ON THE ENGEL MARGIN

T. K. Teague

The marginal subgroup for any outer commutator word has been characterized by R. F. Turner-Smith. This paper considers the marginal subgroup $E(G)$ of G for the Engel word $e_{2}(x, y)=[x, y, y]$ of length two. The principal result is that an element a of G is in $E(G)$ if and only if $[x, y, a][a, y, x]$ is a law in G. The method of proof relies upon properties of Engel elements established by W. Kappe.

Among other results are the following: (a) $E(G) / Z_{2}(G)$ is an elementary Abelian 3-group of central automorphisms on the commutator subgroup G^{\prime}. (b) If $Z(G) \cap \gamma_{3}(G)$ has no elements of order 3 or if G^{\prime} is Černikov complete, then $E(G)=$ $Z_{2}(G)$. (c) If $[G: E(G)]=m$ is finite, then the verbal subgroup $e_{2}(G)$ is finite with order dividing a power of m.

1. Notation and assumed results. Let $\phi\left(x_{1}, \cdots, x_{n}\right)$ be any word in the variables x_{1}, \cdots, x_{n}. The verbal subgroup $\phi(G)$ is the subgroup of G generated by all elements of the form $\phi\left(a_{1}, \cdots, a_{n}\right)$ with a_{1}, \cdots, a_{n} in G. We say ϕ is a law in G, or that G is in the variety determined by ϕ, if $\phi(G)=1$.

The associated marginal subgroup $\phi^{*}(G)$ of G consists of all a in G such that $\phi\left(g_{1}, \cdots, a g_{i}, \cdots, g_{n}\right)=\phi\left(g_{1}, \cdots, g_{i}, \cdots, g_{n}\right)$ for every g_{i} in $G, 1 \leqq i \leqq n$. We also refer to $\phi^{*}(G)$ as the ϕ-margin of G.

For x, y, a_{i} in G, define $[x, y]=x^{-1} y^{-1} x y=x^{-1} x^{y},\left[a_{1}, \cdots, a_{n}\right]=$ $\left[\left[a_{1}, \cdots, a_{n-1}\right], a_{n}\right]$, and $[x,(n+1) y]=[[x, n y], y]$. Similarly, for subgroups H and K of $G,[H, K]$ denotes the subgroup generated by all elements of the form $[h, k]$, where $h \in H, k \in K$. We define $[H,(n+$ 1) $K]=[[H, n K], K]$. If H_{1}, \cdots, H_{n} are subgroups, then $\left[H_{1}, \cdots, H_{n}\right]=$ [$\left.\left[H_{1}, \cdots, H_{n-1}\right], H_{n}\right]$.

The word $\gamma_{1}=d_{0}=x$ is an outer commutator word of weight one. If $\theta=\theta\left(x_{1}, \cdots, x_{m}\right), \lambda=\lambda\left(y_{1}, \cdots, y_{n}\right)$ are outer commutator words of weights m and n respectively, then $\phi=\phi\left(x_{1}, \cdots, x_{m+n}\right)=$ $\left[\theta\left(x_{1}, \cdots, x_{m}\right), \lambda\left(x_{m+1}, \cdots, x_{m+n}\right)\right]$ is an outer commutator word of weight $m+n$. We write $\phi=[\theta, \lambda]$. Particular examples are the derived (or solvable) words, defined by $d_{n}=\left[d_{n-1}, d_{n-1}\right]$, and the nilpotent (or lower central) words, defined by $\gamma_{n+1}=\left[\gamma_{n}, \gamma_{1}\right]$.

The following two theorems appear in [15]:
Theorem 1.1. For any group G and word ϕ,
(a) $\phi(G)$ is fully invariant in G and $\phi^{*}(G)$ is characteristic in G.
(b) $\quad \phi\left(\phi^{*}(G)\right)=1$.
(c) if $K / \phi^{*}(G)$ is the center of $G / \phi^{*}(G)$, then $[K, \phi(G)]=1$. In particular, $\left[\dot{\phi}^{*}(G), \phi(G)\right]=1$.
(d) if H is a subgroup such that $G=H \phi^{*}(G)$, then $\phi^{*}(H)=$ $H \cap \phi^{*}(G)$ and $\phi(G)=\phi(H)$.

