PACIFIC JOURNAL OF MATHEMATICS
Vol. 49, No. 2, 1973

ON NORMAL SUBGROUPS OF DIFFERENTIABLE
HOMEOMORPHISMS

JAMES V. WHITTAKER

The algebraic side of the group of all homeomorphisms
of an interval or a circle has been studied exhaustively. In
this paper the objects of study are the homeomorphisms with
local polynomial approximations at each point. The algebraic
side of the group of all such homeomorphisms is examined,
particularly the minimal normal subgroup and the commuta-
tor subgroup. The results are like those in the topological
case.

The normal subgroups of the group H(X) of all homeomorphisms
from a locally euclidean manifold X onto itself have been studied by
various authors for nearly forty years. The minimal normal subgroup
of H(X) has long been known to be the group SH(X) generated by
the members of H(X) that are the identity outside some euclidean
ball, and the manner of proof shows us also that SH(X) has no proper
normal subgroups of its own. When these same questions are asked
of the group CD,(X) of all n-times continuously differentiable homeo-
morphisms, then the answers are much harder to come by. Recently
D. B. A. Epstein [1] showed that the minimal normal subgroup and
the commutator subgroup C, of SCD,(X) are one and the same and
that C, is dense in SCD,(X). It is now known that C, = SCD,(X)
when X is any euclidean space from some work of W. Thurston to
appear.

In this paper we shall take X to be 1-dimensional and study not
CD,(X) but the group E£,(X) of all homeomorphisms with local poly-
nomial approximations of degree n at each point of X. The minimal
normal subgroups and the commutator subgroups of E,(X) and SE,(X)
are exhibited, and SE,(X) is shown to have no proper normal sub-
groups of its own. The results are just like those in [2] for H(X)
and SH(X).

2. Diffeomorphisms. Let X be the line E' or the circle S! with
local coordinate systems, and H(X) the group of all homeomorphisms
from X onto itself. We shall single out certain subgroups of H(X),
writing &’ for the first and A for the nth derivative of some % in
H(X). For each integer n =1 we put

D,(X) = {he HX): (x) + 0 and h™(x) exists for each z in X},

CD,(X) ={heD,(X): k'™ is continuous},
595
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D(X) = N{D(X):m =1} = N{CD(X):n = 1} .

Evidently D,(X), CD,(X), and D (X) are groups.
A somewhat different family E,(X) consists of those # in H(X)
which can be written as

(1) k(p+x)=h(p)+ga,.xi+xﬂe(x), wel,,

where p is any point in X, U, is a neighborhood of 0, a, = 0, and
e(xr) — 0 as ©— 0. The coefficients a; will depend upon p. Evidently
CD,(X)c E,(X). To see that E,(X) is a group, we will need the help
of a lemma.

LEMMA 1. Given the integer n =1 and the polynomial P(x);=
ax + axt + --- + 8" with a, %0, we can find a polynomial
Q) = by + by’ + +-- + by" with b, # 0 satisfying

lim® = QP@) _ o
x"b

z—0

Proof. The equation y = P(x) defines  as an implicit function of
y in some neighborhood V of y = 0, and we can compute its Taylor
series with remainder. Thus

o =0b,+ by + by + -+ + by + y"R(y),
where R(y) —0 as ¥y —0. Now b, = 0 and
1 = P'(x)2'(y) = P'(0)2'(0) = a,2'(0) ,

so that b, == 0 and we can solve for x‘“(0), hence also b;, by repeated
differentiation. If we put Q(y) = by + by* + -+ + b,y", then

2 = QP®@) _ jip (P@)"R(P()

lim x x—0 X

z—0

= a? lim R(P(x)) =0
z—0

which is the result that we seek.
LEMMA 2. The family E.(X) is a group.

Proof. Given some h in H(X) satisfying (1), we put h(p) = ¢ and
Mp+ ) =qg+ y. Thus (1) reads

Y = ﬁ a;xt + xre(x) = P(x) + xme(z) , veU,.

We let Q(y) be the polynomial from Lemma 1 and define d(y) by the
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equation
= Q) + y"dy) , ye Ve,

where V, is a neighborhood of 0 inside the V from Lemma 1 and so
small that x lies in U,. Now

lim d(y) = lim &= QW) _ 1, & — AP@) + ¢"e(x)

Y0 y—0 Y y—0 yn
— lim 2" . & — Q@) — bare(x) — x"S(x)
2—0 y"‘ "

= brlim (“’_T%@l — be(x) — S(x)) =0,

z—0

where S(#)— 0 as x— 0. This means that 2™ belongs to E.(X).
Suppose next that g belongs to E,(X) and

(2) 9(q + ) = 9(@) + St + v'2) , veV,,

where ¢ is any point in X, V, is a neighborhood of 0, ¢, # 0, and
e(y) —0 as y—0. If we put g(9) = r and g(q + y) = r + 2, then (2)
reads

z= Z‘l ay’ + yre(y) = R(y) + y"e(y) , yeV,.
We define d(x) by the equation
z = R(P(»)) + 2 d(x) , zeW,,

where W, is a neighborhood of 0 inside U, and so small that y lies
in V,. Now

limd(z) = lim

z—0 z—0

2 — R(P(x))
x'n

_ lim BP@) + (@) + y'8) — R(P@))

20 x"

= lim 98"6@) + 2" T@) | o2 im z() = 0,
y—0

20 "

where T(x) — 0 as # — 0. This means that gh belongs to E,(X), and
E.(X) is a group.

