PRODUCT INTEGRALS FOR AN ORDINARY DIFFERENTIAL EQUATION IN A BANACH SPACE

DAVID LOWELL LOVELADY

Let Y be a Banach space with norm | |, and let R^+ be the interval $[0, \infty)$. Let A be a function on R^+ having the properties that if t is in R^+ then A(t) is a function from Y to Y and that the function from $R^+ \times Y$ to Y described by $(t, x) \rightarrow A(t)[x]$ is continuous. Suppose there is a continuous real-valued function α on R^+ such that if t is in R^+ then $A(t) - \alpha(t)I$ is dissipative. Now it is known that if z is in Y, the differential equation u'(t) = A(t)[u(t)]; u(0) = z has exactly one solution on R^+ . It is shown in this paper that if t is in R^+ then $u(t) = {}_0 \prod^t \exp[(ds)A(s)][z] = {}_0 \prod^t [I - (ds)A(s)]^{-1}[z]$, where the exponentials are defined by the solutions of the associated family of autonomous equations.

The dissipitavity condition on A is simply that if (t, x, y) is in $R^+ \times Y \times Y$ and c is a positive number then

(1)
$$|[I - cA(t)][x] - [I - cA(t)][y]| \ge [1 - c\alpha(t)]|x - y|$$
.

The author and R. H. Martin, Jr. [5] have shown that if (1) holds, and z is in Y, then there is exactly one continuously differentiable function u from R^+ to Y such that

$$(2) u(0) = z$$

and

(3)
$$u'(t) = A(t)[u(t)]$$

whenever t is in $(0, \infty)$. In the present article we shall show that u can be expressed as a product integral in each of two forms:

(4)
$$u(t) = \prod_{0}^{t} \exp\left[(ds)A(s)\right][z]$$

and

(5)
$$u(t) = \prod_{0}^{t} [I - (ds)A(s)]^{-1}[z].$$

Our work is related to results of J. V. Herod [2, §6] and G. F. Webb [7], [8]. Herod showed that representation (5) is valid if the mapping $(t, x) \rightarrow A(t)[x]$ is bounded on bounded subsets of $R^+ \times Y$. Webb obtained in [7] a representation similar to (4) under a set of hypotheses different from, and independent of, those used here. In

[8], Webb showed that (5) is valid if A is independent of t. (Actually Webb in [8] restricted his attention to the case $\alpha = 0$, but his proofs adapt easily to the general time-independent case.)

II. Product integrals. We shall assume throughout that A and α are as in our introduction, and that (1) is true whenever (t, x, y) is in $R^+ \times Y \times Y$ and c is a positive number. Now it follows from either of [5] and [6] that if (t, x) is in $R^+ \times Y$ then there is exactly one solution v of the problem

(6)
$$v'(s) = A(t)[v(s)]; v(0) = x$$
.

Furthermore, this problem generates an operator semigroup, which we shall denote $\{\exp[sA(t)]: s \text{ is in } R^+\}$, i.e., if s is in R^+ then $\exp[sA(t)]$ is a function from Y to Y such that if x is in Y then $\exp[sA(t)][x] = v(s)$, where v solves (6).

It is clear from (1) that there is no loss in assuming α to be R^+ -valued, and we shall. It follows from [6] that if (c, t) is in $R^+ \times R^+$ and $c\alpha(t) < 1$ then I - cA(t) is a bijection on Y, and

$$|[I - cA(t)]^{-1}[x] - [I - cA(t)]^{-1}[y]| \le [1 - c\alpha(t)]^{-1}|x - y|$$

whenever (x, y) is in $Y \times Y$. If $\{B_1, \dots, B_n\}$ is a set of functions from Y to Y, and x is in Y, then $\prod_{j=1}^{0} B_j[x] = x$ and $\prod_{j=1}^{k} B_j[x] = B_k[\prod_{j=1}^{k-1} B_j[x]]$ whenever k is an integer in [1, n]. If (t, x, y) is in $R^+ \times Y \times Y$ then the statement