ThEOREM 1.2. Let θ and λ be two words in independent variables and $\phi=[\theta, \lambda]$. Then, in any group G,
(a) $\phi(G)=[\theta(G), \lambda(G)]$.
(b) if $U=C_{G}(\theta(G)), \quad V=C_{G}(\lambda(G)), L / U=\lambda^{*}(G / U)$, and $M / V=$ $\theta^{*}(G / V)$, then $\phi^{*}(G)=L \cap M$.

An immediate result of Theorem $1.2(\mathrm{~b})$ is that $\gamma_{n+1}^{*}(G)=Z_{n}(G)$, the nth center of G. It is this theorem which makes possible a classification of marginal subgroups for all outer commutator words, since the variables in θ and λ are independent of each other (see [16, p. 328]).

An element x of G is called a left (right) Engel element of G if for every y in G there is a positive integer n such that $[y, n x]=1$ $([x, n y]=1)$. The Engel word of length n is $e_{n}(x, y)=[x, n y]$. We note that Theorem 1.2(b) can not be used to determine $e_{n}^{*}(G)$, since $e_{n-1}(x, y)$ and y are not independent.

For H a subgroup of $G,[G: H]$ is the index of H in G. If H is a proper (normal) subgroup of G, write $H<G(H \triangleleft G)$. If G is isomorphic to a subgroup of a group K, write $G \cong K . \quad C_{G}(H)$ is the centralizer of H in G. For x in G, x^{G} denotes the subgroup generated by all conjugates of x in G.
2. The Engel margin. In this section "Engel word" will mean "Engel word of length two". We write $M(G)=d_{2}^{*}(G)$ and $E(G)=$ $e_{2}^{*}(G)$ for the metabelian and Engel margins of G respectively.

Recall that $\left[Z_{n}(G), \gamma_{m}(G)\right] \subseteq Z_{n-m}(G)$ for all positive integers m and n.

Lemma 2.1. In any group G,
(a) $d_{n}^{*}(G) / C_{G}\left(d_{n-1}(G)\right)=d_{n-1}^{*}\left(G / C_{G}\left(d_{n-1}(G)\right)\right)$. In particular, $M(G)=$ $\{a \in G \mid[[a, x],[y, z]]$ is a law in $G\}$.
(b) $\quad Z_{n(n+1) / 2}(G) \subseteq d_{n}^{*}(G)$. In particular, $Z_{3}(G) \subseteq M(G)$.

Proof. Part (a) follows from Theorem 1.2(b) with $\theta=\lambda=d_{n-1}$.
We prove (b) by induction on n. For $n=1, Z_{1}(G) \subseteq d_{1}^{*}(G)=Z(G)$. For $n>1$, let $\bar{G}=G / C_{G}\left(d_{n-1}(G)\right)$. Then

$$
\overline{d_{n}^{*}(G)}=d_{n-1}^{*}(\bar{G}) \supseteq Z_{n(n-1) / 2}(\bar{G})
$$

by part (a) and the induction hypothesis. Furthermore,

$$
\left[Z_{n(n+1) / 2}(G), n(n-1) / 2(G)\right] \subseteq Z_{n(n+1) / 2-n(n-1) / 2}(G)=Z_{n}(G)
$$

and $\left[Z_{n}(G), d_{n-1}(G)\right] \subseteq\left[Z_{n}(G), \gamma_{n}(G)\right]=1$ so that

$$
\left[Z_{n(n+1) / 2}(G), n(n-1) / 2(G)\right] \subseteq C_{G}\left(d_{n-1}(G)\right)
$$

Consequently,

$$
\overline{Z_{n(n+1) / 2}(G)} \subseteq Z_{n(n-1) / 2}(\bar{G}) \subseteq \overline{d_{n}^{*}(G)}
$$

and $Z_{n(n+1) / 2}(G) \subseteq d_{n}^{*}(G) C_{G}\left(d_{n-1}(G)\right)=d_{n}^{*}(G)$, as desired.
We define $E_{1}(G)=\{a \in G \mid[a x, y, y]=[x, y, y]$ for all $x, y \in G\}$ and $L(G)=\{a \in G \mid[a, x, x]$ is a law in $G\}$ to be the subgroup of right Engel elements of length two. It is not difficult to show that $E(G) \subseteq E_{1}(G)$ and $E_{1}(G)$ is a characteristic subgroup of G.

