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ATOMS ON THE ROYDEN BOUNDARY

KWANG-NAN CHOW AND MOSES GLASNER

Let R be a hyperbolic Riemann surface and P a nonnega-
tive C -̂density on R. Every PϋJ-minimal function is shown to
be PjD-minimal. Conversely PD-minimal functions correspond-
ing to atoms in a certain subset Δp of the Royden harmonic
boundary are PEr-minimal. Points in ΔP are atoms with respect
to the PD-representing measure if and only if they are atoms
with respect to the ϋD-representing measure.

Throughout this paper R denotes a hyperbolic Riemann surface.
A positive function / in a family of real-valued functions X on R is
called X-minίmal if for every g e X with / ;> g >̂ 0 there is a constant
c = c(g) such that cf = g. If Y is any family of functions on R, then
the symbol Ϋ is used to denote the functions that are expressible as
decreasing limits of sequences of nonnegative functions in Y. The
space of harmonic functions with finite Dirichlet integrals over i?,
\ du Λ *du < ^o, is denoted by HD(R) and for a nonnegative ^-density
JR

P on R the space of Dirichlet finite (energy finite, \ du Λ *du + u2P
\ JR

< oo, resp. j solutions of the equation Δu = Pu on R is denoted by

PD{R) (PE(R), resp.)
The study of the spaces PE{R) and PD(R) was initiated by M.

Ozawa [9] and H. Royden [10] and recently revitalized by the idea
of looking at them in terms of their boundary values on the Royden
harmonic boundary (cf. [2] and [7]). Following M. Nakai [4] the more
general classes PE(R) and PD{R) can also be characterized in terms
of their boundary values.

One of the main concerns in the study of solutions of Δu = Pu on
Riemann surfaces is the "comparison theorems" between various spaces
of solutions and harmonic function. The purpose of this paper is to
give the precise relations between minimal functions in the classes
HD(R), PE(R), and PD(R). The relation between the first two notions
was given in [1].

Our main results appear in Nos. 7 and 11. Their proofs depend
heavily on the results of several papers listed among the references.
For the sake of convenience we quote them in Nos. 2 and 3. The
results in Nos. 5, 6, and 8 are generalizations of results of M. Nakai
for the case P Ξ O , Comparison with the exact references given there
and with the exposition in the monograph of Sario-Nakai [11] should
clarify what is involved.

339



340 KWANG-NAN CHOW AND MOSES GLASNER

1Φ Throughout we shall use the notations of Sario-Nakai [11] which
we list here. The Royden algebra of R is denoted by M(R), the Royden
compactification by i2* and the Royden boundary Γ — Γ(R) — R*\R.
MΔ(R) stands for the J5D-closure of MQ(R), the functions with compact
support in M(R) and the harmonic boundary Δ = Δ(R) is the set of
common zeros of functions in MΔ{R).

If A is a subset of R we use the symbol dA for the boundary of
A with respect to R, A for the closure of A in i?*, and bA for the
set (A\βA) Π Γ. Thus A\A = dA (J bA. Also if E* is a subset of i2*,
then B will denote J3* Π R.

A subregion G of R can be viewed as a Riemann surface in its own
right. There is a unique mapping j : G* -+G which is continuous,
onto and leaves G invariant pointwise. Moreover, j restricted to
G U j^ibG) is a homeomorphism onto G |J bG (cf. [6, Proposition 7]).
These facts will play an essential role later on.

2* We suppose that there is a nonnegative ^-density P given
on R and we consider the space P(R) of solutions of Δu = Pu on R.

The subspace \ u e P{R) \ du A * du < co ί of P(i?) will be denoted by
( }R )

PD(R) and PE(R) ^\uePD{R) [ u2P < ooi. When P = 0, then
( }R )

PD(R) = PE(R) = HD(R). We shall use P as a superscript in the
symbol for quantities related to PE(R) and P as a subscript in those
related to PD{R). The subspaces of bounded functions in PD(R),
PE(R), and iίjD(i2) are denoted by PBD[R), PBE{R), and HBD(R).
Also when no confusion can arise we omit the reference to R.

We set

Δp - \p e Δ I there is a nbd £7* of p with ( P < ooi

and

ΔP = \pe Δ \ there is a nbd [7* of p with I \ 0Λ(ίc, y)P(x)P{y) < oo i .

