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THE HANF NUMBER OF OMITTING
COMPLETE TYPES

SAHARON SHELAH

It is proved in this paper that the Hanf numher m° of
omitting complete types hy models of complete countable
theories is the same as that of omitting not necessarily com-
plete type by models of a countable theory.

Introduction* Morley [3] proved that if L is a countable first-
order language, T a theory in Lf p is a type in L, and T has models
omitting p in every cardinality λ < Dωi, then T has models omitting
p in every infinite cardinality. He also proved that the bound 2ωi

cannot be improved, in other words the Hanf number is 2ω i. He
asked what is the Hanf number mc when we restrict ourselves to
complete T and p. Clearly wF <£ 2ωi. Independently several people
noticed that mc ^ 2ω and J Knight noticed that mc > X

Malitz [2] proved that the Hanf number for complete £«,,„-theories
with one axiom f e L ^ is 2ωi. We shall prove

NOTATION. Natural numbers will be ί, j , k, I, m, n, ordinals a, β, 3;
cardinals λ, μ. \ A \ is the cardinality of A, 2a = ΣJ8<« ̂ 2β + fc$o

M will be a model with universe \M\9 with corresponding count-
able first-order language L(M). For a predicate ReL(M), the cor-
responding relation is RM or R(M), and if there is no danger of con-
fusion just R. Every M will have the one place predicate P and
individual constants cn such that P — PM = {cn: n < o)}, nΦm=>cnΦcm

(we shall not distinguish between the individual constants and their
interpretation). A type p in L is a set of formulas φ(x0) e L; p is
complete for T in L if it is consistent and for no φ(x0) e L both
T{J PΌ M O } and T{J PΌ {-^ <P(x0)} are consistent.

An element be\M\ realizes p if φ(x0) e p implies M1= φ[b]
(N -satisfaction sign), and M realizes p if some αe|Λf| realizes it
A complete theory in L is a maximal consistent set of sentences of
L. For every permutation θ of P, model M, and sublanguage L of
L(M) we define an Ehrenfeucht game EG(M, L, θ) between player I
and II with ω moves as follows: in the %th move first player I chooses
i e {0,1} and a\ e | M \ and secondly player II chooses aι~ι e | M | Player
II wins if the extension θ* of θ defined by θ*(al) = a\ preserves all
atomic formulas of L. That is if R(xu * ,xn) is an atomic lormula in
L, θ*(bi) is defined then M N R[bu , K] iff Λf N R[θ*(bύ, - , θ*{bn)].
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REMARK. SO if I chooses aieP, II should choose a\ = # « ) .
Define Γ(n0) = {θ: θ a permutation of P, n < no=* θ(cn) = cw and

only for finitely many n θ(cn) Φ cn}.
MI L is the reduct of M to the language L g L{M), that is

ikf |L is ikf without the relations RM, Re L(M), Rg L, and constants
cneL(M), cnίL.

THEOREM 2. For ever?/ ordinal a < ωx ί/̂ βre is α countable first-
order language La a complete theory Ta in L, such that

( i ) <p — {P(x0)} U {#o Φ cn: n < a)} is a complete type for Ta.
(ii) Ta has a model of cardinality 2a omitting p.
(iii) Ta has no model of cardinality > 2a omitting p.

REMARK. Clearly Theorem 2 implies Theorem 1.

Proof. We shall define by induction on a < ωλ models Ma such
that

( 1 ) ||Λfα||, the cardinality of \Ma\, is, 2a, and of course
P = P(Ma) = {cn: n < ω) and except for the cw's L{Ma) has only
predicates.

(2) There is no model elementarily equivalent to Ma of cardinality
> X which omits p.

(3) If (3/5)(α = 0 + 2) then Qα e L(Mα) and | Qα(Mα) | - X
(4) For every finite sublanguage L of L(Ma) there is nL —

n(L) < ω, such that for every permutation θ e -Γ(wL) player II has a
winning strategy in EG(Ma, L, θ).

(5) In (4) if (30)(α = 0 + 2) then in the winning strategy of
II, if I chooses a\ e Q«(M«) then II chooses air* = <•

The induction will go as follows. First we define MQ, M19 and M2;
later we define Λfβ+1 by Ma when (30) (α = 0 + 2); last for limit
ordinal δ we define Mδ, Mδ+1, Mδ+2 by Ma a < δ.

But before defining the ikfα's, let us show how this will finish
the proof. We choose La — L(Ma). Ta is the set of sentences of La

that Ma satisfies. Clearly (ii), (iii) are satisfied. To prove (i) let
φ(x0) e La, so for some finite sublanguage L of La φ(x0) e L. By pos-
sibly interchanging φ(x0) and —i φ(x0) we can assume Ma (= <p[cn{L)].
For k ^ n(L) let θk be the permutation of P interchanging cn{L)ck, and
leaving the other elements fixed.