The following properties of $L(G)$ were established by W. Kappe in [6]:

Lemma 2.2. In any group G, where $a \in L(G), g, h, \in G$,
(a) $L(G)$ is a characteristic subgroup of G.
(b) $[a, g, h]=[a, h, g]^{-1}$.
(c) $[a,[g, h]]=[a, g, h]^{2}$.
(d) $[a, g,[h, g]]=1$.
(e) $a^{4} \in Z_{3}(G)$.

Theorem 2.3. In any group G,
(a) $\quad Z_{2}(G) \subseteq E(G) \subseteq L(G)$.
(b) $E_{1}(G)=\left\{a \in G \mid[a, x] \in C_{G}\left(x^{G}\right)\right.$ for all $\left.x \in G\right\}=L(G)$.
(c) $[a, x] \in C_{G}\left(x^{G}\right) \cap C_{G}(\alpha)$ for all $a \in E_{1}(G), x \in G$. Furthermore, $[a, x]^{r s}=\left[a^{r}, x^{s}\right]$ for all integers r and s.
(d) a^{G} and $x^{L(G)}$ are Abelian for all a in $L(G), x$ in G.
(e) $\quad E_{1}(G) \subseteq C_{G}\left(\left(x^{G}\right)^{\prime}\right) \triangleleft G$ for all x in G.

Proof. Part (a) follows immediately from the definitions.
(b) Let $a \in E_{1}(G)$. Then $[a y, x, x]=[y, x, x]$ for all x, y in G. This is equivalent to saying that $1=\left[[a y, x][y, x]^{-1}, x\right]=\left[[a, x]^{y} \times\right.$ $\left.[y, x][y, x]^{-1}, x\right]=\left[[a, x]^{y}, x\right]$ for all x, y in G. Since x and y are independent, we may conclude that a is in $E_{1}(G)$ if and only if $1=$ [a, x, x^{y}] for all x, y in G or, equivalently, $[a, x] \in C_{G}\left(x^{G}\right)$ for all x.

That $E_{1}(G) \subseteq L(G)$ follows from $\left[a, x, x^{y}\right]=1$ by letting $y=1$. Finally, let $a \in L(G)$. We have for x, y in G that

$$
\left[a, x, x^{y}\right]=[a, x, x[x, y]]=[a, x,[x, y]][a, x, x]^{[x, y]} .
$$

From the definition of $L(G)$ we must have that $[a, x, x]=1$. By Lemma 2.2(d) we also have that $[a, x,[x, y]]=1$. Hence $\left[a, x, x^{y}\right]=1$ and $a \in E_{1}(G)$.
(c) Since a is a right Engel element, we have that $[a, x]$ is in $C_{G}(a)$ by [6, Lemma 2.1]. Part (b) says that $[a, x] \in C_{G}\left(x^{G}\right)$ for all x in G. The remainder of part (c) follows from [13, Theorem 3.4.4].
(d) From part (c) we see that $a^{x}=a[a, x] \in C_{G}(a)$, since a and [$a, x]$ are in $C_{G}(\alpha)$. This implies that a^{G} is Abelian.

The proof that $x^{L(G)}$ is Abelian follows similarly from the observation that $x^{a}=x[x, a],[x, a] \in C_{G}\left(x^{G}\right) \subseteq C_{G}(x)$.
(e) By part (c) we may conclude that $\left[a, x^{y}\right] \in C_{G}\left(\left(x^{y}\right)^{G}\right)=C_{G}\left(x^{G}\right)$ for all a in $E_{1}(G), x, y$ in G.

Let $a \in E_{1}(G)$. By Lemma $2.2(\mathrm{c})$, we have $\left[a,\left[x^{w}, x^{z}\right]\right]=$ $\left[\left[a, x^{w}\right], x^{z}\right]^{2}=1$. This implies that $a \in C_{G}\left(\left(x^{G}\right)^{\prime}\right)$.

Theorem 2.4. In any group $G, E(G)=\{a \in G \mid[x, a, y][x, y, a]=1$ for all x, y in $G\}$.

