PACIFIC JOURNAL OF MATHEMATICS
Vol. 47, No. 2, 1973

ON SATURATED FORMATIONS OF SOLVABLE
LIE ALGEBRAS

ERNEST L. STITZINGER

The concepts of formations, & -projectors and & -
normalizers have all been developed for solvable Lie algebras.
In this note, for each saturated formation & of solvable
Lie algebras, the class .7 (& ) of solvable Lie algebras L
in which each & -normalizer of L is an & -projector is con-
sidered. This is the natural generalization of the Lie algebra
analogue to SC groups which were first investigated by R.
Carter. It is shown that .9 (& ) is a formation. Then some
properties of & -normalizers of Le 9 (% ) are considered.

All Lie algebras considered here are solvable and finite dimensional
over a field F. & will always denote a saturated formation of
solvable Lie algebras and L will be a solvable Lie algebra. N(L) is
the nil-radical of L and @(L) is the Frattini subalgebra of L. For
definitions and properties of all these concepts see [3], [4], and [9].
For SC groups see [6].

We begin with a general lemma.

LEMMA 1. Let N be an ideal of L and D/N be an F -normalizer

of L/N. Then there exists an F -normalizer E of L such that E +
N=D.

Proof. Let L be a minimal counterexample and we may assume
that N is a minimal ideal of L. If D/N = L/N, then any _&# -nor-
malizer of L has the desired property, hence we may suppose that
D/Nc L/N. Suppose first that N is & -central in L. Let N*/N =
N(L/N) and C = C,(N). Then N(L)=N*NC. Let M/N be a
maximal & -critical subalgebra of L/N such that D/N is an & -
normalizer of M/N. Now either M is & -critical in L or M com-
plements a chief factor of L between N* and N(L). In the first case,
by induction, there exists an & -normalizer E of M such that E +
N=D and E is also an .# -normalizer in L. In the second case,
L/Ce.# and C+ N*/C is operator isomorphic to N*/N*NC = N*/
N(L). Hence each chief factor of L between N* and N(L) is & -
central which contradicts M being .7 -abnormal.

Now suppose that N is . -eccentric and assume N= @(L). Let
M/N be as in the above paragraph. Again, by induction, there exists
an & -normalizer E of M such that £ + N = D. But N @(L) yields
that M is & -critical in L using Theorem 2.5 of [4]. Hence E is an
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& -normalizer of L and this case is completed.

Finally suppose that N is & -eccentric and assume N Z @(L).
Then N is complemented by a maximal subalgebra M which must be
& -critical in L. Now there must exist an & -normalizer E of M
such that £ + N = D. Again F must be an & -normalizer of L and
the result is shown.

COROLLARY. 7 (%) 1is closed under homomorphisms.

Proof. Let N be a minimal ideal of L, Le 7 (% ). Let D/N be
an . -normalizer of L/N. Then D = E + N for some .&# -normalizer
of L. Now E is an & -projector of L and E + N/N = D/N is an
& -projector of L/N.

LEMMA 2. If Le 7 (& ) and C is an F -projector of L, then
C is an Z -normalizer of L.

Proof. Let N be a minimal ideal of L. L/Ne.7 (¥ ) hence
C + N/N is an & -normalizer of L/N by induction. Hence C + N =
D + N for some & -normalizer D of L. Now D is also an & -pro-
jector of L and both C and D are .&# -projectors of C + N. Then C
and D are conjugate in C + N by an inner automorphism of C + N
induced by an element of N by Lemma 1.11 of [3]. Hence D and C
are conjugate in L and the result holds.

Note that .77 (%) contains a large class of Lie algebras. In fact
by Theorem 3 of [9] we have

LEmmMA 3. #»~F =9 (F).

In order to obtain that & (&) is a formation, we record a
characterization of & -projectors which is completely analogous to a
result in group theory due to Bauman [5]. Since the proofs carry
over virtually unchanged, we omit them.

DEFINITION. If M is a subalgebra of L, then a series 0 = L,C
e« L,=0L is called an M-series if L; is an ideal in L,.,, if M=
N (L;) and if each L,.,/L; is a nontrivial, irreducible M-factor of L.

THEOREM 1. If C is an & -projector of L and {L;},0=1 = n,
is any C-series of L, then C covers L;/L, , if and only if C + L,/
L, e .

Proof. See proof of Theorem 1 of [5].
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THEOREM 2. If {L;} is a C-series of L such that C covers L;/L;_,
if and only if C+ L;/L;, e 7 , then C is an & -projector of L.

