PRODUCT INTEGRALS FOR AN ORDINARY DIFFERENTIAL EQUATION IN A BANACH SPACE

David Lowell Lovelady

Let Y be a Banach space with norm ||, and let R^{+}be the interval $[0, \infty)$. Let A be a function on R^{+}having the properties that if t is in R^{+}then $A(t)$ is a function from Y to Y and that the function from $R^{+} \times Y$ to Y described by $(t, x) \rightarrow A(t)[x]$ is continuous. Suppose there is a continuous real-valued function α on R^{+}such that if t is in R^{+}then $A(t)-\alpha(t) I$ is dissipative. Now it is known that if z is in Y, the differential equation $u^{\prime}(t)=A(t)[u(t)] ; u(0)=z$ has exactly one solution on R^{+}. It is shown in this paper that if t is in R^{+}then $u(t)={ }_{0} \Pi^{t} \exp [(d s) A(s)][z]={ }_{0} \Pi^{t}[I-(d s) A(s)]^{-1}[z]$, where the exponentials are defined by the solutions of the associated family of autonomous equations.

The dissipitavity condition on A is simply that if (t, x, y) is in $R^{+} \times Y \times Y$ and c is a positive number then

$$
\begin{equation*}
|[I-c A(t)][x]-[I-c A(t)][y]| \geqq[1-c \alpha(t)]|x-y| . \tag{1}
\end{equation*}
$$

The author and R. H. Martin, Jr. [5] have shown that if (1) holds, and z is in Y, then there is exactly one continuously differentiable function u from R^{+}to Y such that

$$
\begin{equation*}
u(0)=z \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{\prime}(t)=A(t)[u(t)] \tag{3}
\end{equation*}
$$

whenever t is in $(0, \infty)$. In the present article we shall show that u can be expressed as a product integral in each of two forms:

$$
\begin{equation*}
u(t)=\prod_{0}^{t} \exp [(d s) A(s)][z] \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
u(t)=\prod_{0}^{t}[I-(d s) A(s)]^{-1}[z] \tag{5}
\end{equation*}
$$

Our work is related to results of J. V. Herod [2, §6] and G. F. Webb [7], [8]. Herod showed that representation (5) is valid if the mapping $(t, x) \rightarrow A(t)[x]$ is bounded on bounded subsets of $R^{+} \times Y$. Webb obtained in [7] a representation similar to (4) under a set of hypotheses different from, and independent of, those used here. In
[8], Webb showed that (5) is valid if A is independent of t. (Actually Webb in [8] restricted his attention to the case $\alpha=0$, but his proofs adapt easily to the general time-independent case.)
II. Product integrals. We shall assume throughout that A and α are as in our introduction, and that (1) is true whenever (t, x, y) is in $R^{+} \times Y \times Y$ and c is a positive number. Now it follows from either of [5] and [6] that if (t, x) is in $R^{+} \times Y$ then there is exactly one solution v of the problem

$$
\begin{equation*}
v^{\prime}(s)=A(t)[v(s)] ; v(0)=x \tag{6}
\end{equation*}
$$

Furthermore, this problem generates an operator semigroup, which we shall denote $\left\{\exp [s A(t)]: s\right.$ is in $\left.R^{+}\right\}$, i.e., if s is in R^{+}then $\exp [s A(t)]$ is a function from Y to Y such that if x is in Y then $\exp [s A(t)][x]=v(s)$, where v solves (6).

It is clear from (1) that there is no loss in assuming α to be R^{+}-valued, and we shall. It follows from [6] that if (c, t) is in $R^{+} \times R^{+}$and $c \alpha(t)<1$ then $I-c A(t)$ is a bijection on Y, and

$$
\left|[I-c A(t)]^{-1}[x]-[I-c A(t)]^{-1}[y]\right| \leqq[1-c \alpha(t)]^{-1}|x-y|
$$

whenever (x, y) is in $Y \times Y$. If $\left\{B_{1}, \cdots, B_{n}\right\}$ is a set of functions from Y to Y, and x is in Y, then $\prod_{j=1}^{0} B_{j}[x]=x$ and $\prod_{j=1}^{k} B_{j}[x]=$ $B_{k}\left[\prod_{j=1}^{k-1} B_{j}[x]\right]$ whenever k is an integer in [1, n]. If (t, x, y) is in $R^{+} \times Y \times Y$ then the statement