Proof. Set $E_{2}(G)=\{a \in G \mid[x, a y, a y]=[x, y, y]$ for all x, y in $G\}$. We see then that $E(G)=E_{1}(G) \cap E_{2}(G)$. Let S be the set described on the right in the statement of the theorem. Suppose $a \in S, x \in G$. Then $1=[x, a, x][x, x, a]=[x, a, x]$. This implies that $a \in E_{1}(G)=L(G)$. Since also $E(G) \subseteq E_{1}(G)$, it suffices to show that $E(G) \cap E_{1}(G)=E_{1}(G) \cap$ $E_{2}(G)=E_{1}(G) \cap S$. Then, for x, y in $G, a \in E_{1}(G) \cap E_{2}(G)$ if and only if

$$
\begin{aligned}
{[x, y, y] } & =[x, a y, a y] \\
& =[x, a y, y][x, a y, a]^{y} \\
& =\left[[x, y][x, a]^{y}, y\right]\left[[x, y][x, a]^{y}, a\right]^{y} \\
& =[x, y, y]^{[x, a]^{y}}\left[[x, a]^{y}, y\right][x, y, a]^{[x, a]^{y}}\left[[x, a]^{y}, a\right]^{y} .
\end{aligned}
$$

By assumption, $[a, x] \in C_{G}\left(x^{G}\right)$. Since $C_{G}\left(x^{G}\right) \triangleleft G$, we also have that $[a, x]^{y} \in C_{G}\left(x^{\sigma}\right)$. Consequently, conjugation by $[x, a]^{y}$ is irrelevant in the last statement above because all the commutators are in x^{G}. Therefore, the above is equivalent to

$$
[x, y, y]=[x, y, y]\left[[x, a]^{y}, y\right][x, y, a]^{y}\left[[x, a]^{y}, a\right]^{y}
$$

or

$$
1=[x, a, y][x, y, a]\left[[x, a]^{y}, a\right]
$$

for all $x, y \in G, a \in E(G)$.
Now a and $[x, a]^{y}$ are elements of α^{G}. By Theorem 2.3(d), a^{G} is Abelian. This implies that $\left[[x, a]^{y}, a\right]=1$. Therefore, $E(G)$ is contained in the set S.

We have already shown that S is a subset of $E_{1}(G)=L(G)$. Consequently, all the above arguments are reversible and we may conclude that $S=E(G)$.

Lemma 2.5. (a) $E(G) \cap C_{G}\left(G^{\prime}\right)=Z_{2}(G)$.
(b) $[x, a, y]=[a, y, x]$ for all x, y in G, a in $L(G)$.

Proof. (a) We need only verify that $E(G) \cap C_{G}\left(G^{\prime}\right) \subseteq Z_{2}(G)$ by Theorem 2.3(a) and the remark before Lemma 2.1. Let $a \in E(G) \cap$ $C_{G}\left(G^{\prime}\right)$. By Theorem $2.4,1=[x, a, y][x, y, a]$ for all x, y in G. But $a \in C_{G}\left(G^{\prime}\right)$ implies that $[x, y, a]=1$ and thus that $[x, a, y]=1$ for all x, y in G. Hence $a \in Z_{2}(G)$.
(b) $[a, y, x]=[a, x, y]^{-1}$ by Lemma 2.2(b), $=\left[[x, a]^{-1}, y\right]^{-1}=$ $\left(\left([x, a, y]^{-1}\right)^{-1}\right)^{[a, x]}=[x, a, y]$ since $[a, x] \in C_{G}\left(x^{G}\right)$ by Theorem 2.3(c).

From Theorem 2.4 and Lemma 2.5(b) we have our characterization of $E(G)$:

Theorem 2.6. For any group $G, E(G)=\{a \in G \mid[x, y, a][a, y, x]$ is a law in G\}.

Corollary 2.7. For any $a \in E(G),[a, G, G]^{3}=\left[a^{3}, G, G\right]=1$.
Proof. Let $x, y \in G$. By Theorem 2.6, $[x, y, a][a, y, x]=1$. Then $[x, y, a]=[a,[x, y]]^{-1}=\left([a, x, y]^{2}\right)^{-1}$ by Lemma 2.2(c), $=[a, y, x]^{2}$ by Lemma 2.2(b). Hence $1=[x, y, a][a, y, x]=[a, y, x]^{2}[a, y, x]=[a, y, x]^{3}$.