LEMMA 3. If p is a limit point of the set K(h) of all fixzed points
of h, them P(x) = .

Proof. We are given a sequence {x,} converging to 0, where
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T # 0, K(p + ®,) = p + 2, for each m, and of course i(p) = p. Putting
¢ =g, in (1), we have

Tp = X, + @225 + -+ + @27 + xhe(x,) .
If we divide out by xz, and let m — o, then we get a, = 1. If we
repeat this process, then we get a,= --- =a, =0. Therefore,
P(x) = .

LEMMA 4. If P(x) = x for every p in X, then h is a tramslation
of the line or a rotation of the circle.

Proof. We have

(p) = lim (p + 2) — h(p) _ lim &+ z"e(x) _ 1
X

-0 X z—0

for each p in X.
Evidently E.(X)> E,,,(X), for we can write

Mp + 2) = Mp) + g,l a;x" + x"te(x)
= Mp) + i ;0" + (A + we(x)) ,

where d(z) = @,.,% + xe(x)—0 as x—0. We put E(X) = N{E.(X):
n = 1} and note that E.(X) > D.(X).

LeMMA 5. Suppose that
hp + @) = WD) + >, a:z* + a"e(w)
=1
n+1
= h(p) + 3. @’ + a"He(x) , xeU,.
Then a; = a@; for 1 <1< n.
Proof. We have
i a;xt + xre(x) = Eldixi + z"e(x) , xeU,.
i=1 i=1
If we divide out by « and let x— 0, then we get a, = @,. If we
repeat this operation, then we get a, = @,, -+, @, = @..
Lemma 5 shows us the form of a member 2 of E.(X). In some
neighborhood of each point p we can write & as a partial sum of a

certain power series with a remainder that goes to zero faster than
the highest power of x retained, and the neighborhood depends on this

power.
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From the simple faet that D,(X) = E(X) we are led to enquire
whether D,(X) = E,(X) for other values of n. To see that this is
not so, we choose % in H(X) so that i(p,) = p, at some point p, in X,

Mp, + %) = py + x + 2®sin 1/x

for « in a sufficiently small neighborhood to the right of 0, A(p) = »
for p in some neighborhood to the left of 0, and & beyond these
neighborhoods has derivatives of all orders with first derivative that
is never zero. Evidently % belongs to E,(X). But %'(p,) =1,

W(p, + x2) =1 — xcosl/x + 3x*sin1/x,

and A" (p,) is not defined. Thus % does not belong to D,(X), and Ey(X)
does not lie in Dy(X). In the same way we can show that E,,(X)
does not lie in D, (X) when we put

Wp, + ) = p, + & + 2 sin1/x .
If we consider the homeomorphism ¢ given in part by
g(p, + ) = p, + = + @*sin1/x,

then we find that g belongs to E,(X) but not to CD,(X), and E,(X)
does not lie in CD,(X). In the same way we can show that E,,_,(X)
does not lie in CD,(X) when we put

9(po + @) = po+ ¢ + 2 sinl/x .
Finally, if we choose the homeomorphism f given in part by
f(py + 2) = Dy + & + e sin &/*,

then f evidently belongs to E.(X). But

cose’® | e Y gin e'/”
f I(po + x) =1- +
x* x°

shows us that f’(p, + «) has no limit as —0. Thus f does not belong
to CD,(X), and E.(X) does not lie in CD,(X). In particular, D.(X)
is a proper subset of E_.(X).

3. Minimal normal subgroups. We say that a member % of
H(X) has compact support if X — K(h) lies in a compact set different
from X. For any subset G of H(X), we let SG be the group generated
by those members of G with compact support. If G is a group, then
SG is evidently a normal subgroup of G. We note that if U, V are
open subsets of X, and U lies in a compact set different from X, then
some member of SD. (X) maps U into V.
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THEOREM 1. If G is a subgroup of H(X), SE.(X) lies in the
normalizer of G, and G has more than one member, then G D SE, (X).

