# CONTRACTORS, APPROXIMATE IDENTITIES AND FACTORIZATION IN BANACH ALGEBRAS 

## Mieczyslaw Altman

The concept of a contractor has been introduced as a tool for solving equations in Banach spaces. In this way various existence theorems for solutions of equations have been obtained as well as convergence theorems for a broad class of iterative procedures. Moreover, the contractor method yields unified approach to a large variety of iterative processes different in nature. The contractor idea can also be exploited in Banach algebras.

A contractor is rather weaker than an approximate identity. Since every approximate identity is a contractor, the following seems to be a natural question: When is a contractor an approximate identity? The answer to this question is investigated in the present paper.

Concerning the approximate identity in a Banach algebra $A$ it is shown that if a subset $U$ of $A$ is a bounded weak left approximate identity, then $U$ is a bounded left approximate identity. This important fact makes it possible to prove the well-known factorization theorems for Banach algebras under weaker conditions of existence of a bounded weak approximate identity.
2. Approximate identities. Let $A$ be a Banach algebra.

Definition 2.1. A subset $U \subset B \subseteq A$ is called a left weak (or simple) approximate identity for the set $B$ if for arbitrary $b \in B$ and $\varepsilon>0$ there exists an element $u \in U$ such that

$$
\begin{equation*}
\|u b-b\|<\varepsilon . \tag{2.1}
\end{equation*}
$$

Definition 2.2. A subset $U \subset B \subseteq A$ is called a left approximate identity for $B$ if for every arbitrary finite subset of elements $b_{i} \in B$ ( $i=1,2, \cdots, n$ ) and arbitrary $\varepsilon>0$ there exists an element $u \in U$ such that

$$
\begin{equation*}
\left\|u b_{i}-b_{i}\right\|<\varepsilon \quad \text { for } \quad i=1,2, \cdots, n \tag{2.2}
\end{equation*}
$$

A (weak) approximate identity $U$ is called bounded if there is a constant $d$ such that $\|u\| \leqq d$ for all $u \in U$.

Lemma 2.1. If $U$ is a bounded subset of $B \subseteq A$ such that for every pair of elements $b_{i} \in B(i=1,2)$ and arbitrary $\varepsilon>0$ there exists
an element $u \in U$ satisfying (2.2) with $n=2$, then $U$ is a left approximate identity for $B$.

Proof. The proof will be given by the finite induction. Given arbitrary $b_{i} \in B(i=1,2, \cdots, n+1)$ and $\varepsilon>0$. For $\varepsilon_{0}>0$ let $u_{0} \in B$ be chosen so as to satisfy

$$
\begin{equation*}
\left\|u_{0} b_{i}-b_{i}\right\|<\varepsilon_{0} \text { for } i=1,2, \cdots, n \text { and }\left\|u_{0}\right\| \leqq d \tag{2.3}
\end{equation*}
$$

For the pair $u_{0}, b_{n+1} \in B$ and $\varepsilon_{0}>0$ there is an element $u \in U$ such that

$$
\begin{equation*}
\left\|u u_{0}-u_{0}\right\|<\varepsilon_{0} \quad \text { and } \quad\left\|u b_{n+1}-b_{n+1}\right\|<\varepsilon_{0},\|u\| \leqq d \tag{2.4}
\end{equation*}
$$

After such a choice we have $\left\|u b_{i}-b_{i}\right\| \leqq\left\|u b_{i}-u u_{0} b_{i}\right\|+\left\|u u_{0} b_{i}-u_{0} b_{i}\right\|+$ $\left\|u_{0} b_{i}-b_{i}\right\| \leqq d \varepsilon_{0}+M \varepsilon_{0}+\varepsilon_{0}<\varepsilon$ for $i=1,2, \cdots, n$ and $\left\|u b_{n+1}-b_{n+1}\right\|<$ $\varepsilon_{0}<\varepsilon$, by (2.3) and (2.4), where $M=\max \left(\left\|b_{i}\right\|: i=1,2, \cdots, n\right)$ and $\varepsilon_{0}<(d+M+1)^{-1} \varepsilon$.

Lemma 2.2. If the subset $U$ of $A$ is a bounded weak left approximate identity for $B \subseteq A$, then $U \circ U=[a \in A \mid a=u \circ v ; u, v \in U]$, where $u \circ v=u+v-u v$, has the following property: for every pair of elements $a, b \in B$ and $\varepsilon>0$ there exists $u \in U \circ U$ such that

$$
\|u a-a\|<\varepsilon \quad \text { and } \quad\|u b-b\|<\varepsilon .
$$

Proof. Given an arbitrary pair of elements $a, b \in B$ and $\varepsilon>0$, let $v \in U$ be chosen so as to satisfy

$$
\begin{equation*}
\|a-v a\|<(1+d)^{-1} \varepsilon,\|v\| \leqq d \tag{2.5}
\end{equation*}
$$

For $b-v b$ and $\varepsilon>0$ there exists $w \in U$ such that

$$
\|(b-v b)-w(b-v b)\|<\varepsilon,\|w\| \leqq d
$$

Hence we obtain

$$
\|b-u b\|=\|b-(w+v-w v) b\|<\varepsilon
$$

and $\|a-u a\|=\|(a-v a)-w(a-v a)\|<(1+d)^{-1} \varepsilon+d(1+d)^{-1} \varepsilon=\varepsilon$, by (2.5), where $u=w+v-w v \in U \circ U$.