By Theorem 2.3(d) we have that a^{G} is Abelian. Hence $[a, x, y]^{3}=1$ for all $x, y \in G$ implies $[a, G, G]$ has exponent dividing three, and $[a, x, y]^{3}=\left[a^{3}, x, y\right]=1$.

Corollary 2.8. For any group $G, E(G) \subseteq Z_{3}(G) \subseteq M(G)$.
Proof. Let $a \in E(G)$. By Lemma 2.2(e) we have that $a^{4} \in Z_{3}(G)$. Since also $a^{3} \in Z_{2}(G) \subseteq Z_{3}(G)$ by Corollary 2.7, it follows that $a \in Z_{3}(G)$.

We recall a theorem of F. W. Levi (see [12]): If e_{2} is a law in a group G, then G is nilpotent of class at most three and $\gamma_{3}(G)$ has exponent dividing three. This, together with Theorem 1.1(b), yields the first statement in the following:

Theorem 2.9. $E(G)$ is nilpotent of class no greater then three and metabelian, and $\gamma_{3}(E(G))$ has exponent dividing three. If $C_{G}\left(G^{\prime}\right) \subseteq$ $E(G)$, then $M(G)=Z_{3}(G)$.

Proof. Suppose $C_{G}\left(G^{\prime}\right) \subseteq E(G)$. By Lemma 2.5(a) this implies that $C_{G}\left(G^{\prime}\right)=Z_{2}(G)$. From Lemma 2.1(a), $M(G) / C_{G}\left(G^{\prime}\right)=Z\left(G / C_{G}\left(G^{\prime}\right)\right)$. Hence $M(G)=Z_{3}(G)$.

Theorem 2.10. Let G be a group, $M=M(G), E_{1}=E_{1}(G)=L(G)$. Then
(a) $\left[G^{\prime}, M, E_{1}\right]=\left[G^{\prime}, E_{1}, M\right]=\left[M, G, G^{\prime}\right]=1$.
(b) $\left[G, M^{\prime}, E_{1}\right]=\left[M^{\prime}, E_{1}, G\right]=\left[G^{\prime}, M^{\prime}\right]=1$. In particular, $\left[M^{\prime}, E_{1}\right] \subseteq$ $Z(G)$.

Proof. (a) By Lemma 2.1(a), $[M, G] \subseteq C_{G}\left(G^{\prime}\right) \cap G^{\prime}=Z\left(G^{\prime}\right)$ so that $1=\left[M, G, G^{\prime}\right]$. Now let $a \in E_{1}, m \in M, x \in G^{\prime}$. By Lemma 2.2(c), $[a,[m, x]]=[a, m, x]^{2}=1$. This implies $\left[G^{\prime}, M, E_{1}\right]=1$. Consequently $\left[G^{\prime}, E_{1}, M\right]=1$ by [13, Theorem 3.4.8(i)].
(b) As in the proof of part (a), we have $M^{\prime} \subseteq Z\left(G^{\prime}\right)$ so that $1=\left[G^{\prime}, M^{\prime}\right]$. Let $a \in E_{1}, x \in M^{\prime}, g \in G$. Then $[a,[g, x]]=[a, g, x]^{2}=1$. Hence $\left[M^{\prime}, G, E_{1}\right]=1$ and, as above, $\left[M^{\prime}, E_{1}, G\right]=1$.
3. Central automorphisms on G^{\prime}. It follows from Theorem 2.10(a) that $\left[M(G), G^{\prime}\right] \subseteq Z\left(G^{\prime}\right)$. This implies that $M(G) / C_{G}\left(G^{\prime}\right)$ acts as an Abelian group of central automorphisms on G^{\prime}. Then

$$
\left(E_{1}(G) \cap M(G)\right) /\left(E_{1}(G) \cap C_{G}\left(G^{\prime}\right)\right) \sqsubseteq M(G) / C_{G}\left(G^{\prime}\right)
$$

is also such a group. Denote the corresponding group of automorphisms on G^{\prime} by \mathfrak{N}_{2}. Furthermore,

$$
E(G) / Z_{2}(G)=(E(G) \cap M(G)) /\left(E(G) \cap C_{G}\left(G^{\prime}\right)\right) \cong \mathfrak{N}_{2}
$$

by Lemma 2.5(a) and Corollary 2.8. Let $\mathfrak{X}_{1} \subseteq \mathfrak{N}_{2}$ denote the corresponding group of automorphisms. From Corollary 2.7 we see that $E(G) / Z_{2}(G)$ has exponent 3. Hence \mathfrak{U}_{1} is an elementary Abelian 3group of central automorphisms on G^{\prime}.