Proof. Suppose that ¢, belongs to G and is not the identity.
Then g, moves some point p, in X, and we can find a neighborhood
U, of p, which does not meet ¢g,(U,). We put

hpe +2) =py+2—e"=p,+2+ Sk), 0=r=zu,

where w is chosen so small that Ai(p) > 0 for p, < p < Py + u = p,
and (p,, p. +u) C U,. Since h(p) < p there, the sequence {p,} given by
Drer = hi(p,) will converge monotonely to p,. We can define %, on the
rest of X so as to be supported on (p, p, + %) and belong to E,.(X),
for S(x)/xz"—0 as x— + 0 tells us that &, satisfies (1) to the right
of p = p, with P(x) = 2. Evidently g;'h;'g.h, = ¢, agrees with &, on
U, and belongs to G. Suppose that f is any member of SE,(X), and
X — K(f) = U lies in a compact set different from X. If we choose
fo in SD.(X) so that f(U) < (p., ».), then f,ff;* = f, is supported on
(p,, ) and belongs to SE,(X). If we can show that f, belongs to G,
then f must also belong to G, and G2 SE,(X). We first note that

gi([psy 2.1) = [Diey Dics] k=0,1,2 ..
We then define

g{vflgl_k(p) fOI' p in [karZ; pk—H]’ k = 07 1, 27 M)

h(p) =
B =1 for pin X — (o 51 -

Lemma 3 tells us that we can join two pieces of % together at p = p,
so as to satisfy (1) there, for e(x) may be defined in different ways
on either side of p. Thus (1) holds at every point p of X except
possibly » = p,. To see that % satisfies (1) at »p = »,, we observe
that if p lies in [D44s, Dp+:], then so does i(p). If we put p, = p, + 2,
then

lim | (o + @) — Py — | < lim Letr = Drse
§=0 x" T ke (Dprz — Do)”
= lim Pr+ = I Disr) = lim — S(#;+,)
k= (R Pr1) — Do)" koo (Bpy + S(@44))"
— hm - S(xkﬂ)/mﬁ—l

T oo (1+S(wk+1)/xk+l)n B

This means that '» satisfies (1) at » = p, with P(x) = 2, and so &
belongs to SE,(X). Now ghgr* is supported on (p, »,) and agrees
with & there, for if p lies in [p,.., Dpy] and & = 1, then

g:hg7'(p) = 9.9 1975 97 (p) = gtfi97M(p) = M(p) .
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Therefore, hg,h'g7* = f. must lie in G, and our proof is complete.
COROLLARY 1. Theorem 1 remains true if we replace n by oo.

Proof. We have already seen that £, satisfies (1) to the right of
» = p, with P(x) = » for every value of ». Hence, we can define £,
on the rest of X so as to be supported on (p,, p. + ) and belong to
E.(X). The rest of the proof is the same as before with n replaced
by oo.

COROLLARY 2. SE.(X) and SE(X) are simple groups.
COROLLARY 3. SD(X) is a simple group.
Proof. Evidently E(X) = D/(X).

COROLLARY 4. The commutator subgroup of SE.(X) is SE.(X),
and the same for SE.(X).

Proof. Some commutators are evidently not the identity.

For any subset G of H(X), we write G* for the family of all
orientation-preserving members of G, and G~ for G — G*. If G is a
group, then G* is evidently a normal subgroup of G with index one
or two.

COROLLARY 5. If X =8 then ENX) and EL(X) are simple
groups.

Proof. It is enough to show that E;(X) = SE,(X). To see this,
we use the same method as for the case H*(X) = SH(X). Given h
in Fj(X), we can piece together a member g of E;(X) that agrees
with % on a small open subset of X and agrees with the identity on
another small open subset of X. Then gand g~'% both belong to SE(X),
and so does g(¢9'h) = h. The same argument works for Ei(X).

4. Behavior at the endpoints. From now on we shall deal only
with the space X = [—1, +1] and think of £* as the subset (—1, +1)
of X. For any subset G of H(X) we put

S_G={heG: K(h)D][-1, p) for some p > — 1},
S.G = {heG: K(h) D(p, +1] for some p < + 1}.
Evidently S.GN S,G = SG, and both are normal subgroups of G
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provided that G is a subgroup of H*(X). Thus S_E,(X), S, E.(X) are
normal subgroups of E;(X), and the same is true if we replace n by
. The normal subgroups of H*(X) are few in number, namely
S_H(X), S;H(X), and SH(X). Those of H(X) are even fewer, namely
H*(X) and SH(X). Proofs are given in [2]. On the other hand,
those of K} (X), EL(X), E.(X), and E(X) are very numerous. Our
aim in the rest of this paper is to show how some of them may be
constructed.