Here ^ ί , y) is the Green's function of R with singularity at y.
The set zίp was introduced in [2] and J P by Nakai [7].
We now state several properties of ΔP. The analogous ones for ΔΓ

are also valid and we leave it to the reader to formulate them. For
every u e PD, u \ Δ\ΔP — 0 and \u\i^ s u p i p \u\. Given φ e M(R) such

that supp φ Π Δ is compact and in ΔP then there exists u e PD such
that u \Δ = φ \ Δ. Since all such <ρ's restricted to ΔP are dense in the
sup norm in the space CQ(ΔP) of continuous function on ΔP vanishing
at infinity, it easily follows that for every / e C0(ΔP) there is a u 6 P{R)
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such that u is continuous on R (J Δ and u \ Δ = /. (Obviously we mean
that /1 Δ\ΔP = 0.) Furthermore, if we fix a point z0 e R, then there is

a finite regular Borel measure μP on ΔP such that \ u dμP = tc(z0) for

every uePBD. Using the result of Nakai [7] that every UGPD is
the CD-limit of a sequence {un} c PBD with the boundary values of
{un} on Δ also converging monotonically to those of u, we obtain the
same formula for every u e PD, We extend μP to Δ by setting
μP(Δ\ΔP) = 0 and call μP the PD-representing measure for R with
center z0.

Now denote by μp the above measure constructed for an arbitrary
point z 6 R. Consider an arbitrary fe C0(ΔP). Then the above remark
to the effect that / is the uniform limit of boundary values of func-
tions in PD shows that 1 f dμp considered as a function of z is in

P(R). Thus the Harnack inequality gives that μz

P and μP are mutually
absolutely continuous on Δ and hence there is a nonnegative function
KP(z, •) e Lι(μP) such that for every uePD(R) and every zeR,

u(z) = \ KP(z, )udμP. The kernel KP(z, p) can also be chosen to have
JΔ

the following properties: KP(z0, •) = 1, iJΓP( , p) = 0 if p e Δ\ΔP and for
each p e ΔP, KP( , p) e P(R). It also follows that for any / e Lι(μP), the
function u(z) = \ KP(z, >)fdμPeP(R). If in addition / is bounded,

/1 Δ\ΔP = 0, /1 ΔP vanishes at infinity and / is continuous at a point
p e ΔP, then l i m ^ u(z) = f(p) and limβ f̂f ^(^) = 0 for every g e Δ\ΔP.

Finally if s is a subsolution on i? and seM(R), then S(JS0) ^ \ sdμP.

3* Some other results that we quote here for future reference are
as follows. If ueP(R), u is bounded from below and limz^pu(z) ;> 0
for every p e Δ, then u ^ 0. This result follows easily from the fact
that for any compact E c Γ\Δ there is a nonnegative superharmonic
function s (and hence supersolution) such that s takes on the boundary
values co on E and 0 on J continuously (cf. [4]).

Suppose G is a subregion of R with

gR{z,w)P{z)P(w) < - .
G

Then there exists a positive isometric isomorphism T: PBD(G)—+HBD(G)

which is onto. Explicitly, Tu — u + τu and τu(z) = \ ^(^, )uP. If

/ is a nonnegative measurable function on G which is bounded by a
function in PBD(G), then τf eMΔ{G). If in addition dG is analytic,
then τf vanishes continuously on dG (cf. [3, Theorem 7C, Theorem
10E, Theorem 11D]).

One of the consequences of these results is that for any / € M{R)



342 KWANG-NAN CHOW AND MOSES GLASNER

there is a u e PD(G) such that u agrees with / on Δ(G), u has continuous
boundary values / on dG. This follows because there is a function
in HD(G) with these properties. Using the mapping j it can also be
seen that u - f \ bG f) Δ(R) = 0.

4* The fact that Δp c ΔP, which can be verified by a direct com-
putation, is a consequence of the results quoted in No. 3. Indeed for
a point pe Δ there is a uePD (resp. PE) with u(p) Φ 0 if and only if
peΔP (resp. peΔp). But trivially PEdPD.

Note that I u dμp = \ u dμP for every u e PE and hence μp(B) =
JΔ JΔ

μP(B) for every Borel set B c Δp. Thus we can state the

THEOREM. For μp-almost every p e Δp, the kernel functions of PD
and PE agree on R.