$$y = \prod_{0}^{t} [I - (ds)A(s)]^{-1}[x]$$

means that if ε is a positive number then there is a chain $\{r_i\}_{j=0}^m$ from 0 to t such that if $\{s_k\}_{k=0}^n$ is a refinement of $\{r_j\}_{j=0}^m$, and $\{\tilde{s}_k\}_{k=1}^n$ is a [0, t]-valued sequence such that if k is an integer in [1, n] then \tilde{s}_k is in $[s_{k-1}, s_k]$, then

$$\left| y - \prod_{k=1}^n \left[I - (s_k - s_{k-1}) A(\widetilde{s}_k)
ight]^{-1} [x]
ight| < arepsilon$$
 .

The statement

$$y = \prod_{0}^{t} \exp\left[(ds)A(s)\right][x]$$

is defined analogously.

THEOREM. Let z be in Y, and let u solve (2) and (3). Then each of (4) and (5) is true whenever t is in R^+ .

Let m_{-} be that function from $Y \times Y$ to the real numbers given by

$$m_{-}[x, y] = \lim_{\delta \to 0^{-}} (1/\delta)(|x + \delta y| - |x|)$$
.

Now (1) is equivalent to requiring that

$$m_{-}[x-y, A(t)[x] - A(t)[y]] \leq \alpha(t) |x-y|$$

whenever (t, x, y) is in $R^+ \times Y \times Y$ (compare [1, p. 3]). Also, if f is a function from a subset of R^+ to Y, if c is in the domain of f, if $f'_-(c)$ (the left derivative of f at c) exists, and if P is given on the domain of f by P(t) = |f(t)|, then $P'_-(c)$ exists and $P'_-(c) = m_-[f(c), f'_-(c)]$ (compare [1, p. 3]). If (x, y, z) is in $Y \times Y \times Y$ then $m_-[x, y + z] \leq m_-[x, y] + |z|$ (see [4, Lemma 6]). We are now prepared to prove our theorem.

Proof of the theorem. Let b be a positive number, and let β be a positive upper bound for the set $\{\alpha(t): t \text{ is in } [0, b]\}$. Let ε be a positive number, and let δ be a positive number such that $(\delta/\beta)(e^{\beta\delta}-1) < \varepsilon$. Now $\{u(t): t \text{ is in } [0, b]\}$ is a compact subset of Y, so the function described by $(t, x) \rightarrow A(t)[x]$ is uniformly continuous on $[0, b] \times \{u(t): t$ is in $[0, b]\}$. In particular, there is a positive number η such that if (r, s, t) is in $[0, b] \times [0, b] \times [0, b]$ and $|r - s| < \eta$ then $|A(r)[u(t)] - A(s)[u(t)]| < \delta$. Let $\{t_k\}_{k=0}^n$ be a chain from 0 to b such that $t_k - t_{k-1} < \eta$ whenever k is an integer in [1, n], and let $\{\tilde{t}_k\}_{k=1}^n$ be a [0, b]-valued sequence such that if k is an integer in [1, n] then \tilde{t}_k is in $[t_{k-1}, t_k]$. Let v be that function from [0, b] to Y having the property that if k is an integer in [1, n] and t is in $[t_{k-1}, t_k]$ then

$$v(t) = \exp\left[(t - t_{k-1})A(\widetilde{t}_{k-1})
ight] \prod_{j=1}^{k-1} \exp\left[(t_j - t_{j-1})A(\widetilde{t}_j)
ight][z]$$
 .

Clearly now v is continuous. Also, v is left differentiable on (0, b]: if k is an integer in [1, n] and t is in $(t_{t-1}, t_k]$ then

$$v'_{-}(t) = A(\tilde{t}_{k-1})[v(t)]$$
.