The behavior of a member % of E,(X) at p = —1 or + 1 is des-
cribed by (1), namely

M—1+ 2) = (—1) + P_(x) + z"d(x) , xe U,
M+1+ x) = (+1) + P(z) + 2"e(z) , xe U,

where d(z), e(x) - 0as 2 — 0, U_, = [0, +u), U, = (—wu, 0], and » > 0.
Let 4, (X) be the family of those % in E,(X) for which P_(x) = =,
4,.(X) the family for which P,(x) = x, and 4, (X) N 4,.(X) = 4.(X).
Evidently all three are normal subgroups of E,(X). To see that
4,(X) is also a normal subgroup of FE,.(X), we have to check that
f4(X)f C4,(X) for each f in E(X). Now f(+1)= —1= f'(+1),
and Lemma 2 says that f satisfies (1) with P_(P.(x)) = © = P.(P_(x)).
Thus fhf™" belongs to 4,(X) whenever k does, and 4,(X) is normal
in E,(X). Lemma 3 tells us that if % belongs to E,(X), and the
derived set of K(h) includes +1, then % belongs to 4,.(X), whereas
if it includes —1, then & belongs to 4, (X). These results are still
valid when we replace # by «, where P,(x) and P_(x) are now power
series in z.

Other normal subgroups of E,(X) can also be constructed. Choose
a sequence {p,} converging to —1, where p, = -1+ 2,0 <z, < +1,
Xpr/2, — L as k— o, and 0 < L < 1. Then choose a sequence {q.}
converging to —1, where ¢, = 9, + ¥, 0 <y, < +1, and y,/a7 —0
as k— o for every m. We define a function g in H(X) so that
X — K(9) = U {(ns, ¢,)}, g satisfies (1) at every point p in X except
possibly »p = —1, and P(z) =« at p = p, or ¢;.. To see that (1) holds
at p = —1, we note that if « lies in (p,, g.), then so does g(z). Thus

lim'g(_l + ) —g(=1) — x| < ]imillv_ =0,

240 x" k—oo _q;,’;"

and (1) holds with P_(x) = . Since P,(z) = =, we have ¢ in 4,(X).
The normal subgroup G of E,(X) generated by g consists of products
of conjugates in E,(X) of g, and G is clearly larger than SE,(X). To
see that G is a proper subgroup of 4,(X), we will show that for every
member f of G, the derived set of K(f) includes —1. The same
argument shows that it includes +1 as well. If % belongs to E,(X)
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and satisfies (1) at p = —1 with P(z) = P*(x) = a,x + ---, then we
shall put &(p,) = K(—1) + 2} and h(g,) = h(p,) + yi. We have

lim% = lim Pr(w) + @pe* (%) — lim Frerr — =L,

koo ke PX(my) + wie* () koo 2y
(3) lim ?/E = lim Pi(xk+%)‘Pf(x{c)+(xk+yk)"e*(xk+yk)—x}36*(xk)

ke (X)) oo (Px(x)) + wie*(w)”
= lim &Y% — ¢,
ke QI

Suppose that f is the product of j conjugates g; = hyghi'(1 < 7 < J)
of g, where f = g;---9,. Our work would be made easier if any h; lay
in E(X), for then K(g;) = hi(K(9)) would include a neighborhood of
—1. So we shall assume that &, lies in E(X) for 1 <7< j. We put

pi’ = h(pe) = h(—1) + a7,
0¥ = hi(2:) = h(ps) + yi? l<i<y.
From (3) we know that

lim 2, /2 = L, lim 5 [(a)" = 0 .
k—oco

koo
Given any number u > 0, we choose k, so large that k = &, implies
wfl /o = L* <1, ylfzy =1 - L¥2j, 1=i=j,

and put
k(@) = sup{k: 2 > w or k = ki}, 1<1<y.

From K(g;) = h(K(9)) and K(f) DM {K(9:):1 <1 < j} we see that

(4) X —-KMNMNI-1, =1+ w)cU{(p, ¢i”): k> k@), 1 =1 = J}.

Now the sum of the lengths of all the intervals on the right side of
(4) is

g oo @ < g £ 1 — L* )
22 wWE X —
i=1 k=k(s)+1 i=1 k=k(i)+1 29
1— L5 & & 1— L*J al)
< x’v)i L* L— kit)+1
S T 3 S el (L) = 2 S e
1 U
S —_— U = —
2 gﬁ 2

These intervals could not possibly cover (—1, —1 + u), for otherwise
a finite chain of them would reach from —1 + u/5 to —1 + 4u/5, which
is impossible. Hence, X — K(f) does not contain (—1, —1 + u) for
any % >0, and the derived set of K(f) includes —1. Therefore, G
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is not 4,(X). Evidently the same argument also shows that we can
make g belong to 4..(X), and the normal subgroup of E. (X) generated
by ¢ is neither SE.(X) nor 4.(X). We shall now sum up these
results.

THEOREM 2. There are normal subgroups of E.(X) that lie between
SE(X) and 4,(X). The same is true of normal subgroups of E.(X)
between SE(X) and 4.(X).