We need only recall that for every feC0(Δp), \ KP(z, *)fdμP =

[ fdμP = [ fdμP = [ Kp(z, -)fdμp - ( Kp(z, -)fdμP. Pick a count-
u u u JΔ

able dense set of points {zn} in R. Then for every n, KP{zn1 •) = Kp(zn, •)
on Δp except for a set En with μp{En) = 0. Let E = (JΓ En. By the
continuity of the kernel functions we obtain iΓP( , p) = Kp( , p) for
p e ΔP\E.

5. A function u belongs to PD by definition if it is the limit of
a sequence {un} c PD with un ^ un+1 ^ 0. Since PD is a sublattice
of P(R), it is easily seen that u e PD if and only if u{z) = inf {v{z) \ v e PD,
v ^ u}. Thus we are led to consider the class U(ΔP) of functions on
A defined by / e U{ΔP) if f(p) = inf {v(p) \ v e PD, v \Δ ^ /}. By inter-
changing infimum and integration we see that u e PD if and only if

there is an fe U{ΔP) such that u{z) = I KP{z, )fdμP.
JΔ ' _

For a real-valued function ψ on R we define ψ on Δ by ψ(p) =
ίpψ(z)9 for every peΔ.

THEOREM. Suppose u(z) = \ KP(z, •)/dμPePD. Then ΰ^f and
J Δ

ύ = f f*p — a.e.

For P = 0, this is due to Nakai (cf. [4, Theorem 3.3]).
For the proof let v e PD with v\ Δ ^f. Then ^ <; w and hence

u <Lv\ d. Since / e U(ΔP), we can conclude ΰ ^f. For the second
assertion take a sequence {2̂ } of compact sets in ΔP with μP{ΔP) =
lim μP(Fn) and note that it suffices to prove ΰ = f μP — a.e. on JF^, for
each %. To this end fix n and set F = JPΛ. First assume that / is
bounded and hence u is also bounded since u ^ /. Suppose that for
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some ε > 0, there is a compact set EczF such that ΰ(p) <f(p) — ε
for every pe E. Denote by χE the characteristic function of E and

set w{z) = ε \ Kp(z, )XE dμP. Then 0 ^ w ^ ε on R and by the remarks
made in No. 2 for every p e Δ\E, lim^j, w(z) = 0. Thus for every
pe Δ\E, lim^u(z) + w(z) ^ ΰ(p) g f(p) and every pe E,
\imβ->p u(z) + w(z) ^ ΰ(p) + ε <f(p). Now take any v e PD such that
v I Δ }>f. For every pe Δ we have l i m ^ v(«) — u(z) — w(z) ^ 0. Since
v — u — w is bounded from below we can now conclude that v Ξ> u + w.
Taking the infimum over all such v's gives w(s0) ^ u(zQ) + w(«0) This
says that w(zQ) = 0 which implies that ^(£7) = 0.

If / is unbounded, then take for every positive integer k a
function vk e PD such that 0 <; vk ^ k and vk\ F — k. Note that since
PD is a lattice, / Π vh (the pointwise infimum of / and vk) is in U{ΔP)

and thus uk(z) = 1 iΓP(^, •)(/ Π vk)dμP e PD. Therefore,

uk = / Π ̂ fc ^ P — a.e. on F. Since u ^> uk we obtain by letting k —> c>o
that ΰ^fμP — a.e. on ί7, which completes the proof.

6* Before we turn to the problem of characterizing the PZ)-minimal
functions we make the following observation. The characteristic
function χE of any compact set contained in ΔP belongs to U(ΔP). In
fact for any p e ΔP\E, there is a nonnegative function φ e M(R) such
that φ(p) = 0, φ \ E = 1 and supp φ Π Δ is compact and in z/P. Thus
there is a nonnegative function u e PD such that u\E=l and %(p) = 0
and the assertion follows.

THEOREM. If u is PD-minimal on R then there exists a constant
k and a point pe ΔP with μP{p) > 0 such that u — kKP( , p) on R. If

peΔP with μP{p) > 0, then KP{>, p) is PD-minimal on R.

(Cf. [4, Theorem 3.6].)

If u is PD-minimal on R, then by Theorem 5, u(z) = 1 KP(z, )ΰ dμP.

Set En — {ΰ ^ 1/n). Note that ΰ is upper semicontinuous on Δ and
hence En is compact in Δ. Since ΰ | Δ\ΔP = 0, En c J P . By definition
of minimality u > 0 and consequently ^P({^ > 0}) > 0. Therefore, we
may choose an integer n such that μP(En) > 0. Set E — En and
w(z) = 1 -Kp(ί?, )ΎEdμPePD. Since w ^ (ί/n)w ^ 0, there is a con-

stant c such that cu = w. By Theorem 5 we have that w — \μP — a.e.
on E and hence 1 = sup^ w = sup^ cw. This implies that c > 0 and u
is bounded.