Proof. See proof of Theorem 2 of [5].

We intend to use these results in a slightly different form by
means of

LemMA 4. Let M be a subalgebra of L, Me &# and H/K be a
nontrivial, irreducible M-factor of L. Then M+ H/Ke & if and
only if the split extension of H/K by M/Cy(H/K) is in F .

Proof. Since M + H/He . , M + H/K will be in & if and only
if the minimal ideal H/K of M + H/K is & -central in M + H/K;
that is, if and only if the split extension of H/K by M -+ H/C,.,(H/K)
is in & . But

M/Cy(H|K) = M/M N Cysy(HIK) = M + Cyn(H/K)|Cy.i(H/K)
=M+ H/Cyy(H/K) .

Now the corresponding split extensions of H/K by M + H/C,.,(H/K)
and H/K by M/C,(H/K) are isomorphic and the result holds.

THEOREM 3. 9 (&) 1s a formation.

Proof. (%) is closed under homomorphisms has been noted
already. Hence let N, and N, be ideals of L such that L/N,, L/N,¢c
7 (). We may assume N, NN, =0 and show that Le 7 (&).
Let D be an % -normalizer of L. Then D + N,/N, is an & -normalizer
of L/N,, hence is an .& -projector of L/N, and the corresponding
statement holds for D + N,/N,. Consider a D-series of L which
passes through N, and N, + N,. There is a D-series of L which
passes through N, and N, + N, which is the same as the original D-
series above N, + N, and corresponds to the original D-series below
N, + N, in the natural way. In particular, a factor H/K in the new
D-series which is between N, and N, + N, corresponds to H N N,/
K N N, in the original D-series and we claim that D covers (avoids)
H/K if and only if D covers (avoids) H N N,/K N N,. For if D avoids
H/K, then DN HZK, hence DNHNNSKNN, and D avoids
HN N,/KN N, Suppose that D covers H/K. Then HE K+ D. In
order to show that D covers HN N,/K N N, it is sufficient to show
that D+ (KN N)2HNN,. Since HEK + D,D= N, K) and HS
N, + N, it follows that HE K + (D N (N, + N,)). Using the corollary
onp.2410f [9], HES K + (DN N) + (DN N,) = K+ (DN N,). Then,
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since D N N,C N (K) it follows that HN N, = (K + (DN N,)) NN, &
(KNN)+ (DNN)S(KNN, + D, hence D covers HN N,/KN N,.

By Theorem 1 and Lemma 4, a factor H/K above N, in the
original D-series is covered by D + N,/N, (hence D) if and only if the
split extension of H/K by D + N,/C,.y(H/K) is in &% . That is,
H/K is covered by D if and only if the split extension of H/K by
D/C,(H/K) is in & . A similar statement holds above N,. Every
D-factor in the original series is operator isomorphic to a D-factor
above N, or above N, and, using the result of the above paragraph,
in the original D-series a factor H/K is covered by D if and only if
the split extension of H/K by D/C,(H/K) is in &% . Now by Lemma
4 and Theorem 2, D is an .& -projector of L and 9 (&) is a
formation.

The following example shows that .+ _+"C 9 (.#") and that
7 (#") is not closed under taking ideals. It is a variant of an ex-
ample on p. 52 of [7].

ExAMPLE. Let F' be a field of characteristic p = 2 and let A be
a vector space over F' with basis ¢, -+, ¢,_,. Define linear transform-
ations 2, y,z on A by

v(e;) = 1e;

yle;) = e,
and

z(e;) = e;

(subscripts mod p). Then [z, y] = 2y — yx = y and [z, 2] = [y, 2] = 0.
Let B be the three dimensional Lie algebra generated by =z, y, z.
Let L be the semi-direct sum of A and B with the natural product.
As on p. 53 of [7], B acts irreducibly on A so that 4 is a minimal
ideal of L. Evidently A is self-centralizing in L, hence A is the
unique minimal ideal of L and N(L) = A. Hence each _4 -critical
maximal subalgebra of I complements A. Furthermore, L is clearly
of nilpotent length three.

Consider first any .# -normalizer E of L which is also an ./ -
normalizer of B. Such _# -normalizer exists since B is a maximal
4 -critical subalgebra of L. By the covering-avoidance property of
4 -normalizers of B, E = ((z,z + ay)) where o€ F. Now B is of
nilpotent length 2, hence E is a Cartan subalgebra of B. Now since
zec B, it is easily verified that £ is a Cartan subalgebra of L.

