of the

abstract formulation of Huyghens' principle for the wave equation

u" — Δzu relative to {H3) follows from the known classical result [1].

This example is readily generalized to A2 = Λm+s, m = 0,1, .

THEOREM 6. Let A generate a (Co) unitary group T(t) on the
Hubert space ^f^ and let {Hj}^ be an increasing sequence of linear
manifolds in 3ίf. Then (T(t)ho,hj) = 0 for \t\> Tό and all h0eH09

h3eHj if Huyghens' principle is valid for (14) relative to {Hj}.
Conversely, suppose D(A) Π H3 is dense in H3 for j — 0,1, •••,

and there exist Tό such that \t\>Ts implies (T(t)h0, hj) = Ofor each h0e
HQ,hjeHj. Then (u(t),hj) — Cά for some constant Cs {depending on
the data for u) and all hj e H5 if u0 e D(A2) Π Ho and ux e D(A) Π Ho.

Proof. Let hs be an element of the dense set D{A) (Ί Hά; then

- 2(w(ί), Ahj) - 2(Au(t), hj)

- (T(t)[Au0 + u,\ + T{- t)[Au0 - u,], hj) = 0

for | ί | > Tj since A is skew-adjoint by Stone's theorem. Taking uQ =
0 yields
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yh3) = (T(-t)u1,h3).

For \t\ > T3 we also have (d/dt){u(t), h3) = (u'(t), h3) = 0, whence for
Uo = 0

(T(t)ulfhs)= - (T(-t)ul9 h3) ,

so we must have (T(t)ulf h3) = 0 for | ί | > T3 and all u.eDiA) n Ho,
Λ, G JD(^4) n ίίi Since these sets are dense in Ho and H3 respectively, the
first part of the theorem follows by a simple approximation argument.

For the partial converse, observe that (T(t)hQ, h3) — 0 for all hQe
HQ,h3eH3, a n d | ί | > T3 impl ie s t h a t (d/dt)(u(t),h3) = 0 for \t\> T3

and data in Ho.
The converse cannot in general be strengthened to conclude that

(u(t), hj) = 0. To see this, let A = (d/ώ) on £?2(- 00,00) and Jϊ,- =
£f\- (j + 1), (j + 1)). A generates the group T(t)f(x) = f(x + ί),
and Huyghens' principle is not valid (readily seen from the classical
solution of d'Alembert). Nevertheless, for weH0,

(T(t)w, hj) = Γ w(x + t)7φ)dx = 0
J — 0 0

for \t\ > j + 2.
DufRn [2] has recently established a virial theorem for solutions

of the classical three-dimensional wave equation with compactly sup-
ported data; see also [4]. Using the Paley-Wiener theorem, Duffin
shows that for sufficiently large time the kinetic energy l/2||u'(£)||2

and the potential energy 1/21|Au(t)\\2 are constant and equal. We
shall derive this result as a corollary to the following theorem for
abstract wave equations; the result itself is similar to one of [4].

THEOREM 7. Let A generate the unitary (Co) group T(t) on the
Hilbert space §ίf. Let H be a subspace of £{f such that D(A) Π H is
dense in H and A(D(A) Π H)(zH. Then, for solution u of (14) with
arbitrary data u0 e D(A2) Π H.u^e D(A) Π H, the kinetic and potential
energies will be equal for t> S if and only if

Re(T(2t)h, h') = 0

for all h,h' eH and t> S.

Proof. From (3), (4), and the parallelogram law we have

\\Au(t)\\2 = h\Au, + ^ | | 2 + h\Au0 - ^ | | 2

4 4

+ λRe(T(t)[Auΰ + wj, T(- t)[AuQ - u,\)
Li
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(- t)[Au0 -

\u'(tW = h
Δ

- ±-Re(T(t)[Au0 + «,], T{- t)[Au0 - u,])
Δ

thus the total energy l/2\\u'(t)||2 + 1/21| Aw(ί)||2 is constant for all time.
Clearly, the kinetic and potential energies will be equal for t> S for
all allowable data in (14) if and only if Re(T(t)[Au0 + ux], T(- t)[Au0 -
u,]) = 0 for all u0 e D(A2) Π H and ux e D(A) Π H. It is obvious that
Re(T(2t)h9 h') = 0 for all h,h' eH and ί > S implies that the kinetic
energy equals the potential energy for t > S. Conversely, if the kinetic
and potential energies are equal for t>S, then setting u0 — 0 yields
Re(T(2t)ul9 u,) = 0 for t > S and all u, e D{A) n H. Since D(A) Π H is
dense in H, an approximation argument guarantees that Re(T(2t)h,
h) = 0 for t > S and heH. The polarization identity for the sesqui-
linear form φ(k,h') = (T(2t)h,hf) shows that this is equivalent to
Re(T(2t)h, K) - 0 for t > S and A, h' e Jϊ.

EXAMPLE. Let J«r - = ^ 2 ( - ^o, oo), H = £f\- C, C), A - d/cfo,
Γ(ί)/(a?) = fix + t); then S - 2C.

COROLLARY (Duffin). Lei J T = ^p2(i22m+3), i ϊ - £?\B) for a ball
BdR2m+\ A2 = Λm+s, m = 0,1, . jΓΛê  the kinetic and potential
energies for the wave equation u" — Δ2m+Zu, u{G) — u0 e D(A2) Π H, u'(0) —
ut e D(A) Π H are equal for all sufficiently large time.

This follows from Theorem 6 and the example preceding it if we
take j — 0 in the theorem and C = radius of the ball B in the example.

The following theorem is similar to results of Shinbrot [9] and
Goldstein [3]; a proof can be given readily along the lines of the
proof of Theorem 7.

THEOREM 8. Let the skew-adjoint operator A on the Hilbert space
3{f generate the group T(t) and let u(t) be the solution of (14) with
uQ G D(A2), ut 6 D( A). Then

| | ^ = \im\\u'(t)\\2 - ^-
|ί|-oo \t\—a* Δ

if and only if
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lim Re(T(t)[Au0 + u,]9 T(- t)[Au0 - u,]) = 0
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