$$
y=\prod_{0}^{t}[I-(d s) A(s)]^{-1}[x]
$$

means that if ε is a positive number then there is a chain $\left\{r_{j}\right\}_{j=0}^{m}$ from 0 to t such that if $\left\{s_{k}\right\}_{k=0}^{n}$ is a refinement of $\left\{r_{j}\right\}_{j=0}^{m}$, and $\left\{\widetilde{s}_{k}\right\}_{k=1}^{n}$ is a $[0, t]$-valued sequence such that if k is an integer in $[1, n]$ then \widetilde{s}_{k} is in $\left[s_{k-1}, s_{k}\right]$, then

$$
\left|y-\prod_{k=1}^{n}\left[I-\left(s_{k}-s_{k-1}\right) A\left(\widetilde{s}_{k}\right)\right]^{-1}[x]\right|<\varepsilon .
$$

The statement

$$
y=\prod_{0}^{t} \exp [(d s) A(s)][x]
$$

is defined analogously.
Theorem. Let z be in Y, and let u solve (2) and (3). Then each of (4) and (5) is true whenever t is in R^{+}.

Let m_{-}be that function from $Y \times Y$ to the real numbers given by

$$
m_{-}[x, y]=\lim _{\delta \rightarrow 0-}(1 / \delta)(|x+\delta y|-|x|)
$$

Now (1) is equivalent to requiring that

$$
m_{-}[x-y, A(t)[x]-A(t)[y]] \leqq \alpha(t)|x-y|
$$

whenever (t, x, y) is in $R^{+} \times Y \times Y$ (compare [1, p. 3]). Also, if f is a function from a subset of R^{+}to Y, if c is in the domain of f, if $f_{-}^{\prime}(c)$ (the left derivative of f at c) exists, and if P is given on the domain of f by $P(t)=|f(t)|$, then $P_{-}^{\prime}(c)$ exists and $P_{-}^{\prime}(c)=$ $m_{-}\left[f(c), f_{-}^{\prime}(c)\right]$ (compare [1, p. 3]). If (x, y, z) is in $Y \times Y \times Y$ then $m_{-}[x, y+z] \leqq m_{-}[x, y]+|z|$ (see [4, Lemma 6]). We are now prepared to prove our theorem.

Proof of the theorem. Let b be a positive number, and let β be a positive upper bound for the set $\{\alpha(t): t$ is in $[0, b]\}$. Let ε be a positive number, and let δ be a positive number such that $(\delta / \beta)\left(e^{\beta b}-1\right)<\varepsilon$. Now $\{u(t): t$ is in $[0, b]\}$ is a compact subset of Y, so the function described by $(t, x) \rightarrow A(t)[x]$ is uniformly continuous on $[0, b] \times\{u(t): t$ is in [0,b]\}. In particular, there is a positive number η such that if (r, s, t) is in $[0, b] \times[0, b] \times[0, b]$ and $|r-s|<\eta$ then $\mid A(r)[u(t)]-$ $A(s)[u(t)] \mid<\delta$. Let $\left\{t_{k}\right\}_{k=0}^{n}$ be a chain from 0 to b such that $t_{k}-t_{k-1}<\eta$ whenever k is an integer in $[1, n]$, and let $\left\{\tilde{t}_{k}\right\}_{k=1}^{n}$ be a $[0, b]$-valued sequence such that if k is an integer in $[1, n]$ then \tilde{t}_{k} is in $\left[t_{k-1}, t_{k}\right]$. Let v be that function from $[0, b]$ to Y having the property that if k is an integer in $[1, n]$ and t is in $\left[t_{k-1}, t_{k}\right]$ then

$$
v(t)=\exp \left[\left(t-t_{k-1}\right) A\left(\tilde{t}_{k-1}\right)\right] \prod_{j=1}^{k-1} \exp \left[\left(t_{j}-t_{j-1}\right) A\left(\tilde{t}_{j}\right)\right][z]
$$