Lemma 2.3. If $U \subset A$ is a bounded weak left approximate identity for $A$, then $U$ is a bounded left approximate identity for $A$.

Proof. In virtue of Lemma 2.2 the set $U \circ U$ satisfies the assumption of Lemma 2.1 and it can be replaced by $U$.

Remark 2.1. A partial result concerning this problem has been
obtained by Reiter [10], §7, p. 30, Lemma 1.
LEMMA 2.4. If $U$ is a left bounded approximate identity for itself, then $U$ is the same for the Banach algebra generated by $U$ and in particular for $P$.

Proof. The proof follows from the argument used at the end of the proof of Theorem 2.1.

Theorem 2.1. Let $U$ be a bounded subset of the Banach algebra A satisfying the following conditions:
(a) For every $u \in U \cup U \circ U$ and $\varepsilon>0$ there exists an element $v \in U$ such that $\|u-v u\|<\varepsilon$.
(b) For every element of the form $u-v u$ with $u, v \in U$ there exists an element $w \in U$ such that

$$
\|(u-v u)-w(u-v u)\|<\varepsilon
$$

Then $U$ is a bounded left approximate identity for the Banach algebra generated by $U$ as well as for the right ideal generated by $U$. If $U$ is commutative, then Condition (b) can be dropped.

Proof. Let $a, b \in U$ and $\varepsilon>0$ be arbitrary. In virtue of Condition (a) there exists $v \in U$ such that $\|a-v a\|<(1+d)^{-1} \varepsilon$, where $d$ is the bound for $U$. Using (b) for $b-v b$ we can choose $w \in U$ such that

$$
\|(b-v b)-w(b-v b)\|<\varepsilon
$$

Thus, we obtain

$$
\|a-u a\|<\varepsilon \text { and }\|b-u b\|<\varepsilon
$$

where $u=w+v-w v \in U \circ U$. Suppose that $b \in U \circ U$. Then for $\varepsilon_{0}>$ 0 there exists $u_{0} \in U$ such that $\left\|b-u_{0} b\right\|<\varepsilon_{0}$. For $\varepsilon>0$ let $u \in U \circ U$ be chosen so as to satisfy

$$
\|a-u a\|<\varepsilon \text { and }\left\|u_{0}-u u_{0}\right\|<\varepsilon
$$

Hence, we obtain
$\|u b-b\| \leqq\left\|u b-u u_{0} b\right\|+\left\|u u_{0} b-u_{0} b\right\|+\left\|u_{0} b-b\right\| \leqq d \varepsilon_{0}+\|b\| \varepsilon_{0}+\varepsilon_{0}<\varepsilon$ for proper choice of $\varepsilon_{0}$. If $a, b \in U \circ U$, then for $\varepsilon_{0}>0$ choose $u_{1}, u_{2} \in$ $U$ such that

$$
\left\|a-u_{1} a\right\|<\varepsilon_{0} \quad \text { and } \quad\left\|b-u_{2} b\right\|<\varepsilon_{0} .
$$

Then we find $u \in U \circ U$ such that

$$
\left\|u_{1}-u u_{1}\right\|<\varepsilon_{0} \quad \text { and } \quad\left\|u_{2}-u u_{2}\right\|<\varepsilon_{0}
$$

After such a choice we have
$\|u a-a\| \leqq\left\|u a-u u_{1} a\right\|+\left\|u u_{1} a-u_{1} a\right\|+\left\|u_{1} a-a\right\| \leqq d \varepsilon_{0}+\|a\| \varepsilon_{0}+\varepsilon_{0}<\varepsilon$
for proper $\varepsilon_{0}$, and similarly
$\|u b-b\| \leqq\left\|u b-u u_{2} b\right\|+\left\|u u_{2} b-u_{2} b\right\|+\left\|u_{2} b-b\right\| \leqq d \varepsilon_{0}+\|b\| \varepsilon_{0}+\varepsilon_{0}<\varepsilon$
for proper $\varepsilon_{0}$. Thus, by Lemma 2.1, $U \circ U$ is a bounded left approximate identity for $U \cup U \circ U$ and so is $U$.

