NONLINEAR FUNCTIONALS ON $C([0,1] \times[0,1])$

J. R. Baxter and R. V. Chacon

Let M be a compact Hausdorff space. Let $\mathscr{C}(M)$ denote the Banach space of continuous functions f on M. We are interested in functionals Φ on $\mathscr{C}(M)$ with the following properties:
(i) $|\Phi(f)| \leqq\|f\|$ for every $f \in \mathscr{C}(M)$,
(ii) $\Phi(f+g)=\Phi(f)+\Phi(g)$ whenever $f g=0$,
(iii) $\Phi(f+\alpha)=\Phi(f)+\alpha$ for every $f \in \mathscr{C}(M)$ and every real number α.

It was shown in [1] that any Φ which has properties (i), (ii), and (iii) is actually a continuous linear functional, in the particular case that $M=[0,1]$. Thus in this case we can represent Φ by $\Phi(f)=$ $\int f(x) \mu(d x)$ for some measure on M. It is the purpose of this paper to show that such a representation is not possible when $M=[0,1] \times$ $[0,1]$, because there exist nonlinear functionals Φ which have properties (i), (ii), and (iii). We construct two classes of examples. The first class admits of a simple geometric interpretation. The examples in the second, and larger, class are defined less directly, using transfinite induction.

The general case, when M is an arbitrary compact Hausdorff space, can be carried to $M=[0,1] \times[0,1]$, in the following sense: Fix f and g in $\mathscr{C}(M)$. Let I_{1} and I_{2} be compact intervals containing $f(M)$ and $g(M)$ respectively. For any functional Φ on $\mathscr{C}(M)$, we can define Φ^{*} on $\mathscr{C}\left(I_{1} \times I_{2}\right)$ by letting $\Phi^{*}(h)=\Phi(h(f, g))$ for each $h \in$ $\mathscr{C}\left(I_{1} \times I_{2}\right)$. Clearly if Φ satisfies (i), (ii), and (iii), then so does Φ^{*}, and a representation for Φ^{*} can be carried back to a representation for Φ on the algebra generated by f and g.

We prove in a forthcoming paper that conditions (i), (ii), and (iii) imply that Φ is linear provided that M is of (topological) dimension one.
2. Topological lemmas. From now on, let M denote $[0,1] \times$ $[0,1]$. Let f be a fixed function in $\mathscr{C}(M)$. We can define an equivalence relation on M as follows:
$x \sim y$ means that x and y are contained in some connected set upon which f is constant.

Let A_{f} be the collection of equivalence classes defined by this relation.

Then $A_{f}=\left\{l \mid l\right.$ is a maximal connected component of $f^{-1}(\{\alpha\})$, $\alpha \in \boldsymbol{R}\}$.

The topology on M induces a topology on A_{f} as follows:
$B \subseteq A_{f}$ is called open if $\bigcup_{l \in B} l$ is an open set of points in M.
We will call the elements of A_{f} the "level curves" of f.
Let $\theta_{f}: M \rightarrow A_{f}$ be the map that sends each point x into the equivalence class l that contains x.

Then θ_{f} is continuous.
Hence $A_{f}=\theta_{f}(M)$ is compact and connected.
We note that if E is an open (or closed) set in M which is a union of members of A_{f} then $\theta_{f}(E)$ is open (or closed) also.

Lemma 1. A_{f} is a Hausdorff space.
Proof. Fix $l \in A_{f}$ and $x \in l$.
For each n, let F_{n} denote that maximal connected component of $\{z \mid f(x)-1 / n \leqq f(z) \leqq f(x)+1 / n\}$ which contains x.

Clearly F_{n} is closed, F_{n} is a union of members of A_{f}, and $l \leqq F_{n}$, for every n.

Hence $l \subseteq \bigcap_{n=1}^{\infty} F_{n}$.
But a decreasing sequence of connected connected sets in a Hausdorff space has a connected intersection. Since f is constant on the connected set $\bigcap_{n=1}^{\infty} F_{n}$, therefore $l \supseteqq \bigcap_{n=1}^{\infty} F_{n}$, so $l=\bigcap_{n=1}^{\infty} F_{n}$.

