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NONLINEAR FUNCTIONALS ON C([0,1] x [0,1])

J. R. BAXTER AND R. V. CHACON

Let M be a compact Hausdorff space. Let ^{M) denote
the Banach space of continuous functions / on M. We are
interested in functionals Φ on ^(M) with the following
properties:

( i ) IΦ(/)I ^ | |/1| for every fe <έ?(M),
( ϋ ) Φif + flO = Φ(/) + Φ(g) whenever fg = 0 ,
(iii) φ(f+ a) = φ(f) + a for every fe &(M) and every

real number a.

It was shown in [1] that any Φ which has properties (i), (ii), and
<iii) is actually a continuous linear functional, in the particular case
that M = [0, 1]. Thus in this case we can represent Φ by Φ(f) =
\f(x)μ(dx) for some measure on M. It is the purpose of this paper
to show that such a representation is not possible when M = [0, 1] x
[0, 1], because there exist nonlinear functionals Φ which have properties
(i), (ii), and (iii) We construct two classes of examples. The first
class admits of a simple geometric interpretation. The examples in
the second, and larger, class are defined less directly, using transfinite
induction.

The general case, when M is an arbitrary compact Hausdorff
space, can be carried to M = [0, 1] x [0,1], in the following sense: Fix
/ and g in ^(M). Let Iγ and I2 be compact intervals containing
f(M) and g(M) respectively. For any functional Φ on ^(M), we can
define Φ* on <&{IX x J2) by letting Φ*(h) = Φ(h(f, g)) for each h e
^ ( I i x I2) Clearly if Φ satisfies (i), (ii), and (iii), then so does Φ*,
and a representation for Φ* can be carried back to a representation
for Φ on the algebra generated by / and g.

We prove in a forthcoming paper that conditions (i), (ii), and (iii)
imply that Φ is linear provided that M is of (topological) dimension
one.

2* Topological lemmas. From now on, let M denote [0, 1] x
[0, 1]. Let / be a fixed function in ^(M). We can define an equi-
valence relation on M as follows:

x ~ y means that x and y are contained in some connected set
upon which / is constant.

Let Af be the collection of equivalence classes defined by this
relation.

Then Af = {l\l is a maximal connected component of f~ι{{cc}),
aeR}.
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The topology on M induces a topology on Af as follows:
ΰ g i / is called open if \JleB I is an open set of points in M.
We will call the elements of Af the "level curves" of / .
Let θf: M—+Af be the map that sends each point x into the equiv-

alence class I that contains x.
Then θf is continuous.
Hence Af = θf(M) is compact and connected.
We note that if E is an open (or closed) set in M which is a

union of members of Af then θf(E) is open (or closed) also.

LEMMA 1. Af is a Hausdorff space.

Proof. Fix leAf and x el.

For each n, let Fn denote that maximal connected component of
{z I f(x) - 1/n ^ f(z) S /O) + 1/n} which contains x.

Clearly Fn is closed, Fn is a union of members of Af, and I g Fnf

for every n.
Hence i g f | ; = i ^
But a decreasing sequence of connected connected sets in a Haus-

dorff space has a connected intersection. Since / is constant on the
connected set f|~=i F«> therefore I a fl?=i **»> s o * = Π~=i Fn.

Hence f | - i β,(FJ - {I}.
For each w, let Gn denote that maximal connected component of

{z I f(x) - 1/w < /(«) < f(x) + 1M} which contains x.
Clearly Gn is open, Gn is a union of members of Af, and Z <ϋ GΛ,

for every ^.
Hence θf(Gn) is an open set containing ϊ, for each n.
Also n:- i ί T W ε Π:=i
This proves Lemma 1.
Let I be in Af. Let a? be in I. Let G be any open set in Af

containing L Then θγ{G) is an open set containing x. Let H be that
maximal connected component of θγ(G) which contains x. Then £Γ
is a union of members of Af, because θγ{G) is. Hence θf{H) is an
open, connected subset of G, containing I. This shows that A/ is
locally connected.

LEMMA 2. For any connected set C in Af, θ~jι(C) is connected.

Proof. Let Fι and F2 be closed sets in M, such that Fί (J i^2 2
^ ( C ) and 2^ n F 2 Π ̂ ( C ) - 0 .

Then any equivalence class I in C must lie entirely in F1 or F 2

but not both, because I is connected.
Hence Θ^F,) n ^/(^2) Π C = 0 .
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Since θf(FJ U θf(F2) 2 C and C is connected, at least one of θf{Fύ,
ΰf(F2) must be 0 . This proves Lemma 2.

DEFINITION 1. Let a and b be points in a topological space X.
A set E in X is said to separate a and b if α and 6 do not lie in a
connected component of X — E.

LEMMA 3. Let E be a set in M which separates two points a
and b. Then E contains a connected subset F which separates a and b.

Proof. This is a special case of Theorem 1 in [2], §57 III, page
438.

LEMMA 4. Let D be a set in Af which separates two points I and
k. Then D contains a connected set C which separates I and k.