We let e be the identity element of H(X) and call a member &
of H(X) an involution if #*=e. Evidently an involution different
from e has just one fixed point in (—1, +1).

LEMMA 6. Suppose that for i = 1,2 there is an involution h; of
E.(X) with fived point p; that satisfies (1) at p = p; with P(x) = Py(z).
If there is a polynomial Q(x) = ax + a2 + -+ with a, > 0 such that
PQ(x) and QPyx) agree in all terms of degree < m, then there is a
member f of S_E.(X) such that h,f = fh.. We may also choose f in
S.E(X), and the result remains true if we replace n by oo.

Proof. We choose &, in SE,(X) so that h(p,) = p, and &, satisfies
(1) at p = p, with P(z) = Q(x). We shall assume that 4, is different
from e, so that &; lies in E,(X). Thus h, = h;'h,h, is an involution
of E,(X) with fixed point p, and satisfying (1) at »p = p, with P(x) =
Py(z). Our result will be proved if we can find g in S_E,(X) so that
h,g = gh,. We put

D for —1=p=0p,,

o(p) = {hahz(p) for p, =p= +1.

Evidently g belongs to S_H(X) and satisfies (1) at each point p of X,
except possibly » = p,. But A2 = e satisfies (1) at p = p, with P(z) =
PXx) = x, so hsh, also satisfies (1) at »p = p, with P(z) = . Conse-
quently, g belongs to S_FE,(X), and

hahzhz(p) = hs(p) = hsg(p) for —-1<p= y )

gh/z = {
(p) kz(p) = ke,hshz(p) = hsg(p) for =p=-+1.

Hence, gh, = hyg.

5. Groups of polynomials. It is now time to study the compo-
sitions of polynomials more closely. We begin with the family 7., of
power series

P@)=a2 + 2" + -+ + @, 2" + -+, a, #0
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with any coefficients whatever. By working with the partial sums of
P(x), we see that the composition PQ(x) = P(Q(x)) of two members
P, Q of II., also belongs to I, that Py(x) = « is the identity element
of II.., and from Lemma 1 that P has an inverse P in 7., satisfying
PP = P, Since the associative law always holds for composition,
we see that I7.. is a group. For each integer n = 1, we define an
equivalence relation PZ,Q between members P and @ of I7., to mean
that P(x) and Q(x) agree in all terms of degree < n. This relation
is evidently compatible with the group operation, and the quotient
group I/, we can think of as the group of all nth degree polynomials

P@)=ax + a®+ -+ + a2, a, #0

under composition. If I" is a subgroup of /7., then we shall let I'"
be the quotient group of I” under &Z,. We put {P,} = 4. and use 4,
for the subgroup of 17, with just one element. A normal subgroup
of IT.. closely related to 4, is the kernel 4} of the homomorphism from
11, onto I7, induced by the relation Z,. It consists of all members
of II., whose first » coefficients are 1,0, ---,0. We shall use 7 to
mean either 17, or II,, and the same for 5, 4, and E(X). The family
of all those P in II with a, >0 we will denote by I7* and put
II — II* = II-. Evidently II* is a normal subgroup of I7 and com-
patible with Z. Wedefine I'* =I"nII*, ' = I" — I'*, and note that
't is a normal subgroup of I” with index one or two.

LEMMA 7. The only mormal subgroups I of II, that lie im 4F"
are I' = 43" for 1 < m < n.

Proof. It is evidently sufficient to prove the following statement
for each value of m:
(5) For each integer k£ with 0 < k < m, if I" contains some member
P of the form P(x) = & + a,..2*" + -+ with a,,, # 0, then for each
R in 4}, I contains some @ such that Q5 ,R.

Now (5) certainly holds when m = 1. We shall proceed by induc-
tion and suppose that (5) holds for some value m > 1. To verify it
for m + 1, we first note that if k¥ = m and P,(x) = a,x, then

P_l(W) = — ak+1xk+l + cee
P'PP (%) = & + @™, 2™ + o0,
PP7'P(x) = @ — @l Q@™ A+ o - -

Evidently P'PP, and P *P~*P, both belong to I, and by varying a,
through positive values we get all coefficients of 2™+, Thus (5) holds
in this case. If &k < m, then our induction hypothesis says that I”
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contains some member @ of the form
Qx) =2 + ba™ + b @™t + oo,
where b,, = 0. If we put Py(x) = & + a,&°, then
QP(x) = 2 + a2’ + b,2™ + (bpsy + madh )™ + -«
and this agrees with P,Q(x) in all terms of degree <m + 1, where
Q) = o + b,x™ + (bpsr + (M — 2)asb, )z + ..