Theorem 3.1. (a) If the exponent $\operatorname{Exp}\left(Z\left(G^{\prime}\right)\right)=n$ is finite, then $\operatorname{Exp}\left(\mathfrak{N}_{2}\right)$ divides n.
(b) If G^{\prime} is a p-group, $\mathfrak{H} \subseteq \mathfrak{N}_{2}$ is periodic, then \mathfrak{H} is a p-group.
(c) Assume G^{\prime} is polycyclic; that is, G^{\prime} has a finite ascending normal series with cyclic factors. Then $E(G) / Z_{2}(G)$ is finite.

Proof. (a) Suppose $Z\left(G^{\prime}\right)$ has exponent n. Then, for $x \in G^{\prime}$, $a \in \mathfrak{Y}_{2}, 1=[x, a]^{n}=\left[x, a^{n}\right]$ by Theorem 2.3(c). Consequently, $a^{n}=1$ and \mathfrak{X}_{2} has exponent dividing n.
(b) Now assume \mathfrak{V} is periodic. By Theorem 2.10(a) we may conclude that $\left[G^{\prime}, M(G), E_{1}(G)\right]=\left[G^{\prime}, \mathfrak{M}, \mathfrak{N}\right]=1$. Thus \mathfrak{N} stabilizes the normal series $1 \triangleleft\left[G^{\prime}\right.$, 则 $\triangleleft G^{\prime}$ of G^{\prime}. By [1, Corollary 5.3.3] we have that \mathfrak{X} is a p-group.
(c) Smirnov [14] has shown that a solvable group of automorphisms of a polycyclic group is polycyclic. Since then \mathfrak{V}_{1} is finitely generated, it must be finite.

THEOREM 3.2. If $\mathfrak{\vartheta}_{2} \neq 1$ is not torsionfree, then G^{\prime} has a proper subgroup of finite index and $Z\left(G^{\prime}\right)$ is not torsionfree.

Proof. For $1 \neq \alpha \in \mathfrak{A}_{2}$, the homomorphism from G^{\prime} into $Z\left(G^{\prime}\right)$ defined by $f_{\alpha}(x)=[x, \alpha]$ for each x in G^{\prime} is nontrivial. We choose $a \in E_{1}(G) \cap M(G) \backslash E_{1}(G) \cap C_{G}\left(G^{\prime}\right)$ such that $[x, \alpha]=[x, a]$ for all x in G^{\prime}. If α has finite order, then there is an integer n such that $a^{n} \in C_{G}\left(G^{\prime}\right)$. Thus $1=[x, \alpha]^{n}=\left[x, a^{n}\right]$ and $G^{\prime} / \operatorname{Ker} f_{\alpha} \subsetneq Z\left(G^{\prime}\right)$ is a nontrivial direct sum of cyclic groups each of order bounded by n. In particular, there are subgroups H and C of G^{\prime} such that $G^{\prime} / \operatorname{Ker} f_{\alpha}=H / \operatorname{Ker} f_{\alpha}+$ $C / \operatorname{Ker} f_{\alpha}$ and $C / \operatorname{Ker} f_{\alpha}$ is nontrivial and finite. Consequently $H<G^{\prime}$ and $G^{\prime} / H \cong C / \operatorname{Ker} f_{\alpha}$ is finite.

Let $1 \neq \alpha \in \mathfrak{N}_{2}, o(\alpha)=n<\infty$. Then there is an $x \in G^{\prime}$ such that $1 \neq[x, \alpha] \in Z\left(G^{\prime}\right)$. But $[x, \alpha]^{n}=\left[x, \alpha^{n}\right]=1$ so that the order of $[x, \alpha]$ divides n.

Corollary 3.3. If $E(G)>Z_{2}(G)$, then G^{\prime} has a proper subgroup of finite index.

Proof. If $E(G)>Z_{2}(G)$, then \mathfrak{N}_{1} is a nontrivial torsion subgroup of \mathfrak{N}_{2}. Hence $\mathfrak{N}_{2} \neq 1$ is not torsionfree and the theorem applies.