Now let $a=\sum_{i=1}^{n} u_{i} a_{i}$ and $b=\sum_{j=1}^{n} v_{j} b_{j}$, where $u_{i}, v_{j} \in U$ and $a_{i}, b_{j} \in A$ for $i=1, \cdots, n ; j=1, \cdots, m$. For $\varepsilon_{0}>0$ choose $u \in U$ such that $\left\|u_{i}-u u_{i}\right\|<\varepsilon_{0}$ and $\left\|v_{j}-u v_{j}\right\|<\varepsilon_{0}$ for $i=1, \cdots, n$ and $j=1, \cdots, m$. Then

$$
\|a-u a\| \leqq\left\|\sum_{i=1}^{n}\left(u_{i}-u u_{i}\right) a_{i}\right\|<\varepsilon_{0} \sum_{i=1}^{n}\left\|a_{i}\right\|<\varepsilon
$$

for sufficiently small $\varepsilon_{0}$. The same holds for $b$, that is $\|b-u b\|<\varepsilon$. The assertion of the theorem follows now from Lemma 2.1. If $U$ is commutative, then (b) follows from (a). For let $a=u-v u, u, v \in U$. Then $\|a-w a\|=\|(u-w u)-(u-w u) v\|<\varepsilon$ if $w \in U$ is such that $\|u-w u\|<(1+d)^{-1} \varepsilon$.

For the set $U \subset A$ let us define an infinite sequence of sets $\left\{P_{n}\right\}$ as follows. Put $P_{1}=U, P_{2}=U \circ U$. Then $P_{n}=U \circ P_{n-1}=U \circ U \circ \cdots \circ U$ ( $n$ times) is the set of all elements $p$ of the form $p=u+v-u v$, where $u \in U$ and $v \in P_{n-1}$. Let $P$ be the union of all sets $P_{n}$, that is $P=P_{1} \cup P_{2} \cup \cdots$.
3. Contractors. Definition 3.1 (see [2]). A subset $U$ of a Banach algebra $A$ is called a left contractor for $A$ if there is a positive constant $q<1$ with the following property.

For every $a \in A$ there exists an element $u \in U$ (depending on $a$ ) such that

$$
\begin{equation*}
\|a-u a\| \leqq q\|a\| \tag{3.1}
\end{equation*}
$$

A contractor $U$ is said to be bounded if $U$ is bounded by some constant $d$.

Lemma 3.1. Let $U$ be a left contractor for $A$. Then for arbitrary $a \in A$ there exists an infinite sequence $\left\{a_{n}\right\} \subset P$ such that

$$
\begin{equation*}
\left\|a-a_{n} a\right\| \leqq q^{n}\|a\| \quad \text { and } \quad a_{n} \in P_{n} \tag{3.2}
\end{equation*}
$$

Proof. By (3.1), let $u_{1} \in U$ be chosen so as to satisfy the inequality

$$
\begin{equation*}
\left\|a-u_{1} a\right\| \leqq q\|a\| \tag{3.3}
\end{equation*}
$$

Now let $u_{2} \in U$ be such that

$$
\begin{equation*}
\left\|\left(a-u_{1} a\right)-u_{2}\left(a-u_{1} a\right)\right\| \leqq q\left\|a-u_{1} a\right\| \tag{3.4}
\end{equation*}
$$

Hence, we obtain from (3.3) and (3.4)

$$
\left\|a-a_{2} a\right\| \leqq q^{2}\|a\|, \quad \text { where } \quad a_{2}=u_{2}+u_{1}-u_{2} u_{1}=u_{2} \circ u_{1} \in P_{2}
$$

We repeat this procedure replacing in (3.4) $u_{1}$ by $a_{2}$ and $u_{2}$ by $u_{3}$. Thus, we have $a_{3}=u_{3} \circ a_{2} \in P_{3}$. After $n$ iteration steps we obtain (3.2).

Definition 3.2. A subset $U \subset A$ is called a strong left contractor for $A$ if there exists a positive $q<1$ with the following property: for every arbitrary finite set of $a_{i} \in A, i=1,2, \cdots, n$, there is an element $u \in U$ such that

$$
\begin{equation*}
\left\|a_{i}-u a_{i}\right\| \leqq q\left\|a_{i}\right\|, \quad i=1,2, \cdots, n \tag{3.5}
\end{equation*}
$$

A left contractor $U$ is said to be quasi-strong if for arbitrary pair $a_{i} \in A(i=1,2$, ) of there exists an element $u \in U$ satisfying (3.5) with $n=2$.