Thus QP.5,..P,Q and P;'QP,5,.,Q while P;'QP, lies in I". If we put

P,(x) =2+ a,x™, P,.(x)=12+ a, &,

Qu(x) = + 8", Qui(®) = T + Cpp @™,

then evidently P,Q,%Z,..,Q;P; for i,7 = m, m + 1. We must now dis-
tinguish the cases m > 2 and m = 2. In the case m > 2 we have

Pr@) =o — aua™ + -+, Prl(a) =2 — @, @™ + .o
for the first m + 1 terms. If we put a, = b, €¢u = b, Tpir = bpis
and ¢,.; = b, + (m — 2)azb,, then
QEm+1Pum+1 ’ QEm+lQQO+l ’
Q_léEm+1P7;1QmP7;-ll-lQm+l‘Em+lPv:-}-lQm+l ’
where
P Qua(2) = @ + (m — 2)ab,a™™ + -« -
Thus we get all coefficients of z™*' by varying a, and
P;ulhl m+15m+lQ—1P2_1QP2 = Rm+1 ’

where R,,., lies in I". By our induction hypothesis, we can find a
member of I"N 4} with any desired coefficients of z**, ... z™. If
we multiply this member on the left by R,.., then we keep the same
coefficients of «**!, ... x™ and get any desired coefficient of x™*'.
This verifies (5) for m + 1 when m > 2. Finally, consider the case
m = 2. The argument for k& = m is still valid, so we need only
consider k¥ = 1. Thus our induction hypothesis says that I” contains
some member @ of the form

Qz) =2 + ba* + ba® + - -+,
where b, = 0. We can check by induction that for any integer 4,
Pi(z) = ¢ + ta.2* + (¢ — L)ajz® + ---,
Pi(x) = + ta,2* + -+ .
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If we put a, = b, and a, = b,, then QZ,P,P,. Evidently PQP, lies
in 77 and has the form
PQP(x) = x + a2 + alb,x® + -+ .

If we put ¢, = ab, and ¢ = a’bh,, then PQPH,Q,Q;. Finally,
Q'P7'QP, = R, lies in I" and

R,E,PiP{Q,Q:E(P;Q.)(P5Qs) -
Thus R, has the form
Ry(x) = = + (7 + a)ba® + (i1 — 1)b; + (¢ + ad)b,)ax® + - --
If we choose a, = —1, then
Ryx) = o 4 (b3 + b)7" — (b3 — b))’ + -« - .

The coefficients b2 + b, and b2 — b, are not both zero, so we can choose
some integer ¢ for which the coefficient of 2 is not zero. As in the
case k = m above, we can find a member of /” with any coefficient
of x°, and the last part of the argument for %k < m completes the
verification of (5) for the case m = 2. Hence, our induction step is
valid in every case.

THEOREM 3. Fach normal subgroup I' of II, is either 4% with
1 <m = n or the inverse under the canowical mapping from II, onto
11, of a subgroup N of II,.
Proof. Each member P of " has the form
Px)=ax + am® + a;x® + ----, a, =0.

Evidently N = I is a subgroup of II, which we shall identify with
the subgroup of /7, consisting of all polynomials P,(x) = a,x. Evidently
11, is the group of nonzero real numbers under multiplication. Now
"N 4 is a normal subgroup of I7,, and Lemma 7 says that
I'nNap = 4" with 1 <m £ n. If

P(x) = ax 4+ ap o + -0, Qo £ 0,
and if we put Q,(») = b, then
P(x) = (1/a)e — (Gpei/at™)att + -,
Qr'PQ\(z) = ax + . bixtt + .-,
PQTPQ,(%) = o + (ars,/a)(bF — L)w*+ + - ..

Since P'Q7'PQ, belongs to I, we get A4 " by taking b, = +1.
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If we put P(x) = ax as above, then PP belongs to 4}*, and P,
belongs to I". Thus N lies in I'. If we put Qyx) = # + bz, then
() =2 — b+ -+ and
P1—1Q2—1P1Qz(x) = (1/&1)(111.’1) =+ (al - a/%)bzx2 + - )
=2+ 1 —a)bx®+ +--.
If we suppose that N is more than the identity, then we can choose
a#1 6,0, and get a member of 4}" — 4}". Since P'Q;'P,Q,
belongs to I, we must have 4" I". Hence, for any Q@ in 17, of the

form Q(x) = ax + ---, we know that P'Q belongs to 4f", and @
belongs to I". ‘

COROLLARY 1. Fach normal subgroup I' of II} is either 4%™ with
1 < m £ n or the inverse under the canonical mapping from I} onto
IIf of a subgroup N of IIT.

Proof. The proofs of Lemma 7 and Theorem 3 apply here, for
nowhere was the leading coefficient of any polynomial assumed to be
negative.

COROLLARY 2. FEach normal subgroup I" of II} is normal in II,.
Proof. Evidently each subgroup N of [I{ is normal in I7,.