Proof. Choose x e I and yek.
Let E = θ^ι(D). Then E separates x and y in M, since θf is

continuous.
Hence by Lemma 3, E contains a connected subset F which separates

x and y.
Let C = θf{F).
Then C separates I and k by Lemma 2.
This proves Lemma 4.

DEFINITION 2. Let S be the unit circle in R\ A topological
space which is homeomorphic to S is called a simple closed curve.

LEMMA 5. Af does not contain a simple closed curve.

Proof. Let φ:S—> Af be continuous.
We will show that φ is not a homeomorphism.
Let g be the unique function on Af such that g°θf — f. Then

g is clearly continuous. Furthermore, if C is a connected set in Af

upon which g is constant, we see by Lemma 2 that C must consist
of one point.

Let H = φ(S).
H is connected. If g is constant on H, then H is a one point

set, and we are done. Thus we may assume that there exist points
I and k in H such that g(l) ~ a < g(k) = β.

Choose 7 such that a < 7 < β.
Then clearly g~\{Ί}) separates I and k.
Hence by Lemma 4 there must exist a connected set C £ ~̂1({7})

such that C separates I and k. Thus Z and it are separated by a
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single point. It is clear that this would not be possible if H were
homeomorphic to S, so Lemma 5 is proved.

LEMMA 6. Let K and L be two compact, connected subsets of Af*
Then K Π L is compact and connected.

Proof. Follows from Lemma 5 and Theorem 1 in [2], §51 VI,
page 300.

If we consider a continuous function / on a general topological
space M, and form the space Af of level curves of / , then Lemmas
5 and 6 no longer hold. For example, if M is the unit circle, we
can find a function / such that Af is homeomorphic to M.

3* Construction of functional^ As before, let M denote [0,1] x
[0,1].

Let us suppose that for each / e ̂ (M) we have chosen a level
curve lfeAf. Then we can define a functional Φ as follows:

(1) Φ(f) =/(»), any xelf.

We shall define the mapping / —»lf later in such a way that

(2) Vf,ge^(M),lfnl9Φ 0 .

LEMMA 1. If (2) holds, then Φ has properties (i), (ii), and (iii)

Proof, (i) is clear.
For (ii), we note first that if fg = 0 then both / and g are

constant on lf+g. Since lf+g Π lf^0, we must have lf+g^lf. Simi-
larly lf+g S Ig

Let x be a point in lf+g. Then xelf and x e lg. Hence Φ(f +

g) = f(x) + g(x)9 φ(f) = f(χ)9 and Φ(g) = g(x). This proves (ii).
For (iii), we see similarly that lf+c = lf, and the proof follows.
Let D be a fixed closed, connected set in M. Let z be a fixed

point in M. For any fixed / in ̂ (M), let θf{D) = C, where 0 is the
map defined in §2. We then have that C is a closed, connected set
in Af.
Let ψγ\ [0,1] —> ikf and φ2: [0,1] —• M be any two continuous maps such
that ^(0) = φ2(0) = Z, φx{l) 6 D, φz(l) β D.

Let

LEMMA 2. θffafa)) = θf{φ2(t2)).
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Proof. Let L, = ^ ( [ O , fj)) Let L2 - 0/(<P2([O,«,])).
Then Lι and L2 are closed, connected sets in Af.
LίΓϊ C = θfiΨiitj)), by the definition of ίlβ Similarly L 2 n C =

Thus Lι U C and L2U C are connected sets.
By Lemma 6 of §2, (L : U C) Π (L2 U C) is connected. That is,

(Lι Π I/2) U C is connected.
Hence Lγ Π £ 2 Π C Φ 0.
Hence {^(^ft))} Π {θf{ψ2{t2))} Φ 0.
This proves Lemma 2.

DEFINITION 1. For each / e ̂ (M) we will define lf to be the
unique element θ^φ^t^)) described above.

Intuitively, one may regard θf(D) as being a collection of hairs
covering D. Suppose that one releases a bug from z and allows it
to crawl to D. The first hair that it reaches is called lf. Lemma 2
shows that this definition does not depend on the path of the bug.

Let Uf denote the maximal connected component of z in M — lf.
If zelf let Uf — 0 . Let Vf denote the union of the other components
of M - If.

LEMMA 3. Uff]D = 0.

Proof. If z G If, the result is trivial. Otherwise, suppose there
exists a point y e D Π Uf. Since Uf is open and connected, we can
find φ: [0, 1] —> Uf such that ψ is continuous, φ(0) = z, and φ(l) = y.

Let ί0 = inf {t\θf{φ(t)) e C}.
Since φ(t0) e Uf, clearly θf(φ(Q) Φ lf. This contradicts Lemma 2,

so our assumption that there exists a point y e D Π Uf must be false.
This proves Lemma 3.

LEMMA 4. Let f and g he in ^(M).

Then If Πlg Φ 0.