Lemma 3.2. Let $U \subset A$ be a left quasi-strong contractor for $A$. Then for every arbitrary pair of $a, b \in A$ there exists an infinite sequence $\left\{c_{n}\right\} \subset P$ such that

$$
\begin{equation*}
\left\|a-c_{n} a\right\| \leqq q^{n}\|a\|,\left\|b-c_{n} b\right\| \leqq q^{n}\|b\| \tag{3.6}
\end{equation*}
$$

where $c_{n} \in P_{n}, n=1,2, \cdots$.
Proof. The proof is similar to that of Lemma 3.1.
A similar lemma holds for strong contractors.
Lemma 3.3. Let $U \subset A$ be a left strong contractor for $A$. Then for every arbitrary finite set of elements $a_{i} \in A, i=1,2, \cdots, m$, there exists and infinite sequence $\left\{c_{n}\right\} \subset P$ such that

$$
\left\|a_{i}-c_{n} a_{i}\right\| \leqq q^{n}\left\|a_{i}\right\| \quad \text { for } \quad i=1,2, \cdots, m
$$

where $c_{n} \in P_{n}, n=1,2, \cdots$.
Lemma 3.4. Suppose that $U$ is a left bounded contractor for $A$ satisfying the condition $(d+1) q<1$. Then $U \circ U$ is a left bounded quasi-strong contractor for $A$.

Proof. Let $\bar{q}=(d+1) q<1$ and let $a, b \in A$ be arbitrary. Then
choose $v \in U$ so as to satisfy

$$
\|a-v a\| \leqq q\|a\|,\|v\| \leqq d
$$

For $b-v b$ let $w \in U$ be such that

$$
\|(b-v b)-w(b-v b)\| \leqq q\|b-v b\|
$$

Put $u=w+v-w v \in U \circ U$. Then

$$
\|a-u a\|=\|(a-v a)-w(a-v a)\| \leqq q\|a\|+d q\|a\|=\bar{q}\|a\|
$$

and
$\|b-u b\|=\|(b-v b)-w(b-v b)\| \leqq q\|b-v b\| \leqq q\|b\|+d q\|b\|=\bar{q}\|b\| \cdot$
Thus, $U \circ U$ is a bounded left quasi-strong contractor for $A$ with contractor constant $\bar{q}<1$.

Theorem 3.1. A left bounded contractor $U$ for $A$ is a left bounded approximate identity for $A$ iff $U$ is a left approximate identity for itself.

Proof. Let $a, b \in A$ and $\varepsilon>0$ be arbitrary. Using Lemma 3.1, we construct a sequence $\left\{a_{n}\right\} \subset P$ for $a \in A$ and $\left\{b_{n}\right\} \subset P$ for $b \in A$ such that

$$
\begin{equation*}
\left\|a-a_{n} a\right\| \leqq q^{n}\|a\| \quad \text { and } \quad\left\|b-b_{n} b\right\| \leqq q^{n}\|b\| \tag{3.7}
\end{equation*}
$$

where $a_{n}, b_{n} \in P_{n}, n=1,2, \cdots$. In virtue of Lemma 2.4, for $a_{n}, b_{n} \in$ $P_{n} \subset P$ and $\varepsilon_{0}>0$ we can choose $u \in U$ so as to satisfy $\left\|a_{n}-u a_{n}\right\|<$ $\varepsilon_{0}$ and $\left\|b_{n}-u b_{n}\right\|<\varepsilon_{0}$. Then we obtain, by (3.7), $\|u a-a\| \leqq\left\|u a-u a_{n} a\right\|+$ $\left\|u a_{n} a-a_{n} a\right\|+\left\|a_{n} a-a\right\|<d q^{n}\|a\|+\varepsilon_{0}\|a\|+q^{n}\|a\|<\varepsilon$ for sufficiently large $n$ and proper choice of $\varepsilon_{0}$. A similar estimate holds for $b$ :

$$
\|u b-b\| \leqq d q^{n}\|b\|+\varepsilon_{0}\|b\|+q^{n}\|b\|<\varepsilon
$$

for sufficiently large $n$ and proper choice of $\varepsilon_{0}$. The proof of necessity is obvious.

Theorem 3.2. Let $U$ be a bounded left contractor for $A$. If $U$ satisfies the hypotheses of Theorem 2.1, then $U$ is a left bounded approximate identity for $A$.

Proof. The proof is the same as that of Theorem 3.1. The only difference is replacing there Lemma 2.4 by Theorem 2.1.

Theorem 3.3. Let $U$ be a left bounded contractor for $A$ satisfying
the condition $(d+1)^{3} q<1$. If $U$ is a weak left approximate identity for $U \circ U$, then $U$ is a bounded left approximate identity for A.

Proof. Let $q$ and $\varepsilon_{0}>0$ be such that

$$
(d+1)^{3} q<\left((d+1)^{3}+2 \varepsilon_{0}\right) q \leqq \bar{q}<1
$$

By Lemma 3.4, $U \circ U$ is a quasi-strong contractor for A with contractor constant $(d+1) q$. Hence, for arbitrary $a, b \in A$ and $u_{1} \in U$ there exists an element $w \in U \circ U$ such that $\left\|\left(a-u_{1} \alpha\right)-w\left(a-u_{1} a\right)\right\| \leqq$ $(d+1) q\left\|a-u_{1} a\right\|$ and $\left\|\left(b-u_{1} b\right)-w\left(b-u_{1} b\right)\right\| \leqq(d+1) q\left\|b-u_{1} b\right\|$. By assumption, there exists $v \in U$ such that $\|w-v w\|<\varepsilon_{0} q(d+1)^{-1}$. Therefore,