COROLLARY 3. The group I generated by all imwvolutions of II,
consists of all members of II, with leading coefficient +1.

Proof. Since each conjugate of each involution of 17, is also an
involution, I must be a normal subgroup of 77,. If P belongs to I
and P(x) = ax + +--, then P* = P, a? =1, and a, = 1. Evidently
P(x) = —x belongs to I, so our result follows from Theorem 3.

COROLLARY 4. The commutator subgroup K of II, is 4F™.

Proof. If P(z) =ax + --- and Q(x) = bz + ---, then
PQPQ(x) = o + - - -
and K lies in 4. If we put

P(x) = a, @Qx) =2+ bat,
then
P (x) = (lja)z, Q7'(x)=o—Dba*+ ---,

P PQyx) = o + (L — a)ba® + «-- .
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For a, # 1 and b, = 0 we get a member of 4" — 45". Hence, K = 4}".

LEMMA 8. Every two involutions in II different from P, are
conjugate.

Proof. It is evidently sufficient to show that every involution
P different from P, with

P(x)=ax + a.2* + a2* + - -+

is conjugate to R, with R (x) = —x. We know that a, = +1. If
a, = +1, then

Pix)=2+ a2* + -+, a, #0,
xZPZ(x)zx—}—Zakxk-{—

which is impossible. Thus a, = —1. Now suppose that for some
integer m = 1 we have found a member P, of II satisfying

(6) P;'PP,(») = —% + a;x" + «--, ji>m,

where a; may be zero. We shall proceed by induction and verify (6)
for m + 1. Evidently R, = P;'PP,, is also an involution, so we have

2 =Ry(x) =2+ ((—1) — Dazz’ + ---.
Thus a; # 0 implies that jis even. If we put Q;(x) = x + ba’, then

Q7'R,Qi(x) = Q7'(—x + (a; — ba’ + --+)
= —z+ (a5 — b — (=1)b)x’ + ---.

If a; =0, then R, = R, and our induction step is complete. If a; + 0,
then j is even, and we can make the coefficient of 27 zero by putting
b; = a;/2. Hence, our induction step is again complete with P,,, = P,.Q;.
Now P, agrees with P,,, in all terms of degree <m, so our in-
duction process shows us that Pis conjugate to R, in I7. as well as
in II,.

COROLLARY. The normal subgroup of II, generated by any invo-
lution different from P, is I.

Some simple involutions of I7 easily come to hand. For each
integer m = 1 we put

P = _—x__ = — m+1 eee
(%) AT o)™ € — (a,/m)yz™t + ...,
Qm(ay) = ____-x_ =5 — (bm/m)xm“’l 4 e,

(1 + bmwm)llm
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We can easily verify that

. @
P,Q.(x) = AT @ o))

—1 _ @
P = Ty

If we put R,, = P,*R.P,, then

_ —x
Rm(x) = A+ d— (_l)m)amxm)um :

Evidently R, is an involution. When m is even, we get R, = R.,,
and when m is odd, we get

Rm = ._____—x_. = — 2 m mt1 eee .,
() AT 200" z + Qa,/m)x™ +

The terms of degree <n in R, give us an involution in I7,.

6. Special normal subgroups. With each member % of E(X)
we associate the polynomials 7_(k) = P_ and n,(h) = P,. Evidently
w_ and 7, are homomorphisms from E*(X) into /7+, and they map

E}(X) onto II};. To see what 7_ and w, do to E-(X), we distinguish
two cases:

n_(gh) = w_(g)x_(k), w.(gh) = w(g)ms(h), geE(X), heE'(X),

n_(gh) = w (9)n_(h), w(gh) = w(9)m(h), geE(X), he E7(X).
One consequence of this is that if 2 is in E~(X), then

n_(h™) = (m(h), 7w (7)) = (m_(h).
Another consequence is that if ¢ is in E*(X), and A is in E~(X),
then
n_(h7'gh) = w (b~ g)w_(h) = 7w (h™)m.(9)7_(h)
= (m_(R))"'mi(g)T_(R) .

In the same way we get

(8) m(h7'gh) = (7 (M) 'T (97 () -

Thus we see that if g is in E+(X), then 7_(k™'gh) is conjugate to either
w_(g9) or mw.(g), depending on whether % is in E*(X) or E(X). A
like result holds for 7. (h™'gh). We note that 7_ and 7, both map
E (X) onto I7,.