Clearly θeΓ(nL), hence player II has a winning strategy in
EG(Ma, L, θ). By Ehrenfeucht [1] this implies cn[L) and ck = θ(cn{L))
satisfy the same formulas of L. Hence Ma N ΨICMD] = ΦlcΛi hence
ikία |= <p[cfe]. As this holds for any k ̂  w(L) Λfβ 1= (Vx)[P(x) A A«n(D » ^
c< —> 9>(α?)]. Hence Tα U P U {~i ψ{^} is inconsistent. So p is complete
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(for Ta, La) and we finish.

So let us define

Case I. a = 0,1, 2
(A) Let us define MQ:
Mo\ — P, and its only predicate is P (and of course the individual

constants cn, which we will not mention in later cases). Clearly (1),
(2) are immediate. (3) and (5) are satisfied vacuously. As for (4), let
nL = max {n + l:cne L}. Clearly Θ is an automorphism of MQ \ L (the
reduct of MQ to L).

So player II will play by the automorphism: if I chooses α°, II
will choose a\ — θ(a°n), and if I chooses α«, II will choose a°n — θ~ι{aι

n).
(B) I M11 = I Mo I U PiίAQ, where Pλ(MJ = &°(\M0\), where

&*(A) = the power set of A = {B: BQ A}.
The predicates of Mt are those of MQ, P1 and εx

e,{Mύ - {<c, A}:ce \M0\,AePl9ceA}.

As in (A) it is clear that Mί satisfies the induction conditions, as
if θe Γ(nL) L £ L{M^> L finite, then θ can be extended to an automor-
phism of Mx by

def

Θ(A) - {θ(c):ceA} .

(C) Let us define an equivalence relation Ex on PJJSd^ . AEJB
iff for some ^eΓ(O) A = Θ{B)[ - {θ(c):ceB}].

This is an equivalence relation, as Γ(0) is a group of permuta-
tions, and as | Γ(0) \ = ^ 0 , each equivalence class is countable. Define

|Λf.l = I M, I U Q2(M2)

Q2(M2) = {S: S s P^ΛQ, i , ΰ 6 P

ε2(M2) - {<^, S>: A e P l f iS e Q8, A e

The relations of Jlf2 will be the relations of M19 and Q2, ε2. By
the definition of Q2, each θ 6 Z 7 ^ ) [L a finite sublanguage of L(M2)]
can be extended to an automorphism θ* of M21 L, which is the iden-
tity over Q2. As before (1), (2), (4) hold, and as θ* is the identity
over Q2, also (5) holds. As for (3) each ^-equivalence class is
countable, and | Pi(MΊ) | = 2 | P | = 2Ko, the number of .^-equivalence
c l a s s e s i s 219 s o \Q2\ = 2?1 — 22.

Case II. We define Ma+19 where Ma is defined, (2β)(a = β + 2).
Let
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The relations of Ma+1 will be those of Ma and in addition
Qa+1(Ma+1) =

εa+1(Ma+1) = {<α, A): ae Qa{Ma), A e Qa+1(Ma+1), aeA) .

Clearly Conditions (1), (2), (3) are satisfied. As for (4), (5) the
winning strategy of player II in EG(Ma+1, L, Θ)[θ e Γ(nL)] will be as
follows: when I chooses elements in \Ma\ he will pretend all the game
is in I Ma | and play accordingly; and if player I chooses a\ e Qa+ι(Ma+1),
then player II will choose aι~ι = a\. As Ma satisfies (5) this is a
winning strategy, and trivially it satisfies (5).

Case III. δ a limit ordinal, Ma is defined for a < δ; and we shall
define Mδ, Mδ+1, Mδ+2.

PART A. By changing, when necessary, names of elements and
relations, we can assume that for a < β < δ,

I Ma\ n I Mβ I - P, and L(Ma) Π L(Mβ) = {P, en: n < ω) ,

but that if (3/3) (oc = /3 + 2) then still QαeL(ilfα). Choose an increas-
ing sequence of ordinals an n < ω, δ = \Jn<0) an and (3j8)(αn = /5 + 2).
Define ikf5 as follows

\Mδ\= U Ma%.