Hence $\bigcap_{n=1}^{\infty} \theta_{f}\left(F_{n}\right)=\{l\}$.
For each n, let G_{n} denote that maximal connected component of $\{z \mid f(x)-1 / n<f(z)<f(x)+1 / n\}$ which contains x.

Clearly G_{n} is open, G_{n} is a union of members of A_{f}, and $l \cong G_{n}$, for every n.

Hence $\theta_{f}\left(G_{n}\right)$ is an open set containing l, for each n.
Also $\bigcap_{n=1}^{\infty} \overline{\theta_{f}\left(G_{n}\right)} \cong \bigcap_{n=1}^{\infty} \theta\left(F_{n}\right)=\{l\}$.
This proves Lemma 1.
Let l be in A_{f}. Let x be in l. Let G be any open set in A_{f} containing l. Then $\theta_{f}^{-1}(G)$ is an open set containing x. Let H be that maximal connected component of $\theta_{f}^{-1}(G)$ which contains x. Then H is a union of members of A_{f}, because $\theta_{f}^{-1}(G)$ is. Hence $\theta_{f}(H)$ is an open, connected subset of G, containing l. This shows that A_{f} is locally connected.

Lemma 2. For any connected set C in $A_{f}, \theta_{f}^{-1}(C)$ is connected.
Proof. Let F_{1} and F_{2} be closed sets in M, such that $F_{1} \cup F_{2} \supseteqq$ $\theta_{f}^{-1}(C)$ and $F_{1} \cap F_{2} \cap \theta_{f}^{-1}(C)=\varnothing$.

Then any equivalence class l in C must lie entirely in F_{1} or F_{2} but not both, because l is connected.

Hence $\theta_{f}\left(F_{1}\right) \cap \theta_{f}\left(F_{2}\right) \cap C=\varnothing$.

Since $\theta_{f}\left(F_{1}\right) \cup \theta_{f}\left(F_{2}\right) \supseteqq C$ and C is connected, at least one of $\theta_{f}\left(F_{1}\right)$, $\theta_{f}\left(F_{2}\right)$ must be \varnothing. This proves Lemma 2.

Definition 1. Let a and b be points in a topological space X. A set E in X is said to separate a and b if a and b do not lie in a connected component of $X-E$.

Lemma 3. Let E be a set in M which separates two points a and b. Then E contains a connected subset F which separates a and b.

Proof. This is a special case of Theorem 1 in [2], §57 III, page 438.

Lemma 4. Let D be a set in A_{f} which separates two points l and k. Then D contains a connected set C which separates l and k.

Proof. Choose $x \in l$ and $y \in k$.
Let $E=\theta_{f}^{-1}(D)$. Then E separates x and y in M, since θ_{f} is continuous.

Hence by Lemma 3, E contains a connected subset F which separates x and y.

Let $C=\theta_{f}(F)$.
Then C separates l and k by Lemma 2.
This proves Lemma 4.
Definition 2. Let S be the unit circle in \boldsymbol{R}^{2}. A topological space which is homeomorphic to S is called a simple closed curve.

Lemma 5. A_{f} does not contain a simple closed curve.
Proof. Let $\varphi: S \rightarrow A_{f}$ be continuous.
We will show that φ is not a homeomorphism.
Let g be the unique function on A_{f} such that $g \circ \theta_{f}=f$. Then g is clearly continuous. Furthermore, if C is a connected set in A_{f} upon which g is constant, we see by Lemma 2 that C must consist of one point.

Let $H=\varphi(S)$.
H is connected. If g is constant on H, then H is a one point set, and we are done. Thus we may assume that there exist points l and k in H such that $g(l)=\alpha<g(k)=\beta$.

Choose γ such that $\alpha<\gamma<\beta$.
Then clearly $g^{-1}(\{\gamma\})$ separates l and k.
Hence by Lemma 4 there must exist a connected set $C \subseteq g^{-1}(\{\gamma\})$ such that C separates l and k. Thus l and k are separated by a
single point. It is clear that this would not be possible if H were homeomorphic to S, so Lemma 5 is proved.

Lemma 6. Let K and L be two compact, connected subsets of A_{f}. Then $K \cap L$ is compact and connected.

Proof. Follows from Lemma 5 and Theorem 1 in [2], §51 VI, page 300.