$$
\begin{aligned}
\left\|v\left(a-u_{1} a\right)-\left(a-u_{1} a\right)\right\| \leqq & \left\|v\left(a-u_{1} a\right)-v w\left(a-u_{1} a\right)\right\| \\
& +\left\|v w\left(a-u_{1} a\right)-w\left(a-u_{1} a\right)\right\| \\
& +\left\|w\left(a-u_{1} a\right)-\left(a-u_{1} a\right)\right\| \\
< & \left(d(d+1) q+\varepsilon_{0}(d+1)^{-1} q\right. \\
& +(d+1) q)\left\|a-u_{1} a\right\| .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left\|a-\left(v \circ u_{1}\right) a\right\| \leqq\left((d+1)^{2} q+\varepsilon_{0}(d+1)_{q}^{-1}\right)\left\|a-u_{1} a\right\| . \tag{3.8}
\end{equation*}
$$

Using the assumption again we can find $u_{2} \in U$ such that

$$
\begin{equation*}
\left\|\left(v \circ u_{1}\right)-u_{2}\left(v \circ u_{1}\right)\right\|<\|a\|^{-1} \varepsilon_{0} q\left\|a-u_{1} a\right\| . \tag{3.9}
\end{equation*}
$$

Hence, we have, by (3.8) and (3.9), $\left\|u_{2} a-a\right\| \leqq\left\|u_{2} a-u_{2}\left(v \circ u_{1}\right) a\right\|+$ $\left\|u_{2}\left(v \circ u_{1}\right) a-\left(v \circ u_{1}\right) a\right\|+\left\|\left(v \circ u_{1}\right) a-a\right\| \leqq\left[d\left((d+1)^{2} q+\varepsilon_{0}(d+1)^{-1} q+\right.\right.$ $\left.q \varepsilon_{0}+\left((d+1)^{2} q+\varepsilon_{0}(d+1)_{q}^{-1}\right)\right]\left\|a-u_{1} a\right\|$. Thus, we obtain,

$$
\begin{equation*}
\left\|a-u_{2} a\right\| \leqq \bar{q}\left\|a-u_{1} a\right\|, u_{2} \in U \tag{3.10}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
\left\|b-u_{2} b\right\| \leqq q\left\|b-u_{1} b\right\| \tag{3.11}
\end{equation*}
$$

Since $u_{1} \in U$ was arbitrary, by the same argument, for $u_{2} \in U$ there exists $u_{3} \in U$ satisfying Conditions (3.10) and (3.11) with $u_{2}$ and $u_{3}$ replacing $u_{1}$ and $u_{2}$ respectively. After $n-1$ iteration steps we obtain $\left\|a-u_{n} a\right\| \leqq \bar{q}^{n}\left\|a-u_{1} a\right\|<\varepsilon$ and $\left\|b-u_{n} b\right\| \leqq \bar{q}^{n}\left\|b-u_{1} b\right\|<\varepsilon, u_{n} \in$ $U$, for sufficiently large $n$. Since $a, b$ and $\varepsilon>0$ are arbitrary, it follows from Lemma 2.1 that $U$ is a bounded left approximate identity for $A$.

Using the same technique one can prove the following
Proposition 3.1. A left bounded quasi-strong contractor $U$ for $A$ is a left approximate identity for $A$ iff $U$ is a left weak approxi-
mate identity for an infinite subsequence of $\left\{P_{n}\right\}$.
Proof. Let $a, b \in A$ and $\varepsilon>0$ be arbitrary. Using Lemma 3.2 for the pair $a, b$ we construct an infinite sequence $\left\{c_{n}\right\}$ satisfying (3.6). Now let us choose $u \in U$ so as to satisfy $\left\|u c_{n}-c_{n}\right\|<\varepsilon_{0}$ for infinitely many $n$. Then we obtain for $a \in A$

$$
\begin{aligned}
\|u a-a\| & \leqq\left\|u a-u c_{n} a\right\|+\left\|u c_{n} a-c_{n} a\right\|+\left\|c_{n} a-a\right\| \\
& <d q^{n}\|a\|+\varepsilon_{0}\|a\|+q^{n}\|a\|<\varepsilon
\end{aligned}
$$

for some sufficiently large $n$ and proper choice of $\varepsilon_{0}$. A similar estimate holds for $b$ :

$$
\|u b-b\|<d q^{n}\|b\|+\varepsilon_{0}\|b\|+q^{n}\|b\|<\varepsilon
$$

for some sufficiently large $n$ and proper choice of $\varepsilon_{0}$. The proof of necessity is obvious.

As an immediate corollary to Proposition 3.1 we obtain the following

Proposition 3.2. A left bounded weak approximate identity $U$ for $U$ is a left approximate identity for $A$ iff $U$ is a left quasi-strong contractor for $A$.