Let P be given on [0, b] by P(t) = |v(t) - u(t)|. Now P(0) = 0. Suppose that t is in (0, b] and k is an integer in [1, n] and t is in $(t_{k-1}, t_k]$. Now

$$\begin{split} P'_{-}(t) &= m_{-}[v(t) - u(t), v'_{-}(t) - u'(t)] \\ &= m_{-}[v(t) - u(t), A(\widetilde{t}_{k-1})[v(t)] - A(t)[u(t)]] \\ &= m_{-}[v(t) - u(t), A(\widetilde{t}_{k-1})[v(t)] - A(\widetilde{t}_{k-1})[u(t)] \\ &+ A(\widetilde{t}_{k-1})[u(t)] - A(t)[u(t)] \end{split}$$

 $\leq m_{-}[v(t) - u(t), A(\tilde{t}_{k-1})[v(t)] - A(\tilde{t}_{k-1})[u(t)]]$ $+ |A(\tilde{t}_{k-1})[u(t)] - A(t)[u(t)]|$ $\leq \beta P(t) + \delta .$

Hence [3, Theorem 1.4.1, p. 15],

$$P(t) \leq \int_{0}^{t} \delta e^{eta(t-s)} ds = (\delta/eta)(e^{eta t}-1)$$

whenever t is in [0, b]. In particular,

$$egin{aligned} & \left| u(b) - \prod_{k=1}^n \exp{[(t_k - t_{k-1})A(\widetilde{t}_k)][z]}
ight| \ & = \left| u(b) - v(b)
ight| \ & = P(b) \ & \leq (\delta/eta)(e^{eta b} - 1) < arepsilon \ . \end{aligned}$$

Thus we have proved that representation (4) is valid.

Now let b and β be as before. Let c be a positive number such that $c\beta < 1/2$. Now if t is in [0, b] and r is in [0, c] then

$$\begin{split} |[I - rA(t)]^{-1}[x] - [I - rA(t)]^{-1}[y]| \\ &\leq [1 - r\beta]^{-1}|x - y| \\ &\leq (1 + 2r\beta)|x - y| \\ &\leq e^{2r\beta}|x - y| \end{split}$$

whenever (x, y) is in $Y \times Y$.

Now let $K = \{u(t): t \text{ is in } [0, b]\}$, and recall that K is compact. Let ε be a positive number. By the aforementioned uniform continuity, there is a positive number η_1 such that if (s, t, x, y) is in $[0, b] \times [0, b] \times K \times K$ and $|s - t| < \eta_1$ and $|x - y| < \eta_1$ then $|A(s)[x] - A(t)[y]| < (\varepsilon/b)e^{-2\beta b}$. Let η_2 be a positive number such that if (s, t) is in $[0, b] \times [0, b]$ and $|s - t| < \eta_2$ then $|u(s) - u(t)| < \eta_1$. Let $\delta = \min\{\eta_1, \eta_2, c\}$. Suppose that $0 \le r \le s \le t \le b$ and $t - r < \delta$. Let $\{\xi_k\}_{k=0}^n$ be a chain from r to t, and let $\{\xi_k\}_{k=1}^n$ be a [r, t]-valued sequence such that if k is an integer in [1, n] then ξ_k is in $[\xi_{k-1}, \xi_k]$. Now

$$egin{aligned} &\left|\sum_{k=1}^n{(\hat{\xi}_k-\hat{\xi}_{k-1})A(\widetilde{\xi}_k)[u(\widetilde{\xi}_k)]-(t-r)A(s)[u(t)]}
ight|\ &\leq\sum_{k=1}^n{(\hat{\xi}_k-\hat{\xi}_{k-1})|A(\widetilde{\xi}_k)[u(\widetilde{\xi}_k)]-A(s)[u(t)]|}\ &\leq\sum_{k=1}^n{(\hat{\xi}_k-\hat{\xi}_{k-1})(arepsilon/b)e^{-2eta b}}=(t-r)(arepsilon/b)e^{-2eta b}\ . \end{aligned}$$