Clearly now v is continuous. Also, v is left differentiable on $(0, b]$: if k is an integer in $[1, n]$ and t is in $\left(t_{t-1}, t_{k}\right]$ then

$$
v_{-}^{\prime}(t)=A\left(\tilde{t}_{k-1}\right)[v(t)] .
$$

Let P be given on $[0, b]$ by $P(t)=|v(t)-u(t)|$. Now $P(0)=0$. Suppose that t is in $(0, b]$ and k is an integer in $[1, n]$ and t is in ($t_{l_{-1}}, t_{k}$]. Now

$$
\begin{aligned}
P_{-}^{\prime}(t)= & m_{-}\left[v(t)-u(t), v_{-}^{\prime}(t)-u^{\prime}(t)\right] \\
= & m_{-}\left[v(t)-u(t), A\left(\tilde{t}_{k-1}\right)[v(t)]-A(t)[u(t)]\right] \\
= & m_{-}\left[v(t)-u(t), A\left(\tilde{t}_{k-1}\right)[v(t)]-A\left(\tilde{t}_{k-1}\right)[u(t)]\right. \\
& +A\left(\tilde{t}_{k-1}\right)[u(t)]-A(t)[u(t)]
\end{aligned}
$$

$$
\begin{aligned}
\leqq & m_{-}\left[v(t)-u(t), A\left(\tilde{t}_{k-1}\right)[v(t)]-A\left(\tilde{t}_{k-1}\right)[u(t)]\right] \\
& +\left|A\left(\tilde{t}_{k-1}\right)[u(t)]-A(t)[u(t)]\right| \\
\leqq & \beta P(t)+\delta
\end{aligned}
$$

Hence [3, Theorem 1.4.1, p. 15],

$$
P(t) \leqq \int_{0}^{t} \delta e^{\beta(t-s)} d s=(\delta / \beta)\left(e^{\beta t}-1\right)
$$

whenever t is in $[0, b]$. In particular,

$$
\begin{aligned}
& \left|u(b)-\prod_{k=1}^{n} \exp \left[\left(t_{k}-t_{k-1}\right) A\left(\tilde{t}_{k}\right)\right][z]\right| \\
& \quad=|u(b)-v(b)| \\
& \quad=P(b) \\
& \quad \leqq(\delta / \beta)\left(e^{\beta b}-1\right)<\varepsilon .
\end{aligned}
$$

Thus we have proved that representation (4) is valid.
Now let b and β be as before. Let c be a positive number such that $c \beta<1 / 2$. Now if t is in $[0, b]$ and r is in $[0, c]$ then

$$
\begin{aligned}
& \left|[I-r A(t)]^{-1}[x]-[I-r A(t)]^{-1}[y]\right| \\
& \quad \leqq[1-r \beta]^{-1}|x-y| \\
& \quad \leqq(1+2 r \beta)|x-y| \\
& \quad \leqq e^{2 r \beta}|x-y|
\end{aligned}
$$

whenever (x, y) is in $Y \times Y$.
Now let $K=\{u(t): t$ is in $[0, b]\}$, and recall that K is compact. Let ε be a positive number. By the aforementioned uniform continuity, there is a positive number η_{1} such that if (s, t, x, y) is in $[0, b] \times$ $[0, b] \times K \times K$ and $|s-t|<\eta_{1}$ and $|x-y|<\eta_{1}$ then $|A(s)[x]-A(t)[y]|<$ $(\varepsilon / b) e^{-2 \beta b}$. Let η_{2} be a positive number such that if (s, t) is in $[0, b] \times$ $[0, b]$ and $|s-t|<\eta_{2}$ then $|u(s)-u(t)|<\eta_{1}$. Let $\delta=\min \left\{\eta_{1}, \eta_{2}, c\right\}$. Suppose that $0 \leqq r \leqq s \leqq t \leqq b$ and $t-r<\delta$. Let $\left\{\xi_{k}\right\}_{k=0}^{n}$ be a chain from r to t, and let $\left\{\tilde{\xi}_{k}\right\}_{k=1}^{n}$ be a $[r, t]$-valued sequence such that if k is an integer in $[1, n]$ then $\tilde{\xi}_{k}$ is in $\left[\xi_{k-1}, \xi_{k}\right]$. Now

$$
\begin{aligned}
& \left|\sum_{k=1}^{n}\left(\xi_{k}-\xi_{k-1}\right) A\left(\tilde{\xi}_{k}\right)\left[u\left(\tilde{\xi}_{k}\right)\right]-(t-r) A(s)[u(t)]\right| \\
& \quad \leqq \sum_{k=1}^{n}\left(\tilde{\xi}_{k}-\xi_{k-1}\right)\left|A\left(\widetilde{\xi}_{k}\right)\left[u\left(\tilde{\xi}_{k}\right)\right]-A(s)[u(t)]\right| \\
& \quad \leqq \sum_{k=1}^{n}\left(\xi_{k}-\xi_{k-1}\right)(\varepsilon / b) e^{-2 \beta b}=(t-r)(\varepsilon / b) e^{-2 \beta b}
\end{aligned}
$$