Proposition 3.3. Suppose that $U$ is a left bounded contractor for $A$ satisfying the condition $(d+1) q<1$. Then $U$ is a left bounded weak approximate identity for $A$ iff $U$ is the same for $U \circ U$.

Proof. Let $\bar{q}$ and $\varepsilon_{0}$ be such that

$$
\begin{equation*}
(d+1) q<\left(d+1+\varepsilon_{0}\right) q \leqq \bar{q}<1 \tag{3.12}
\end{equation*}
$$

For arbitrary $a \in A$ let $u_{1} \in U$ be such that $\left\|u_{1} a-a\right\| \leqq q\|a\|$. Then choose $v_{1} \in U$ so as to satisfy

$$
\left\|v_{1}\left(u_{1} a-a\right)-\left(u_{1} a-a\right)\right\| \leqq q\left\|u_{1} a-a\right\|,
$$

or equivalently, $\left\|a_{2} a-a\right\| \leqq q\left\|u_{1} a-a\right\|$ with $a_{2}=v_{1} \circ u_{1} \in U \circ U$. By assumption, for $a_{2}$ there is an element $u_{2} \in U$ such that

$$
\left\|u_{2} a_{2}-a_{2}\right\|<\varepsilon_{0}\left\|a_{2} a-a\right\| \cdot\|a\|^{-1}
$$

Hence,

$$
\begin{aligned}
\left\|u_{2} a-a\right\| & \leqq\left\|u_{2} a_{2}-u_{2} a_{2} a\right\|+\left\|u_{2} a_{2} a-a_{2} a\right\|+\left\|a_{2} a-a\right\| \\
& <d q\left\|u_{1} a-a\right\|+\varepsilon_{0}\left\|a_{2} a-a\right\|+q\left\|u_{1} a-a\right\| \\
& \leqq\left(d+1+\varepsilon_{0}\right) q\left\|u_{1} a-a\right\| \\
& \leqq \bar{q}\left\|u_{1} a-a\right\|,
\end{aligned}
$$

by (3.12). Thus, for arbitrary $u_{1} \in U$ there exists an element $u_{2} \in U$ such that

$$
\left\|u_{2} a-a\right\| \leqq \bar{q}\left\|u_{1} a-a\right\|
$$

After $n$ iteration steps we obtain

$$
\left\|u_{n} a-a\right\| \leqq \bar{q}^{n}\left\|u_{1} a-a\right\|<\varepsilon\left(u_{n} \in U\right)
$$

if $n$ is sufficiently large.
4. Factorization theorems. Let $A$ be a Banach algebra and let $X$ be a Banach space. Suppose that there is a composition mapping of $A \times X$ with values $a \cdot x$ in $X . \quad X$ is called a left Banach $A$-module (see [8], II (32.14)), if this mapping has the following properties:
(i) $(a+b) \cdot x=a \cdot x+b \cdot x$ and $a \cdot(x+y)=a \cdot x+a \cdot y$;
(ii) $(t a) \cdot x=t(a \cdot x)=a \cdot(t x)$;
(iii) $(a b) \cdot x=a \cdot(b \cdot x)$;
(iv) $\|a \cdot x\| \leqq C\|a\| \cdot\|x\|$
for all $a, b \in A ; x, y \in X$; real or complex $t$, where $C$ is a constant $\geqq 1$. Denote by $A_{e}$ the Banach algebra obtained from $A$ by adjoining a unit $e$, and with the customary norm $\|a+t e\|=\|a\|+|t|$. Properties (i)-(iv) hold for the extended operation $(a+t e) \cdot x=a \cdot x+t x$.

The well-known factorization theorems for Banach algebras and their extension to Banach $A$-modules are usually proved under the hypothesis that the Banach algebra $A$ has a bounded (left) approximate identity. Since, by Lemma 2.3 the existence of a bounded weak left approximate identity implies the existence of a bounded left approximate identity, all factorization theorems in question remain true under the weaker assumption of the existence of a bounded weak left approximate identity for $A$. However, a short proof of the basic factorization theorem can be given without proving the existence of a bounded left approximate identity for $A$. This proof is based on Lemma 2.2 and on the argument used in the proof of Theorem 2 in [3].

Let $U$ be a bounded weak left approximate identity for $A$. Put $W=U \circ U$ and denote by $d$ the bound for $W$.

Theorem 4.1. Let $A$ be a Banach algebra having a bounded weak left approximate identity $U$. If $X$ is a left Banach $A$-module, then $A \cdot X$ is a closed linear subspace of $X$. For arbitrary $z \in A \cdot X$ and $r>0$ there exist an element $a \in A$ and an element $x \in X$ such that $z=a \cdot x,\|z-x\| \leqq r$, where $x$ is in the closure of $A \cdot z$.