Now in general, each _# -normalizer of L is an _# -normalizer
of some ¢ -critical maximal subalgebra M of L and M must com-
plement A. But L is of nilpotent length 3 and L/A is of nilpotent
length 2, hence M must be conjugate to B by Theorem 8 of [8].
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Consequently, any .# -normalizer of L is a Cartan subalgebra of L
and Le 7 ().

Now the ideal P= A + ((z,y)) of L is not in .7 (.#"). For
((x)) < ((x, y)) © P is a maximal _# -critical chain of P, hence ((x)) is
an .4 -normalizer of P. However, the normalizer of ((x)) in P is
((x, e)). Hence L¢. 7 ().

We recall that each & -normalizer is contained in an & -projector
(Theorem 6 of [9]). However, the usual converse result, namely each
& -projector containg an .& -normalizer has not been obtained, even
for 4"~ -Lie algebras. We now show that this result holds if
Le 47 (). First we record the following result which is needed.

THEOREM 4. Let Le 47 (F ). Then each F# -normalizer of
L is contained in a unique F -projector of L.

Proof. Same as the proof of Theorem 9 of [9].

THEOREM 5. Let Le 47 (¥ ). Then each F -projector of L
contains an & -normalizer of L.

Proof. Let N be a minimal ideal of L and let C be an & -
projector of L. Then C + N/N is an & -projector of L/N and C +
N/N contains an & -normalizer D/N of L/N by induction. Let T =
C + N and let F be an .&# -normalizer of L such that F + N=Dc< T.
Then F is contained in an & -projector G of L and D/NZ G + NJ/N.
Hence G + N = C + N by Theorem 4 and G and C are .& -projectors
of T. By Lemma 1.11 of [3], G and C are conjugate in T by an
inner automorphism of 7T induced by an element of N. Hence G and
C are conjugate in L and the result holds.

. -normalizers have the covering-avoidance property but the
converse is not true in general. However, if Le. 9 (& ), then the
converse is true.

THEOREM 6. Let Lec 9 (). If D is a subalgebra of L which
covers the F -central chief factors of L and avoids the F -eccemtric
chief factors of L, then D is an & -normalizer of L.

Proof. Let N be a minimal ideal of L. Then D 4+ N/N has the
covering-avoidance property in L/N e .7 (% ). By induction, D + N/N
is an & -normalizer of L/N and D+ N = E+ N = T for some & -nor-
malizer K of L. Since Le 7 (¥ ), E is an & -projector of L and
then also of T. If N is & -central in L, then N&D and NS E,
hence D = E. Suppose N is & -eccentric. Then DN N =0= ENN.
Now Te 4" % , hence E is an & -normalizer of T by Theorem 3 of
[9]. Furthermore, in a given chief series of T passing through N, I
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covers all chief factors above N and avoids all chief factors below N
and the same is true for D. Since E is an & -normalizer of T,
each chief factor below N must be & -eccentric and each chief factor
above N must be & -central. Hence, by Theorem 4 of [9], D must
be an & -normalizer of T. By Theorem 3 of [9], D must also be an
& -projector of T. Now D and F are conjugate in T (hence in L)
by an inner automorphism induced by an element of N. Hence D is
an & -normalizer of L.

Henceforth we shall be concerned with the case & = _4". Here
we have the following stronger form of Theorem 4.

THEOREM 7. Let Le 4" (.4") and D be an 4 -normalizer of
L. Then there exists a Cartan subalgebra C of L which contains every
subalgebra H of L in which D is subinvariant. In particular, D is
contained wn o unique Cartan subalgebra of L. C is the Fitting null
component of D acting on L.

Proof. D + N(L)/N(L) is subinvariant in H + N(L)/N(L) and
D + N(L)/N(L) is an .4 -normalizer of L/N(L)e.7 (_#"). Hence
D + N(L)/N(L) = H+ N(L)/N(L) is a Cartan subalgebra of L/N(L).
Let T=D + N(L) = H+ N(L) and let S be the Fitting null com-
ponent of D acting on T. Evidently N,(S) = Sand H= S. Further-
more, S=SNT=8SN(D -+ NL)) =D+ (SN N(L)). Each element
of D induces a nilpotent derivation on S and SN N(L) is a nilpotent
ideal of S. Then, using Engel’s theorem, S is nilpotent. Hence S is
a Cartan subalgebra of T and also of L by Lemma 1.8 of [3]. If K
is another Cartan subalgebra of L containing D, then D is subinvariant
in K, hence K =S. The last past of the theorem follows from the
next lemma.