It is known that no complete, or even Černikov complete, group can have a proper subgroup of finite index (see [7, p. 234]). From this fact we derive part of the following:

Corollary 3.4. If G^{\prime} is Černikov complete, or if $Z(G) \cap \gamma_{3}(G)$ has no elements of order three, then $E(G)=Z_{2}(G)$.

Proof. We shall show that $\mathfrak{\Re}_{1}=1$. By Corollary 2.8, $E(G) \subseteq$ $Z_{3}(G)$. Hence $\left[G^{\prime}, E(G)\right]=\left[G^{\prime}, \mathfrak{N}_{1}\right] \subseteq Z(G) \cap \gamma_{3}(G)$.

Let $a \in \mathfrak{Z}_{1}, x \in G^{\prime}$. Then, by Corollary 2.7 and Theorem 2.3(c), $1=\left[x, a^{3}\right]=[x, a]^{3}$. By hypothesis, this implies that $1=[x, a]$. Consequently $a=1$.

Example 3.5. We now construct a group G such that $Z_{2}(G)<$ $E(G)<Z_{3}(G)$.

Let $H=\left\langle a_{1}, a_{2}, a_{3}: x^{3}\right\rangle$. Levi and van der Waerden [8] have shown that H has nilpotence class exactly three and is in the variety determined by e_{2}. Hence $E(H)=H=Z_{3}(H)>Z_{2}(H)$. Let K be any group of nilpotence class at least three having no elements of order three (see for example [12, p. 198]). By Corollary 3.4, $E(K)=Z_{2}(K)<$ $Z_{3}(K) \subseteq K$. Letting $G=H \times K$, we see that $E(G)=E(H) \times E(K)=$ $H \times Z_{2}(K)$. Hence $Z_{2}(G)<E(G)<Z_{3}(G)$.

Remark 3.6. Define $N_{A}(G)=\bigcap\left\{N_{G}(H) \mid H\right.$ maximal Abelian subgroup of $G\}$ to be the A-Norm of G. Kappe [6] has shown that $a \in N_{A}(G)$ if and only if [g, h] = 1 for g, h in G implies that $[a, g, h]=1$. From Theorem 2.6 it follows immediately that $E(G) \subseteq N_{A}(G) \subseteq E_{1}(G)$.
4. Finiteness conditions. We shall say that a word $\dot{\phi}$ satisfies the Schur-Baer property if $\left[G: \phi^{*}(G)\right]=m$ finite implies $\phi(G)$ finite with order which divides a power of m for all groups G.

Schur showed that γ_{2} satisfies the Schur-Baer property; Baer extended this result to any outer commutator word ϕ (see [15]).

Recall that a group G is residually finite if for every x in G, $x \neq 1$, there is a normal subgroup N_{x} of G such that $x \notin N_{x}$ and G / N_{x} is finite. A group is locally residually finite if every finitely generated subgroup is residually finite.

We shall need the following theorem. For a proof (due to P. Hall), see [15, Theorem 2].

Theorem 4.1. If $\dot{\phi}$ generates a locally residually finite variety, then ϕ satisfies the Schur-Baer property.

Theorem 4.2. If $\phi \in\left\{e_{2}, e_{3}\right\}$, then ϕ satisfies the Schur-Baer property.

Proof. Suppose $\phi=e_{2}$. A group in the variety generated by ϕ is nilpotent by Levi's Theorem. A finitely generated nilpotent group is residually finite by P. Hall [4]. Therefore, a finitely generated group in the variety generated by ϕ is residually finite and Theorem 4.1 applies.

Let $\dot{\phi}=e_{3}$. Heineken [5] has shown that a group in the variety generated by ϕ is locally nilpotent. Hence a finitely generated group in this variety is also residually finite and the theorem follows as above.

Recall that a group is an $S N^{*}$ group if it possesses an ascending normal series with Abelian factors (see [7]). Also, the unique maximum locally nilpotent normal subgroup of a group is called its HirschPlotkin radical (see [12]).

We note that in P. Hall's proof of Theorem 4.1 that we may extend the result somewhat if we put some restrictions on G itself. That is, if $\phi^{*}(G)$ is locally residually finite for all G in some quotientand subgroup-closed class Σ, then ϕ satisfies the Schur-Baer property for all G in Σ.