Proof. It is easy to see that if $z$ is in the closure of $A \cdot X$, then for arbitrary $a \in A$ and $\varepsilon>0$ there exists $u \in W$ such that

$$
\begin{equation*}
\|u a-a\|<\varepsilon \text { and }\|u \cdot z-z\|<\varepsilon . \tag{4.1}
\end{equation*}
$$

In fact, for $\varepsilon_{0}>0$ there exist $b \in A$ and $y \in X$ such that $\|b \cdot y-z\|<$ $\varepsilon_{0}$. Since $U$ is a weak bounded left approximate identity for $A$, by Lemma 2.2, for $\varepsilon_{0}>0$ there exists $u \in W$ such that $\|u a-a\|<\varepsilon_{0}$ and $\|u b-b\|<\varepsilon_{0}$. Hence, we obtain

$$
\begin{aligned}
\|u \cdot z-z\| & \leqq\|u \cdot z-u b \cdot y\|+\|u b \cdot y-b \cdot y\|+\|b \cdot y-z\| \\
& \leqq d C\|z-b \cdot y\|+\varepsilon_{0} C\|y\|+\varepsilon_{0} \\
& <(d C+C\|y\|+1) \varepsilon_{0}<\varepsilon
\end{aligned}
$$

for sufficiently small $\varepsilon_{0}$. Now put $a_{0}=e, a_{1}=(2 d+1)^{-1}\left(u_{1}+2 d e\right) a_{0}=$ $a_{1}^{\prime}+q e$, where $a_{1}^{\prime} \in A, u_{1} \in W, a_{n+1}=(2 d+1)^{-1}\left(u_{n+1}+2 d e\right) a_{n} ; n=1,2, \cdots$. We have $a_{n}=a_{n}^{\prime}+q^{n} e$, where $a_{n}^{\prime} \in A, q=2 d(2 d+1)^{-1} ; a_{n}^{-1} \in A_{e} ; a_{n+1}-a_{n}=$ $(2 d+1)^{-1}\left(u_{n+1} a_{n}-a_{n}\right)=(2 d+1)^{-1}\left(u_{n+1} a_{n}^{\prime}-a_{n}^{\prime}\right)+(2 d+1)^{-1} q^{n}\left(u_{n+1}-e\right) ;$ $a_{n+1}^{-1}-a_{n}^{-1}=a_{n}^{-1}(2 d+1)\left(u_{n+1}+2 d e\right)^{-1}-a_{n}^{-1}=a_{n+1}^{-1}\left(e-(2 d+1)^{-1}\left(u_{n+1}+2 d e\right)\right)=$ $(2 d+1)^{-1} a_{n+1}^{-1}\left(e-u_{n+1}\right)$. Let $x_{n}=a_{n}^{-1} \cdot z$. Then we obtain

$$
\left\|x_{n+1}-x_{n}\right\| \leqq C(2 d+1)^{-1}\left\|a_{n+1}^{-1}\right\|\left\|z-u_{n+1} \cdot z\right\|
$$

Since $\left\|a_{n}^{-1}\right\| \leqq\left(2+d^{-1}\right)^{n}$, let us choose $u_{n+1}$ so as to satisfy (4.1) with $a=a_{n}^{\prime}$ and $\varepsilon=\varepsilon_{n}=C^{-1}(2 d+1)\left(2+d^{-1}\right)^{-1-n_{2}-1-n_{r}}$. Hence, we have $\left\|u_{n+1} a_{n}^{\prime}-a_{n}^{\prime}\right\|<\varepsilon_{n}$ and $\left\|x_{n+1}-x_{n}\right\| \leqq 2^{-1-n_{r}}$. It follows that the sequences $\left\{\alpha_{n}\right\}$ and $\left\{x_{n}\right\}$ converge toward $a \in A$ and $x \in X$, respectively. Evidently, $z=a \cdot x$ and $\|z-x\| \leqq \sum_{n=0}^{\infty}\left\|x_{n+1}-x_{n}\right\| \leqq r$. By (4.1), $z$ is in the closure of $A \cdot z$ and so are $x_{n}=a^{-1} z$ and, consequently, $x$. Thus, $A \cdot x$ is closed and its linearity follows from the following observation. For arbitrary $a, b \in A ; x, y \in X$ and $\varepsilon>0$ let $u \in W$ be such that $\|u a-a\|<C^{-1}(\|x\|+\|y\|)^{-1}$ and $\|u b-b\|<C^{-1}(\|x\|+$ $\|y\|)^{-1} \varepsilon$. Then we have

$$
\begin{gathered}
\|a \cdot x+b \cdot y-u(a \cdot x+b \cdot y)\|=\|(a-u a) \cdot x+(b-u b) \cdot y\| \\
<C\|a-u a x\|\|x\|+C\|b-u b\|\|y\| \\
<\varepsilon .
\end{gathered}
$$

That is $a \cdot x+b \cdot y$ is in the closure of $A \cdot X$.
Remark 4.1. Theorem 4.1 generalizes the factorization theorems of Cohen [4], Hewitt [7], Curtis and Figa-Talamanca [6] [see also Koosis [9], Collins and Summers [5], Hewitt and Ross [8]: (32.22), (32.23), (32.26)].