Proof. Suppose lf Π lg = 0. Since lf contains points in D, lf is
not completely contained in Ug. Hence lf Π Ug — 0 , or in other words
lf^Vg, since lf is connected. Similarly lg^Vf. Hence [ F / U F J U
[Uf Π Ug] = if. Since M i s connected, and Vf l)Vg Φ 0, we must have
UfnUg = Cΰ Hence z is not in both Uf and C/̂ . Suppose 2 g J7/.
Then 2 G £/. Hence 2 g [/̂ . Hence z e lg. This contradicts our assump-
tion If Π lg — 0 , so Lemma 4 is proved.

EXAMPLE 1. Let lf be chosen as in Definition 1. Let Φ be defined
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by equation (1). It follows from Lemma 4 and Lemma 1 that Φ
satisfies (i), (ii), and (iii) of §1.

THEOREM 1. Suppose z$D, and D contains more than one point.
Then Φ is nonlinear.

Proof. It is easy to see that two continuous maps φt: [0,1] —• ikf
and φ2: [0, 1] —• M can be found such that ^(0) = φ2(0) = z, φ^l) e D,
Ψ2{1) e D, φ^l) Φ 9>2(1), Ψit) e D for t < 1, <p2(t) $ D for t < 1.

Choose / , g e <ίf (ikf) such that / = 0 on <p2([0,1]), g = 0 on ^i([0,1]),
and / + g ^ 1 on D.

Then Φ(f) = 0, Φ(g) = 0, but Φ(f + g) ^ 1.
We will now describe a more general way of defining the map

/ —> If so that equation (2) is satisfied.

LEMMA 5. Let f be in ^(M). Let H be a collection of closed,
connected sets in Af. Suppose for every i*\ and F2 in H that JF\ Π F2

is nonempty. Then C[FeHF is nonempty.

Proof. First, assume H has three elements, Fl9 F2, and Fz. We
will show that Fx Π F2 n Fd Φ 0 .

Since F1Γ\F2Φ 0 , therefore Fx U F2 is connected. Similarly Fx U
Ĵ s is connected.

By Lemma 6 of §2, (Fλ U F2) n (Ĵ i U F3) is connected. That is,
J\ U [F2 n î s] is connected. Hence ^ Π ^ ί l ^ ^ 0 .

Now assume that Lemma 5 has been proved when H has n ele-
ments. Suppose H has n + 1 elements, i*7^ J^2, , F n + 1 .

Let ίΓί - Ft n F»+1, i - 1, , n.
By Lemma 6 of §2, the Ki are closed and connected.
By Lemma 5 with n = 3, for every i and j we have ^ Π K3 Φ 0.
Hence by our inductive assumption Kλ Π K\ Π Π Kn Φ 0 . But

irx n n κn - F, n n Fn+ι.
Thus we have proved Lemma 5 for the case that H has n + 1

elements.
Hence by induction Lemma 5 is true for any finite collection H.
This implies that any arbitrary H has the finite intersection

property. Lemma 5 follows by the compactness of Af.

LEMMA 6. Let Γ be a map whose domain is a certain subset S
of ^(M), such that Γ{f) e Af for each f e S, and such that for each
f and g in S, Γ(f) Π Γ(g) Φ 0. Let h be in <&(M)y h not in S. Then
we can define Γ(h) e Ah in such a way that for every f e S, Γ{f) Π
Γ{h) Φ 0 .
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Proof. Let H = {θh(Γ(f))9 f e S}.
Each set θh(Γ(f)) is a closed, connected subset of Ah. For every

/ and g in S,

θΛΓ(f)) n 0A(Γfo)) 2 <?A(Γ(/) n

By Lemma 5,

0 .

Choose any le Γ[fes θh(Γ(f)), and call it Γ(h).
For each feS,le θh{Γ{f))> so ί Π Γ(/) ^ 0 .
This proves Lemma 6.

EXAMPLE 2. Using Lemma 6 and Zorn's lemma, we can start with
any map Γ of the sort described in Lemma 6, and extend it to all
of <^(M) in such a way that for any / and g in ^{M)9 Γ(f) Γ) Γ(g) Φ
0. Let If be defined to be Γ(f) for each / e rέ?(M). Let Φ be defined
as before, using equation (1). Once again by Lemma 1, Φ has pro-
perties (i), (ii), and (iii)

We could take our original domain S for Γ to consist of the
three functions x, y, and x + y where x and y are the usual coordinates
on M. Let Γ(x) = the line joining (0, 0) and (0, 1). Let Γ(y) = the
line joining (0, 0) and (1, 0). Let Γ(x + y) — the line joining (0, 1)
and (1, 0) and (1, 0). Clearly Φ(x) = Φ(y) = 0, but Φ(x + y) = 1, so
Φ is nonlinear.

We note that all the functionals constructed are monotone and
continuous. This may be verified directly without too much difficulty.

It is a pleasure to aknowledge our indebtedness to Professors A.
Brunei and M. Keane for helpful discussions on this topic.

REFERENCES

1. J. R. Baxter and R. V. Chacon, Almost linear operators and functionals on ί^flΌ, 1]),
to appear, P.A.M.S.
2. K. Kuratowski, Topology (Volume II), Academic Press, New York, 1968.

Received July 5, 1972 and in revised form October 20, 1972.

UNIVERSITY OF MINNESOTA