For any subset I” of I we put

(7)
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I'(X)={he E(X):z_(h)el),
I'y(X)={he EX):m(h)el},

and I'(X)=T_(X)NIr.(X). If I is a normal subgroup of I7 that
lies in I7*, then (7) and (8) tell us that I'(X) is a normal subgroup
of II(X) = E(X) that lies in E*(X), and that I (X), I"'(X), and
I'(X) are normal subgroups of I/*(X) = E*(X). Of course all these
normal subgroups include 4 or 4(X), but we note that 4(X) > 4*(X).
The mapping ¢ given by ¢(G) = (z_(G), 7.(G)) is a one-to-one
correspondence between some of the normal subgroups G of E;(X)
that include 4,(X) and all of the ordered pairs of normal subgroups
from I7}. For if we start with an ordered pair (B, I") of normal
subgroups from 7}, then we can assign to it the normal subgroup

¢B, I =B (X)NT(X)=G

of E}(X), where G clearly includes 4,(X). Since we can always
find a member k& of E)(X) with given values of #_(k) and 7, (k) in
II:, we have

#(3(B, I') = (7(G), n.(@) = (B, I') .

Thus ¢ is one-to-one, ¢ is onto, and ¢ restricted to the range of ¢
is one-to-one. Similarly, the mapping + given by ¥(G) = 7.(G) is a
one-to-one correspondence between some of the normal subgroups G
of E,(X) that include 4,(X) but lie in E}(X) and all of the normal
subgroups of I, that lie in /7;. For if I" is a normal subgroup of
II, that lies in II}, then we put +(I") = I'(X). Moreover, if G is a
normal subgroup of F,(X) that lies in E;}(X), then 7_(G) = n.(G).
For both z_(G) and 7.(G) are normal subgroups of /7;, and Corollary
2 of Theorem 3 says that they are both normal in 77,. But (7) and
(8) tell us that if R lies in I7,, then

R'7_(®AR = 7,(G) .

Hence, 7_(G) = 7.(G).

To see that there are other normal subgroups G of E,(X) that
include 4,(X) besides the ones mentioned above, we choose a member
g of E}(X) where 7_(g) = 7,.(9) = P, and P lies in II} — 4F". If we
let I" be the group generated by P and 4", then I'" is evidently a
normal subgroup of I7, that lies in /7}. The normal subgroup G of
E,(X) generated by g and 43*(X) evidently lies in E;}(X) and satisfies
7_(G) = 7, (G) = I". But for every member % of G we have the same
leading coefficient of 7#_(h) and z.(k). Hence, G is much smaller
than I'(X).
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LEMMA 9. Ewvery two involutions tn E(X) different from e are
conjugate in S_E(X) and also in S,E(X).

Proof. If h; (i =1, 2) is such an involution with fixed point p;
and satisfying (1) at p = p; with P = P,, then h} =¢, P! = P, and
P, P, are involutions in /7 different from P,. From Lemma 8 we
know that

P, = Q7PQ = P'QT'PQP,,

where either Q or QP, lies in II*. Thus P, and P, are conjugate in
IT+, and Lemma 6 tells us that %, and &, are conjugate in S_E(X) as
well as in S, E(X).

THEOREM 4. The commutator subgroup of E(X) is EX(X).

Proof. Let h be any member of E+(X) and 4 be any involution
of E(X) different from e. Our result will follow if we can show that
some member %, of the commutator subgroup C of E(X) agrees with
h in some neighborhood U,, of p = +1 and agrees with e in some
neighborhood U_, of p = —1. For we have h = iki, where k is in
E*(X), and some k, in C agrees with £ in some V., and with e in
some V_,. Now k, = ik, agrees with 7ki = h in «(V,,) = W_, and with
et =¢ in (V_) = W,. Thus h, = hi'k'h lies in SE(X). Since C
is normal in E(X), k, must lie in C, and Theorem 1 says that 2, lies
in C. Therefore, k lies in C and C = E*(X). Now our task remains
to construct k,. We let p, be the fixed point of ¢ and put

M(x) for x in some V..,
th™i(z) for = in some V_,,

o) = |

and define f in the rest of X so as to make it a member of E*(X)
and satisfy f(»,) = p,. Evidently ¢ interchanges the intervals [—1, )]
and [p, +1] while f maps each onto itself. Thus

W(th™'7)ih(z) = » for = in some W.,,
thi(thi)(x) = « for x in some W_,,

ifif ) = {

and if agrees with some involution j of E(X) different from e in
W.. U W_. Now Lemma 9 says that j = gig™ for some g in E(X),
and we may assume that g is in E~(X), for if not, then we would
take jg and write j = (jg)i(jg)~*. Finally, we choose some g, in E~(X)
which agrees with g on some Z_, and with ¢ on some Z,,. If we put

hy = (194195") ' (i97977) »

then 7, evidently lies in C. For x in some U,, we have
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1941957 (%) = (@) = @,
1919~ (%) = () = wif(x) = flx) = W),

and hx) = h(x). For x in some U_, we have

1gtg5 '(%) = igig'(%) ,
and Ay x) = #. This completes the proof.
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