Now let A be a compact subset of E with μP(E\A) > 0. Assume

that μP(A) > 0. Then set v(z) = I KP(z, )χA dμP and note that v e PD
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and u ^ (l/n)v Ξ> 0. Thus there is a constant cι with v — cγu. As
above it can be seen that cx > 0. Hence cxΰ = 0 μP — a.e. on ΔP\A.
On the other hand, E\A c ΔP\A, μP(E\A) > 0 and cΰ ^ 1 μP — a.e. on
i?\A. This contradiction implies that μP(A) — 0. This in turn implies
that there is a point peE with μP(E) = μP(p). We therefore have
μP(p)K( , p) = w = cu.

For the proof of the second assertion assume p e ΔP and μP(p) > 0.
Then χPe U{AP) and hence μP(p)KP(z, p) = I i£P(2, ')χPdμPe PD. By
Theorem 5 we have μP(p)KP( , p) = χpμP — a.e. If vePD with
JBΓp( , p) ̂  v ^ 0, then v ^ ifP( , p). Consequently v = v(p)χP, μP — a.e.
and we conclude that v = v(p) μP(p) KP( , p)9 i.e., Z"P( , p) is PZ)-
minimal.

7* Although for two arbitrary families of functions X and Y
with I c F the notion of minimality in one has no bearing on mini-
mality in the other we have the following corollaries to the above
results of Nos. 4, 5, and 6.

THEOREM. Every PE-minimαl function is α PD-minimαl function.
A PD-minimαl function is PE-minimαl if and only if it vanishes
continuously on A\ΔP.

8. In order to describe the relationship between iϊD-minimality
and PD-minimality we need the following considerations. Let G be
a subregion of R with bG Φ 0 and dG analytic. Denote by vP the
PD-representing measure for G with center z0 and by LP the corre-
sponding kernel. At this point it will be convenient to extend the
definitions of vP and μP to all of Γ{G) and Γ{R) by setting them equal
to zero on sets disjoint from Δ(G) and Δ(R).

THEOREM. Suppose G is a subregion of R with bG Φ 0 , dG
analytic and such that property (*) is satisfied. If B is a Borel subset
of bG, then vP{j~ι{B)) > 0 if and only if μP(B) > 0, where vP and μP

have their centers at the same z0 e G.

The mapping j in the theorem was defined in No. 1. We present
in Nos. 9 and 10 a simplified version of Nakai's proof for the case
P = 0 (cf. [6, Proposition 8]).

We begin by defining a measure σP on bG by setting σP(U) =
Vpii^iU)) for every open set J7in bG. Note that σP is also a regular
Borel measure and that it has the property that \ / dσP = \ foj dvP

JbG JJ-HlG)

for any nonnegative σP-measurable /. Take any u e PD(G) with con-
tinuous boundary values 0 on dG. Then uoj vanishes on j^idG). But
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clearly the continuous extension u* of u to G* is equal to uoj.
Consequently

u(z0) = I u*dvp = 1 uoj dvP = 1

9* Note that our problem now is to prove σP(B) > 0 if and only
if μP{B) > 0. To this end we may assume B is compact, in view of
the regularity of the measures. We also take {V%} a sequence of open
sets in R* such that Ba V*+1 c F* c G (J &G and σP(B) = \\mσP{Vt Π
Γ(R)) and μP(B) = lim μP(VΪ Π Γ(i?)). Now we choose fn e ikf(Λ) with
0 ^ Λ ^ 1,Λ I Vn+ι = 1 and supp / . c F%. The hypothesis on G (cf.
No. 3), gives the existence of a function tn e PD(G) with continuous
boundary values 0 on dG and tn \ bG ΓΊ Δ = / w | ί>G Π Λ. If we extend
ί% to a function sn on JS by setting sn — 0 on i2\G, then 8Λ e ikί(i?) and sn is

a subsolution on R. Thus s»(20) ^ \ sndμP and sw(a;0) = ίΛ(«0) = \ tndσP.

Since \ sndμP ^ /^P(Fί Π Γ) and σ P (F* + 1 ί l Γ ) ^ tndσP, we con-

elude by letting n—* <χ> that σP(β) ^ μP(B).