If we consider a continuous function f on a general topological space M, and form the space A_{f} of level curves of f, then Lemmas 5 and 6 no longer hold. For example, if M is the unit circle, we can find a function f such that A_{f} is homeomorphic to M.
3. Construction of functionals. As before, let M denote $[0,1] \times$ [0,1].

Let us suppose that for each $f \in \mathscr{C}(M)$ we have chosen a level curve $l_{f} \in A_{f}$. Then we can define a functional Φ as follows:

$$
\begin{equation*}
\Phi(f)=f(x), \text { any } x \in l_{f} \tag{1}
\end{equation*}
$$

We shall define the mapping $f \rightarrow l_{f}$ later in such a way that

$$
\begin{equation*}
\forall f, g \in \mathscr{C}(M), l_{f} \cap l_{g} \neq \varnothing \tag{2}
\end{equation*}
$$

Lemma 1. If (2) holds, then Φ has properties (i), (ii), and (iii) of $\S 1$.

Proof. (i) is clear.
For (ii), we note first that if $f g=0$ then both f and g are constant on l_{f+g}. Since $l_{f+g} \cap l_{f} \neq \varnothing$, we must have $l_{f+g} \subseteq l_{f}$. Similarly $l_{f+g} \cong l_{g}$.

Let x be a point in l_{f+g}. Then $x \in l_{f}$ and $x \in l_{g}$. Hence $\Phi(f+$ $g)=f(x)+g(x), \Phi(f)=f(x)$, and $\Phi(g)=g(x)$. This proves (ii).

For (iii), we see similarly that $l_{f+c}=l_{f}$, and the proof follows.
Let D be a fixed closed, connected set in M. Let z be a fixed point in M. For any fixed f in $\mathscr{C}(M)$, let $\theta_{f}(D)=C$, where θ is the map defined in §2. We then have that C is a closed, connected set in A_{f}.
Let $\varphi_{1}:[0,1] \rightarrow M$ and $\varphi_{2}:[0,1] \rightarrow M$ be any two continuous maps such that $\varphi_{1}(0)=\varphi_{2}(0)=z, \varphi_{1}(1) \in D, \varphi_{2}(1) \in D$.

Let

$$
\begin{aligned}
& t_{1}=\inf \left\{t \mid \theta_{f}\left(\varphi_{1}(t)\right) \in C\right\} \\
& t_{2}=\inf \left\{t \mid \theta_{f}\left(\varphi_{2}(t)\right) \in C\right\}
\end{aligned}
$$

Lemma 2. $\theta_{f}\left(\varphi_{1}\left(t_{1}\right)\right)=\theta_{f}\left(\varphi_{2}\left(t_{2}\right)\right)$.

Proof. Let $L_{1}=\theta_{f}\left(\varphi_{1}\left(\left[0, t_{1}\right]\right)\right)$. Let $L_{2}=\theta_{f}\left(\varphi_{2}\left(\left[0, t_{2}\right]\right)\right)$.
Then L_{1} and L_{2} are closed, connected sets in A_{f}.
$L_{1} \cap C=\theta_{f}\left(\varphi_{1}\left(t_{1}\right)\right)$, by the definition of t_{1}. Similarly $L_{2} \cap C=$ $\theta_{f}\left(\varphi_{2}\left(t_{2}\right)\right)$.

Thus $L_{1} \cup C$ and $L_{2} \cup C$ are connected sets.
By Lemma 6 of $\S 2,\left(L_{1} \cup C\right) \cap\left(L_{2} \cup C\right)$ is connected. That is, $\left(L_{1} \cap L_{2}\right) \cup C$ is connected.

Hence $L_{1} \cap L_{2} \cap C \neq \varnothing$.
Hence $\left\{\theta_{f}\left(\varphi_{1}\left(t_{1}\right)\right)\right\} \cap\left\{\theta_{f}\left(\varphi_{2}\left(t_{2}\right)\right)\right\} \neq \varnothing$.
This proves Lemma 2.
Definition 1. For each $f \in \mathscr{C}(M)$ we will define l_{f} to be the unique element $\theta_{f}\left(\varphi_{1}\left(t_{1}\right)\right)$ described above.