It is now clear that

$$
\begin{aligned}
& \left|\int_{r}^{t} A(\xi)[u(\xi)] d \xi-(t-r) A(s)[u(t)]\right| \\
& \quad \leqq(t-r)(\varepsilon / b) e^{-2 \beta b}
\end{aligned}
$$

Let $\left\{t_{k}\right\}_{k=0}^{n}$ be a chain from 0 to b, and suppose that $t_{k}-t_{k-1}<\delta$ whenever k is an integer in $[1, n]$. Let $\left\{\tilde{t}_{k}\right\}_{k=1}^{n}$ be a $[0, b]$-valued sequence such that if k is an integer in $[1, n]$ then \tilde{t}_{k} is in $\left[t_{k-1}, t_{k}\right]$. Now

$$
\begin{aligned}
\mid \prod_{k=1}^{n} & {\left[I-\left(t_{k}-t_{k-1}\right) A\left(\tilde{t}_{k}\right)\right]^{-1}[z]-u(b) \mid } \\
\leqq & \sum_{k=1}^{n} \mid \prod_{j=k+1}^{n}\left[I-\left(t_{j}-t_{j-1}\right) A\left(\tilde{t}_{j}\right)\right]^{-1}\left[u\left(t_{k}\right)\right] \\
& \quad-\prod_{j=k}^{n}\left[I-\left(t_{j}-t_{j-1}\right) A\left(\tilde{t}_{j}\right)\right]^{-1}\left[u\left(t_{k-1}\right)\right] \mid \\
\leqq & \sum_{k=1}^{n} e^{2 \beta\left(b-t_{k}\right)}\left|u\left(t_{k}\right)-\left[I-\left(t_{k}-t_{k-1}\right) A\left(\tilde{t}_{k}\right)\right]^{-1}\left[u\left(t_{k-1}\right)\right]\right| \\
\leqq & e^{2 \beta b} \sum_{k=1}^{n}\left|\left[I-\left(t_{k}-t_{k-1}\right) A\left(\tilde{t}_{k}\right)\right]\left[u\left(t_{k}\right)\right]-u\left(t_{k-1}\right)\right| \\
= & e^{2 \beta b} \sum_{k=1}^{n}\left|u\left(t_{k}\right)-u\left(t_{k-1}\right)-\left(t_{k}-t_{k-1}\right) A\left(\tilde{t}_{k}\right)\left[u\left(t_{k}\right)\right]\right| \\
& =\left.e^{2 \beta b} \sum_{k=1}^{n}\right|_{t_{k-1}} \int^{t_{k}} u^{\prime}(\xi) d \xi-\left(t_{k}-t_{k-1}\right) A\left(\tilde{t}_{k}\right)\left[u\left(t_{k}\right)\right] \mid \\
& =\left.e^{2 \beta b} \sum_{k=1}^{n}\right|_{t_{k-1}} \int^{t_{k}} A(\xi)[u(\xi)] d \xi-\left(t_{k}-t_{k-1}\right) A\left(\tilde{t}_{k}\right)\left[u\left(t_{k}\right)\right] \mid \\
\leqq & e^{2 \beta b} \sum_{k=1}^{n}\left(t_{k}-t_{k-1}\right)(\varepsilon / b) e^{-2 \beta b}=\varepsilon .
\end{aligned}
$$

The proof of the theorem is complete.

References

1. W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath \& Co., Boston, 1965.
2. J. V. Herod, A pairing of a class of evolution systems with a class of generators, Trans. Amer. Math. Soc., 157 (1971), 247-260.
3. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, vol. 1, Academic Press, New York, 1969.
4. D. L. Lovelady, A functional differential equation in a Banach space, Funkcialaj Ekvacioj, 14 (1971), 111-122.
5. D. L. Lovelady and R. H. Martin, Jr., A global existence theorem for a nonautonomous differential equation in a Banach space, Proc. Amer. Math. Soc., 35 (1972), 445-449.
6. R. H. Martin, Jr., A global existence theorem for autonomous differential equations in a Banach space, Proc. Amer. Math. Soc., 26 (1970), 307-314.
7. G. F. Webb, Product integral representation of time dependent nonlinear evolution equations in a Banach space, Pacific J. Math., 32 (1970), 269-281.
8. G. F. Webb, Nonlinear evolution equations and product integration in a Banach space, Trans. Amer. Math. Soc., 148 (1970), 273-282.

Received June 7, 1972.
Florida State University