In terms of contractors Theorem 4.1 can be formulated as
Theorem 4.2. Suppose that the Banach algebra $A$ has a left bounded (by d) contractor $U$ satisfying one of the following conditions:
(a) $U$ is a left approximate identity for itself.
(b) $U$ satisfies the hypotheses of Theorem 2.1.
(c) $(d+1) q<1$ and $U$ is a weak left approximate identity for $U \circ U$.
Then all assertions of Theorem 4.1 hold.
Notice that in Case (c) Proposition 3.3 is used.
A corollary to Theorem 4.1 is the following generalization of the well-known theorem [see [8], II (32.23)].

Theorem 4.3. Let $A$ be a Banach algebra with a weak bounded left approximate identity $U$. Let $\zeta=\left\{z_{n}\right\}$ be a convergent sequence of elements of $A \cdot X$, and suppose that $r>0$. Then there exists an element $a \in A$ and $a$ convergent sequence $\xi=\left\{x_{n}\right\}$ of elements of $A \cdot X$ such that:
$z_{n}=a \cdot x_{n}$ and $\left\|z_{n}-x_{n}\right\| \leqq r$ for $n=1,2, \cdots$, where $x_{n}$ is in the closure of $A \cdot z_{n}$.

Proof. Let $\mathscr{O}$ be the Banach space of all convergent sequences $\xi=\left\{x_{n}\right\}$ of elements of the closed linear subspace $A \cdot X$ of $X$ with the norm $\|\xi\|=\sup \left(\left\|x_{n}\right\|: n=1,2, \cdots\right)$. Consider the left Banach $A$-module $\mathscr{X}$ with $a \cdot \xi=\left\{a \cdot x_{n}\right\} \in \mathscr{X}$. For $\xi \in \mathscr{X}$ put $\xi_{m}=\left\{x_{n}\right\} \in \mathscr{X}$ with $x_{n}=x_{m}$ for $n \geqq m$. By Theorem 4.1 it is sufficient to show that every $\xi \in \mathscr{X}$ is in the closure of $A \cdot \mathscr{X}$. But $\xi_{m} \rightarrow \xi$ as $m \rightarrow \infty$. Therefore, let $\xi_{m}=\left\{a_{n} \cdot x_{n}\right\} \in \mathscr{X}$ with $a_{n} \cdot x_{n}=a_{m} \cdot x_{m}$ for $n \geqq m$. By Lemma 2.3 for $\varepsilon_{0}>0$ there exists $u \in A$ such that

$$
\left\|u a_{i}-a_{i}\right\|<\varepsilon_{0} \quad \text { for } \quad i=1, \cdots, m
$$

Hence, we have

$$
\left\|u \alpha_{i} \cdot x_{i}-a_{i} \cdot x_{i}\right\|<C \varepsilon_{0}\left\|x_{i}\right\|<\varepsilon
$$

for sufficiently small $\varepsilon_{0}$ and, consequently, $\left\|u \cdot \xi_{m}-\xi_{m}\right\|<\varepsilon$, where $\varepsilon>0$ is arbitrary.

Remark 4.1. In Theorem 4.3 convergent sequences can be replaced be sequences convergent toward zero. Then $\mathscr{X}$ will be the space of all sequences of $A \cdot X$ convergent toward zero.

## References

1. M. Altman, Inverse differentiability, contractors and equations in Banach spaces, Studia Mat. 46 (1973), 1-15.
2. ——, Contracteurs dans les algebres de Banach, C. R. Acad. Sci. Paris, t. 274 (1972), 399-400.
3. -, Factorisation dans les algèbres de Banach, C. R. Acad. Sc. Paris, t. 272 (1971), 1388-1389.
4. Paul J. Cohen, Factorization in group algebras, Duke Math. J., 26 (1959), 199-205.
5. H. S. Collins and W. H. Summers, Some applications of Hewitt's factorization theorem, Proc. Amer. Math. Soc., 21 (1969), 727-733.
6. P. C. Curtis, Jr., and Figa-Talamanca, Factorization theorems for Banach algebras, in: Function algebras, edited by F. J. Birtel. Scott, Foresman and Co., Chicago. Ill., (1966), 169-185.
7. E. Hewitt, The ranges of certain convolution operators, Math. Scand., 15 (1964), 147-155.
8. E. Hewitt, and K. A. Ross, Abstract Harmonic Analysis, II, New York•Heidelberg. Berlin, 1970.
9. P. Koosis, Sur un théoreme de Paul Cohen, C. R. Acad. Sc. Paris, 259 (1964), 13801382.
10. H. Reiter, $L^{1}$-Algebras and Segal Algebras, Lecture Notes in Mathematics, SpringerVerlag, 1971.

Received March 1, 1972.
Louisiana State University