Intuitively, one may regard $\theta_{f}(D)$ as being a collection of hairs covering D. Suppose that one releases a bug from z and allows it to crawl to D. The first hair that it reaches is called l_{f}. Lemma 2 shows that this definition does not depend on the path of the bug.

Let U_{f} denote the maximal connected component of z in $M-l_{f}$. If $z \in l_{f}$ let $U_{f}=\varnothing$. Let V_{f} denote the union of the other components of $M-l_{f}$.

Lemma 3. $\quad U_{f} \cap D=\varnothing$.
Proof. If $z \in l_{f}$, the result is trivial. Otherwise, suppose there exists a point $y \in D \cap U_{f}$. Since U_{f} is open and connected, we can find $\varphi:[0,1] \rightarrow U_{f}$ such that φ is continuous, $\varphi(0)=z$, and $\varphi(1)=y$.

Let $t_{0}=\inf \left\{t \mid \theta_{f}(\varphi(t)) \in C\right\}$.
Since $\varphi\left(t_{0}\right) \in U_{f}$, clearly $\theta_{f}\left(\varphi\left(t_{0}\right)\right) \neq l_{f}$. This contradicts Lemma 2, so our assumption that there exists a point $y \in D \cap U_{f}$ must be false. This proves Lemma 3.

Lemma 4. Let f and g be in $\mathscr{C}(M)$.
Then $l_{f} \cap l_{g} \neq \varnothing$.
Proof. Suppose $l_{f} \cap l_{g}=\varnothing$. Since l_{f} contains points in D, l_{f} is not completely contained in U_{g}. Hence $l_{f} \cap U_{g}=\varnothing$, or in other words $l_{f} \subseteq V_{g}$, since l_{f} is connected. Similarly $l_{g} \subseteq V_{f}$. Hence [$V_{f} \cup V_{g}$] \cup [$U_{f} \cap U_{g}$] $=M$. Since M is connected, and $V_{f} \cup V_{g} \neq \varnothing$, we must have $U_{f} \cap U_{g}=\varnothing$. Hence z is not in both U_{f} and U_{g}. Suppose $z \notin U_{f}$. Then $z \in l_{f}$. Hence $z \notin U_{g}$. Hence $z \in l_{g}$. This contradicts our assumption $l_{f} \cap l_{g}=\varnothing$, so Lemma 4 is proved.

Example 1. Let l_{f} be chosen as in Definition 1. Let Φ be defined
by equation (1). It follows from Lemma 4 and Lemma 1 that Φ satisfies (i), (ii), and (iii) of $\S 1$.

Theorem 1. Suppose $z \notin D$, and D contains more than one point. Then Φ is nonlinear.

Proof. It is easy to see that two continuous maps $\varphi_{1}:[0,1] \rightarrow M$ and $\varphi_{2}:[0,1] \rightarrow M$ can be found such that $\varphi_{1}(0)=\varphi_{2}(0)=z, \varphi_{1}(1) \in D$, $\varphi_{2}(1) \in D, \varphi_{1}(1) \neq \varphi_{2}(1), \varphi_{1}(t) \notin D$ for $t<1, \varphi_{2}(t) \notin D$ for $\mathrm{t}<1$.

Choose $f, g \in \mathscr{C}(M)$ such that $f=0$ on $\varphi_{2}([0,1]), g=0$ on $\varphi_{1}([0,1])$, and $f+g \geqq 1$ on D.

Then $\Phi(f)=0, \Phi(g)=0$, but $\Phi(f+g) \geqq 1$.
We will now describe a more general way of defining the map $f \rightarrow l_{f}$ so that equation (2) is satisfied.

Lemma 5. Let f be in $\mathscr{C}(M)$. Let H be a collection of closed, connected sets in A_{f}. Suppose for every F_{1} and F_{2} in H that $F_{1} \cap F_{2}$ is nonempty. Then $\bigcap_{F \in H} F$ is nonempty.

Proof. First, assume H has three elements, F_{1}, F_{2}, and F_{3}. We will show that $F_{1} \cap F_{2} \cap F_{3} \neq \varnothing$.

Since $F_{1} \cap F_{2} \neq \varnothing$, therefore $F_{1} \cup F_{2}$ is connected. Similarly $F_{1} \cup$ F_{3} is connected.