LEMMA 5. Let L be a solvable Lie algebra and D be a wnilpotent
subalgebra of L. Let F be the Fitting null component of D acting
onw L. Then D is subinvariant in F.

Proof. We may suppose that F = L. Let A be a minimal ideal
of L. Now in D+ A, A is an abelian ideal and each element of D
induces a nilpotent derivation of D + A. Hence, using Engel’s theorem,
D + A is nilpotent and D is subinvariant in D + A. But D + A/4
satisfies the conditions in L/A, hence D + A/A is subinvariant in L/A
by induction. Therefore, D is subinvariant in L.

For Lie algebras of nilpotent length three, a result somewhat
stronger than Theorem 7 holds. The proof is the same as the proof
of Theorem 7, using Theorem 1 of [8] instead of the defining property
of 7 (_+7), and may be omitted.
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THEOREM 8. Let L be of milpotent length three (or less) and let
D be a nilpotent subalgebra of L which can be joined to L by a maximal
chain of subalgebras, each self-normalizing in the mext. Then there
exists a Cartan subalgebra C of L which contains every subalgebra
H of L in which D is subinvariant. In particular, D is contained
wn a unique Cartan subalgebra C of L and C is the Fitting null

component of D acting on L.

We may use this to find a Lie algebra analogue to Theorem 10
of [2].

THEOREM 9. Let M be a self-normalizing maximal subalgebra of
L. Suppose that L is of wmilpotent length three. Then each Cartan
subalgebra of M is of the form M N C for some Cartan subalgebra C
of L.

Proof. Let D be a Cartan subalgebra of M. Then D is contained
in a Cartan subalgebra C of L by Theorem 8 and Lemma 1 of [8].
Now M N C is nilpotent and D is a Cartan subalgebra of M N C.

Hence D= Mn C.
The final result is of a slightly different nature. We consider

the following: If an .# -normalizer D of L is contained in the self-
normalizing maximal subalgebra M of L, then is D contained in an
4 -normalizer of M. The analogous question for finite groups is
answered negatively in [1]. The Lie algebra case also has a negative
answer as in shown in the following result. The second part of this
example is also an analogue to the example of [1].

THEOREM 10. There exists a solvable Lie algebra Le 4" 4" 4"
which has an 4 -normalizer D, ideal A and maximal subalgebra M

containing D such that
(1) D is not contained in an A -normalizer of M

(2) Ny«D + A/A) DNy D) + A/A.

Proof. This example is also a variant of an example found on
p. 52 of [7]. Let F be a field of characteristic p >2. Let A be the
Lie algebra over F with basis a,a, +-,a,.,b,¢,¢,++,c,, and
products [a;, b] = ¢, for i =0,--+,p —1 and all other products of
basis elements equal to 0. Define linear transformations z,y on A
such that

w(a;) = @y y(a;) = ia;
x(b) = 0 y(d) =0
2(c;) = €y y(e;) = ic;
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(everything mod p). Then = and y are derivations of 4 and [y, 2] = .
Let B be the 2-dimensional Lie algebra generated by z and y and let
L be the semi-direct sum of 4 and B with the natural product.

Let R = ((¢, *++, ¢,_y)) and S = (¢, ***, Cp_y, b)). The same argu-
ment used in [7] shows that R and A/S are _# -eccentric chief factors
of L and S/R is clearly and ./ -central chief factor of L. Let M =
((x, ¥, b, cop +++, ), M, = ((, y, b)) and M, = ((y, b)). Each of these is
a maximal _# -critical subalgebra of the preceding and M is max-
imal, _# -critical in L. Now expa, is an automorphism of L since
char F# 2. Then C = M,~** = ({y,b+ ¢)) &M and D is an 4+ -
normalizer of L.

Now the _#"-normalizers of M have dimension 2 by the covering-
avoidance property of ._# -normalizers, hence, if D is contained in an
" -normalizer of M, then it is one of them. If this is the case, then,
since be Z(M),be D and dim D > 2, a contradiction.

For the second part, note that

Nyz(M, + R/R) = ((y + R,b + R, a, + R)) .

However, an element of the form aa, + t,a e F, t e R is not in N, (M,)
unless a = 0, since [b, aa, + t] = —ac,. Hence

Nu(M;) + R/R C Nyp(M, + R/R) .
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