10* For the converse assume that σP(J5) = 0. Then lim tn(z0) = 0
and hence by the Harnack principle tn converges to 0 uniformly on
compact subsets of G. The reflection principle allows us to conclude
the same result on compact subsets of G U dG. This means that sn

converges to 0 uniformly on compact subsets of R.
Let {Rm}T be a regular exhaustion of R. Consider functions

% M e C(R) such that unm \ R\Rm = sn and unme P(Rm) Since sn is a
bounded nonnegative subsolution on R, the weak Dirichlet principle
(cf [7]) implies that there is a solution un — BD-X\r&m unm. Since
sn — unme M0(R), we also have un — sneMA(R), i.e., un = sn on z/.

Therefore, μP(B) — lim \ un dμP = lim w»(«0)

On the other hand, we have ulm — unm ^ 8λ — sn since sx — sn is
also a subsolution on R. This in turn implies that uum+ι — un,m+ί ;>
îm — ^̂ m and hence ^ — wΛ ;> u l m — u%m. Note that for m so large

that z0 6 i?m we have lim* unm(z0) = 0 in view of the fact that {sn}
converges uniformly to 0 on dRm. Thus lim% ^(^o) — ^(£ 0 ) ^ îm(̂ o)
and consequently lim un(z0) ^ 0. Since un(z0) ^ 0, we obtain lim un(z0) = 0
and the proof of Theorem 8 is complete.

II* We are ready to state our main result.

THEOREM. A point p e ΔP(ΔP resp.) is an atom with respect to
μP(μp resp.) if and only if it is an atom with respect to μ0.

The statement for μp and Δp has been established by [1]. Since
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nonnegative solutions are subharmonic functions one can easily see
that μQ(B) :> μP(B) for every Borel set Bcz Δ. Thus if p e ΔP is an atom
with respect to μP then it must be an atom with respect to μo

Conversely suppose pe ΔP and μo(p) > 0. Then by definition of
ΔP there is a neighborhood ί7* of p with p with

0R(%> y)P(%)P(y) < °° By the well known result of Nakai [6,
uxu

Proposition 9] we can find a neighborhood G* of p with (?* c Z7*, G
a region in R and dG analytic. Note that pebG and G satisfies
condition (*). Thus vQ(j"ι(p)) > 0; that is, there' is an atom with
respect to v0 on the Royden boundary of G. Our task now is to show
that this point is also an atom with respect to vP for then another
application of Theorem 8 gives the desired result.

The isomorphism T described in No. 3 can be extended to a mapping
on the bounded functions in PD(G). In fact, if ue PD(G) and u<Lc,
then take un e PD(G) with un j u. Since T~\c) e PBD(G), u ^ T~\c)
and PD(G) is a sublattice of P(G) we have that un A T~\c) { u. Thus
the set of bounded functions in PD(G) is exactly PBD(G). So for

uePBD(G) set Tu = lim Tun and note that TueHBD{G). By the
monotone convergence theorem T is again given by the formula
Tu — u + TU and hence is order preserving and commutes with multi-
plication by positive scalars. Also note that this extension maps

PBD(G) onto HBD(G), which trivially are the bounded function in

HD(G).
Since zu e MΔ(G) (cf. No. 3) for every q e Δ(G) we have

(**) Πϊn^ Tu(z) = ϊimz^qu(z) .

Thus Theorem 5 shows that Tu = 0 if and only if u = 0. This in

turn shows that T preserves minimal functions in PBD(G) and HBD(G).

In view of the fact that all minimal functions in PD(G) and HD(G)

are bounded we conclude that T preserves them.

Suppose that q0 is the point in Δ(G) with vo(qo) > 0. Then Theorem

6 shows that Lo( , qQ) is an HD-minimal function on G. By the above

remark and again by Theorem 6 there is a point qx e Δ(G) such that

vP(qd > 0 and ΓLP( , qd = Lo( , qQ).

We trivially have L0(z, qQ) = lM(go)\ L0(z, ')χgQdv0. Since χq is

continuous at every qe Δ(G), q^qQ we have limz_^L0(£, q0) = 0 for
every qφq^ (cf. No. 2). In view of the analogous property for
LP( , tfi) and (**) we conclude that either qγ — qQ or LP{ , qj = 0. But
since LP( , qx) > 0, Theorem 5 excludes the latter alternative. Thus

0.
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