By Lemma 6 of $\S 2$, $\left(F_{1} \cup F_{2}\right) \cap\left(F_{1} \cup F_{3}\right)$ is connected. That is, $F_{1} \cup\left[F_{2} \cap F_{3}\right]$ is connected. Hence $F_{1} \cap F_{2} \cap F_{3} \neq \varnothing$.

Now assume that Lemma 5 has been proved when H has n elements. Suppose H has $n+1$ elements, $F_{1}, F_{2}, \cdots, F_{n+1}$.

Let $K_{i}=F_{i} \cap F_{n+1}, i=1, \cdots, n$.
By Lemma 6 of $\S 2$, the K_{i} are closed and connected.
By Lemma 5 with $n=3$, for every i and j we have $K_{i} \cap K_{j} \neq \varnothing$.
Hence by our inductive assumption $K_{1} \cap K_{2} \cap \cdots \cap K_{n} \neq \varnothing$. But $K_{1} \cap \cdots \cap K_{n}=F_{1} \cap \cdots \cap F_{n+1}$.

Thus we have proved Lemma 5 for the case that H has $n+1$ elements.

Hence by induction Lemma 5 is true for any finite collection H.
This implies that any arbitrary H has the finite intersection property. Lemma 5 follows by the compactness of A_{f}.

Lemma 6. Let Γ be a map whose domain is a certain subset S of $\mathscr{C}(M)$, such that $\Gamma(f) \in A_{f}$ for each $f \in S$, and such that for each f and g in $S, \Gamma(f) \cap \Gamma(g) \neq \varnothing$. Let h be in $\mathscr{C}(M), h$ not in S. Then we can define $\Gamma(h) \in A_{h}$ in such a way that for every $f \in S, \Gamma(f) \cap$ $\Gamma(h) \neq \varnothing$.

Proof. Let $H=\left\{\theta_{h}(\Gamma(f)), f \in S\right\}$.
Each set $\theta_{h}(\Gamma(f))$ is a closed, connected subset of A_{h}. For every f and g in S,

$$
\theta_{h}(\Gamma(f)) \cap \theta_{h}(\Gamma(g)) \supseteqq \theta_{h}(\Gamma(f) \cap \Gamma(g)) \neq \varnothing .
$$

By Lemma 5,

$$
\bigcap_{f \in S} \theta_{h}(\Gamma(f)) \neq \varnothing
$$

Choose any $l \in \bigcap_{f \in S} \theta_{h}(\Gamma(f))$, and call it $\Gamma(h)$.
For each $f \in S, l \in \theta_{h}(\Gamma(f))$, so $l \cap \Gamma(f) \neq \varnothing$.
This proves Lemma 6.
Example 2. Using Lemma 6 and Zorn's lemma, we can start with any map Γ of the sort described in Lemma 6, and extend it to all of $\mathscr{C}(M)$ in such a way that for any f and g in $\mathscr{C}(M), \Gamma(f) \cap \Gamma(g) \neq$ \varnothing. Let l_{f} be defined to be $\Gamma(f)$ for each $f \in \mathscr{C}(M)$. Let Φ be defined as before, using equation (1). Once again by Lemma 1 , Φ has properties (i), (ii), and (iii).

We could take our original domain S for Γ to consist of the three functions x, y, and $x+y$ where x and y are the usual coordinates on M. Let $\Gamma(x)=$ the line joining $(0,0)$ and $(0,1)$. Let $\Gamma(y)=$ the line joining $(0,0)$ and $(1,0)$. Let $\Gamma(x+y)=$ the line joining $(0,1)$ and $(1,0)$ and $(1,0)$. Clearly $\Phi(x)=\Phi(y)=0$, but $\Phi(x+y)=1$, so Φ is nonlinear.

We note that all the functionals constructed are monotone and continuous. This may be verified directly without too much difficulty.

It is a pleasure to aknowledge our indebtedness to Professors A. Brunel and M. Keane for helpful discussions on this topic.

References

1. J. R. Baxter and R. V. Chacon, Almost linear operators and functionals on $\mathscr{C}([0,1])$, to appear, P.A.M.S.
2. K. Kuratowski, Topology (Volume II), Academic Press, New York, 1968.

Received July 5, 1972 and in revised form October 20, 1972.
University of Minnesota