Theorem 4.3. If G satisfies the maximum or the minimum condition, or if G is an $S N^{*}$ group, then e_{n} satisfies the Schur-Baer property for G.

Proof. Suppose G satisfies the maximum condition. Then, by [12, Theorem VI. 8. j], we have that the set of left Engel elements (of all lengths) is the Hirsch-Plotkin radical R. Since then $e_{n}^{*}(G) \subseteq R$ is locally nilpotent, it is locally residually finite. By the preceding remark, we have that e_{n} satisfies the Schur-Baer property for G.

Vilyacer [18] has shown that an Engel group satisfying the minimum condition is locally nilpotent. Plotkin [11] has proved that an Engel group which is also an $S N^{*}$ group is locally nilpotent. Hence the remainder of the theorem follows as above.

The validity of the Schur-Baer property in general is one of several conjectures which have been proposed for the group functions ϕ and ϕ^{*} (see [9] and [16]). Modified solutions of two of these come from the following lemma.

Lemma 4.4. Suppose G is in a class of groups in which the Schur-Baer property is satisfied locally for ϕ. If G is locally residually finite and ϕ is finite-valued on G, then $\phi(G)$ is finite.

Proof. This follows from the arguments used in the proofs of Proposition 1 and its two corollaries in [17].

We note in particular in these proofs that there is a finitely generated subgroup H of G such that $\phi(H)=\phi(G)$. It follows that $H / \phi^{*}(H)$ is finite. Since H and ϕ satisfy the Schur-Baer property, $\phi(H)=\phi(G)$ is finite.

The following two theorems are immediate from these observations.
Theorem 4.5. If $\phi \in\left\{e_{2}, e_{3}\right\}, G$ is locally residually finite, and ϕ is finite-valued on G, then $\phi(G)$ is finite.

Theorem 4.6. If $\phi \in\left\{e_{2}, e_{3}\right\}, \phi$ is finite-valued on G, and G is finitely generated and residually finite, then $G / \phi^{*}(G)$ is finite.

References

1. D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
2. P. Hall, Verbal and marginal subgroups, J. Reine Angew Math., 182 (1940), 156-157.
3. - Nilpotent groups, Report to the Canad. Math. Congress, 1957.
4. On the finiteness of certain soluble groups, Proc. London Math. Soc., (3), 9 (1959), 595-622.
5. H. Heineken, Engelsche Elemente der Länge drei, Illinois J. Math., 5 (1961), 681707.
6. W. Kappe, Die A-Norm einer Gruppe, Illinois J. Math., 5 (1961), 187-197.
7. A. G. Kurosh, The Theory of Groups, Vol. 2, Chelsea, New York, 1960.
8. F. Levi and B. L. van der Waerden, Über eine besondere Klasse von Gruppen, Abhandl. Math. Sem. Univ. Hamburg, 9 (1932), 154-158.
9. Ju. I. Merzljakov, Verbal and marginal subgroups of linear groups, Soviet Math. Dokl., 8 (1967), 1538-1541.
10. H. Neumann, Varieties of Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (N. S.), Band 37, Springer-Verlag, New York, 1967.
11. B. I. Plotkin, On some criteria of locally nilpotent groups, Uspehi Math. Nauk (N. S.), 9 (1954), no 3, 181-186. (Russian)
12. E. Schenkman, Group Theory, D. Van Nostrand, Princeton, N. J., 1965.
13. W. R. Scott, Group Theory, Prentice-Hall, Englewood Cliffs, N. J., 1964.
14. D. M. Smirnov, On groups of automorphisms of solvable groups, Mat. Sb., 32 (74) (1953), 365-384. (Russian)
15. P. W. Stroud, On a property of verbal and marginal subgroups, Proc. Cambridge Phil. Soc., 61 (1965), 41-48.
16. R. F. Turner-Smith, Marginal subgroup properties for outer commutator words, Proc. London Math. Soc. (3), 14 (1964), 321-341.
17. -, Finiteness conditions for verbal subgroups, Journal London Math. Soc., 41 (1966), 166-176.
18. V. G. Vilyacer, On the theory of locally nilpotent groups, Uspehi Math. Nauk (N. S.), 13 (1958), no. 2, 284-285. (Russian)

Received August 29, 1972. This paper represents part of the author's Ph. D. dissertation written at Michigan State University under Professor Richard E. Phillips.

Hendrix College