The relations of Mδ will be those of Man for each n <, ω and i2fδ

pi ί _ {/P a\ r — r a P n a (M — PM

It is easy to check that Conditions (1), (2) are satisfied. Condi-
tions (3) and (5) are vacuous. So let us prove Condition (4) holds. Let
L be a finite sublanguage of L(Mδ); then L § \Jj<n0Lj (J {R}, where
Lj = L f] L(Ma3) is a finite sublanguage of L(Maj). Define nL =
max [{nL.:j < %} (J {tι0}]. Let θeΓ(nL). We shall describe now the
winning strategy of player II in EG(Mδ, L, θ). When player I will
choose i e {0,1}, < e Mβj., i < n0, player II will pretend all the game
is in the model Maj, and so play his winning strategy for EG{Map L D
L(Ma.), θ). If player I chooses i e {0,1}, a*ne Maj j ^ n0 then player
II will choose aι~ι e MU]t [where i = 0 ==> k — θ(j), i = 1 ==> j = (̂/b)] such
that for any m < n aι

m = at <=> â r* = aJr*.

that for j ^ π0, in Mδ \ L, every permutation of elements of
Ma. is an automorphism, as the only relation an α e \Ma.\ satisfies is
Rδ[cjy a].

PART B. Here we define Mδ+ι. Let A* - U»«* Q«w(Λf«Λ), and
\M,+1\ = \M,\
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The relations of Mί+1 will be those of Mδ9 and in addition

Pδ(Mδ+ί) = I Mδ I, P 5 + 1 ( M δ + 1 )

eδ+1(Mδ+1) = {<&, B): be A*, Be^(A*), beB}.

It is easy to see that Conditions (1), (2) are satisfied, and (3), (5)
are vacuous. So let us prove (4) — let L be a finite sublanguage of
L(Mδ+ί). So

I g U ^ i U {R» Pδ, Pδ+ί, eδ+i}> L{ = L n L(Ma.) .

i<n0

Define again

nL = max [{nLj: j < n0} U {n0}] .

Let Θ e Γ(nL) and we should describe player IΓs winning strategy
in EG(Mi+1, L, θ). When player I chooses an element in Ma. j < n09

player II will ignore all elements chosen outside Ma.> and play by his
winning strategy in EG(Map Lh θ). In the other cases player II will
play so that the following conditions are satisfied for every n

P ( 1 ) ale Pδ+1(Mδ+ί) « a\e Pδ+ι(Mδ+1)

P ( 2 ) if cy = θ(ck), then a°ne\Mak\<=> aie\Ma.\

P ( 3 ) if m < n then α°w = a°n <=> aι

m = a\
P ( 4 ) it m,l^,n and α« e A*, a\ e Pδ+1 then α i e α J ^ α U a\
P ( 5 ) if α°m e P m > Z < ω, ct = θ(cύ then α°m n Oe|(Afei) = < n Qα/,(M"αz)
P ( 6 ) if cy = ^(cfc)i ^ & < ω, then « : m^n,a°me Pδ+1> and

<α»: m ̂  ^, o>m e Pδ+i} genarate corresponding finite Boolean algebras
of subsets of Qajc(Mak) and Qaj (Maj) correspondingly; then the cor-
responding atoms in those algebras are both infinite, or have the
same power.

It is easy to see that this can by done, and it is a winning
strategy.

PART C. Here we define Mi+2.
Define equivalence relations Eδ+1, Eδ+1 on Pδ+1(Mδ+1): if A, Be

Pδ+ι(Mδ+1), then A, B s A* = \Jn<0) Q<JMβJ; define AE?+1B iff A n
[\Ja»m>n QaJMaJ] = B f] [\Jω>m>n QaJMaJ]] AEδ+1B iff for some n

Clearly each E*+1 is an equivalence relation, E*+1 refines
hence Eδ+1 is an equivalence relation.

It is clear that

I Pδ+1 (Mδ+1) I = lδ+1

b u t for every n <ω, Ae Pδ+1(Mδ+1)
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i {B:BePs+ι(Ms+i), BE?+1A} \£\&»(\J Q.JM.J)

hence

I {B: Be Ps+ι(M3+1), BES+1A} I ^ Σ X = X

So each Eδ+1 — equivalence class has cardinality ^ X, hence there
are 2δ+1 i?δ+1-equivalence classes.

Define Mδ+2:

I Mδ+21 = I Λf a + 11 U Q*+*(Mδ+ύ

where

Qδ+2(Mδ+2) = {S:S^ Pδ+1(Mδ+1), A,BeS, AEδ+1B =^AeS<—>BeS}.

Clearly | Qδ+2(Mδ+2) | - 2δ+2.

The relations of ikfδ+2 will be those of Mδ+19 and Qδ+21 and

ε,+2(ikΓδ+2) = {(A, S): A e Pδ+1(Mδ+1)y Se Pδ+2(Mδ+2), AeS}.

It is easy to prove all conditions are satisfied as in Case II, if
we notice that by Condition P (5) if for any instance of any game
EG(Mδ+1, L, θ)[θ G Γ(nL)] in which player II plays his strategy, if α£, aι~ι

are chosen for some n and they belong to Pδ+1{Mδ+1) then they are
i?δ+1-equivalent (as {n: θ(cn) Φ n} is finite).
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