It is now clear that

$$\left| \int_{r}^{t} A(\xi) [u(\xi)] d\xi - (t-r) A(s) [u(t)] \right|$$

$$\leq (t-r) (\varepsilon/b) e^{-2\beta b} .$$

Let $\{t_k\}_{k=0}^n$ be a chain from 0 to b, and suppose that $t_k - t_{k-1} < \delta$ whenever k is an integer in [1, n]. Let $\{\tilde{t}_k\}_{k=1}^n$ be a [0, b]-valued sequence such that if k is an integer in [1, n] then \tilde{t}_k is in $[t_{k-1}, t_k]$. Now

$$\begin{split} \left| \prod_{k=1}^{n} \left[I - (t_{k} - t_{k-1})A(\tilde{t}_{k}) \right]^{-1} [z] - u(b) \right| \\ &\leq \sum_{k=1}^{n} \left| \prod_{j=k+1}^{n} \left[I - (t_{j} - t_{j-1})A(\tilde{t}_{j}) \right]^{-1} [u(t_{k})] \right] \\ &- \prod_{j=k}^{n} \left[I - (t_{j} - t_{j-1})A(\tilde{t}_{j}) \right]^{-1} [u(t_{k-1})] \right| \\ &\leq \sum_{k=1}^{n} e^{2\beta(b-t_{k})} |u(t_{k}) - \left[I - (t_{k} - t_{k-1})A(\tilde{t}_{k}) \right]^{-1} [u(t_{k-1})] | \\ &\leq e^{2\beta b} \sum_{k=1}^{n} |[I - (t_{k} - t_{k-1})A(\tilde{t}_{k})] [u(t_{k})] - u(t_{k-1})| \\ &= e^{2\beta b} \sum_{k=1}^{n} |u(t_{k}) - u(t_{k-1}) - (t_{k} - t_{k-1})A(\tilde{t}_{k}) [u(t_{k})] | \\ &= e^{2\beta b} \sum_{k=1}^{n} |u(t_{k}) - u(t_{k-1}) - (t_{k} - t_{k-1})A(\tilde{t}_{k}) [u(t_{k})] | \\ &= e^{2\beta b} \sum_{k=1}^{n} |t_{k-1} \int^{t_{k}} u'(\hat{z}) d\hat{z} - (t_{k} - t_{k-1})A(\tilde{t}_{k}) [u(t_{k})] | \\ &= e^{2\beta b} \sum_{k=1}^{n} |t_{k-1} \int^{t_{k}} A(\hat{z}) [u(\hat{z})] d\hat{z} - (t_{k} - t_{k-1})A(\tilde{t}_{k}) [u(t_{k})] | \\ &\leq e^{2\beta b} \sum_{k=1}^{n} (t_{k} - t_{k-1}) (\hat{c}/b) e^{-2\beta b} = \hat{\varepsilon} \,. \end{split}$$

The proof of the theorem is complete.

REFERENCES

1. W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath & Co., Boston, 1965.

2. J. V. Herod, A pairing of a class of evolution systems with a class of generators, Trans. Amer. Math. Soc., 157 (1971), 247-260.

3. V. Lakshmikantham and S. Leela, *Differential and Integral Inequalities*, vol. 1, Academic Press, New York, 1969.

4. D. L. Lovelady, A functional differential equation in a Banach space, Funkcialaj Ekvacioj, 14 (1971), 111-122.

5. D. L. Lovelady and R. H. Martin, Jr., A global existence theorem for a nonautonomous differential equation in a Banach space, Proc. Amer. Math. Soc., 35 (1972), 445-449.

6. R. H. Martin, Jr., A global existence theorem for autonomous differential equations in a Banach space, Proc. Amer. Math. Soc., **26** (1970), 307-314.

7. G. F. Webb, Product integral representation of time dependent nonlinear evolution equations in a Banach space, Pacific J. Math., **32** (1970), 269-281.

8. G. F. Webb, Nonlinear evolution equations and product integration in a Banach space, Trans. Amer. Math. Soc., **148** (1970), 273-282.

Received June 7, 1972.

FLORIDA STATE UNIVERSITY