THE HANF NUMBER OF OMITTING COMPLETE TYPES

Saharon Shelah

Abstract

It is proved in this paper that the Hanf number m^{C} of omitting complete types by models of complete countable theories is the same as that of omitting not necessarily complete type by models of a countable theory.

Introduction. Morley [3] proved that if L is a countable firstorder language, T a theory in L, p is a type in L, and T has models omitting p in every cardinality $\lambda<\beth_{\omega_{1}}$, then T has models omitting p in every infinite cardinality. He also proved that the bound $\beth_{\omega_{1}}$ cannot be improved, in other words the Hanf number is $\beth_{\omega_{1}}$. He asked what is the Hanf number m^{C} when we restrict ourselves to complete T and p. Clearly $m^{c} \leqq \beth_{\omega_{1}}$. Independently several people noticed that $m^{c} \geqq \beth_{\omega}$ and J. Knight noticed that $m^{c}>\beth_{\omega}$.

Malitz [2] proved that the Hanf number for complete $L_{\infty, \omega}$-theories with one axiom $\psi \in L_{\omega_{1}, \omega}$ is $\beth_{\omega_{1}}$. We shall prove

Theorem 1. $m^{c}=\beth_{\omega_{1}}$.
Notation. Natural numbers will be i, j, k, l, m, n, ordinals α, β, δ; cardinals $\lambda, \mu,|A|$ is the cardinality of $A, \beth_{\alpha}=\sum_{\beta<\alpha} 2^{\beth_{\beta}}+\aleph_{0}$.
M will be a model with universe $|M|$, with corresponding countable first-order language $L(M)$. For a predicate $R \in L(M)$, the corresponding relation is R^{M} or $R(M)$, and if there is no danger of confusion just R. Every M will have the one place predicate P and individual constants c_{n} such that $P=P^{M}=\left\{c_{n}: n<\omega\right\}, n \neq m \Rightarrow c_{n} \neq c_{m}$ (we shall not distinguish between the individual constants and their interpretation). A type p in L is a set of formulas $\varphi\left(x_{0}\right) \in L ; p$ is complete for T in L if it is consistent and for no $\varphi\left(x_{0}\right) \in L$ both $T \cup p \cup\left\{\varphi\left(x_{0}\right)\right\}$ and $T \cup p \cup\left\{\neg \varphi\left(x_{0}\right)\right\}$ are consistent.

An element $b \in|M|$ realizes p if $\varphi\left(x_{0}\right) \in p$ implies $M \vDash \varphi[b]$ ($\vDash-$ satisfaction sign), and M realizes p if some $a \in|M|$ realizes it. A complete theory in L is a maximal consistent set of sentences of L. For every permutation θ of P, model M, and sublanguage L of $L(M)$ we define an Ehrenfeucht game $E G(M, L, \theta)$ between player I and II with ω moves as follows: in the nth move first player I chooses $i \in\{0,1\}$ and $a_{n}^{i} \in|M|$ and secondly player II chooses $\alpha_{n}^{1-i} \in|M|$. Player II wins if the extension θ^{*} of θ defined by $\theta^{*}\left(a_{n}^{0}\right)=a_{n}^{1}$ p.eserves all atomic formulas of L. That is if $R\left(x_{1}, \cdots, x_{n}\right)$ is an atomic tormula in $L, \theta^{*}\left(b_{i}\right)$ is defined then $M \vDash R\left[b_{1}, \cdots, b_{n}\right]$ iff $M \vDash R\left[\theta^{*}\left(b_{1}\right), \cdots, \theta^{*}\left(b_{n}\right)\right]$.

Remark. So if I chooses $\alpha_{n}^{i} \in P$, II should choose $\alpha_{n}^{1}=\theta\left(a_{n}^{0}\right)$.
Define $\Gamma\left(n_{0}\right)=\left\{\theta: \theta\right.$ a permutation of $P, n<n_{0} \Rightarrow \theta\left(c_{n}\right)=c_{n}$ and only for finitely many $\left.n \theta\left(c_{n}\right) \neq c_{n}\right\}$.
$M \mid L$ is the reduct of M to the language $L \subseteq L(M)$, that is $M \mid L$ is M without the relations $R^{M}, R \in L(M), R \notin L$, and constants $c_{n} \in L(M), c_{n} \notin L$.

Theorem 2. For every ordinal $\alpha<\omega_{1}$ there is a countable firstorder language L_{α} a complete theory T_{α} in L, such that
(i) $p=\left\{P\left(x_{0}\right)\right\} \cup\left\{x_{0} \neq c_{n}: n<\omega\right\}$ is a complete type for T_{α}.
(ii) T_{α} has a model of cardinality \beth_{α} omitting p.
(iii) T_{α} has no model of cardinality $>\beth_{\alpha}$ omitting p.

Remark. Clearly Theorem 2 implies Theorem 1.
Proof. We shall define by induction on $\alpha<\omega_{1}$ models M_{α} such that
(1) $\left\|M_{\alpha}\right\|$, the cardinality of $\left|M_{\alpha}\right|$, is, \beth_{α}, and of course $P=P\left(M_{\alpha}\right)=\left\{c_{n}: n<\omega\right\}$ and except for the c_{n} 's $L\left(M_{\alpha}\right)$ has only predicates.
(2) There is no model elementarily equivalent to M_{α} of cardinality $>\beth_{\alpha}$ which omits p.
(3) If $(\exists \beta)(\alpha=\beta+2)$ then $Q_{\alpha} \in L\left(M_{\alpha}\right)$ and $\left|Q_{\alpha}\left(M_{\alpha}\right)\right|=\beth_{\alpha}$
(4) For every finite sublanguage L of $L\left(M_{\alpha}\right)$ there is $n_{L}=$ $n(L)<\omega$, such that for every permutation $\theta \in \Gamma\left(n_{L}\right)$ player II has a winning strategy in $E G\left(M_{\alpha}, L, \theta\right)$.
(5) In (4) if $(\exists \beta)(\alpha=\beta+2)$ then in the winning strategy of II, if I chooses $a_{n}^{i} \in Q_{\alpha}\left(M_{\alpha}\right)$ then II chooses $a_{n}^{1-i}=a_{n}^{i}$.

The induction will go as follows. First we define M_{0}, M_{1}, and M_{2}; later we define $M_{\alpha+1}$ by M_{α} when $(\exists \beta)(\alpha=\beta+2)$; last for limit ordinal δ we define $M_{\dot{\delta}}, M_{\dot{\delta}+1}, M_{\dot{\delta}+2}$ by $M_{\alpha} \alpha<\delta$.

But before defining the M_{α}^{\prime} 's, let us show how this will finish the proof. We choose $L_{\alpha}=L\left(M_{\alpha}\right) . \quad T_{\alpha}$ is the set of sentences of L_{α} that M_{α} satisfies. Clearly (ii), (iii) are satisfied. To prove (i) let $\varphi\left(x_{0}\right) \in L_{\alpha}$, so for some finite sublanguage L of $L_{\alpha} \varphi\left(x_{0}\right) \in L$. By possibly interchanging $\varphi\left(x_{0}\right)$ and $\neg \varphi\left(x_{0}\right)$ we can assume $M_{\alpha} \vDash \varphi\left[c_{n(L)}\right]$. For $k \geqq n(L)$ let θ_{k} be the permutation of P interchanging $c_{n(L)} c_{k}$, and leaving the other elements fixed.

Clearly $\theta \in \Gamma\left(n_{L}\right)$, hence player II has a winning strategy in $E G\left(M_{\alpha}, L, \theta\right)$. By Ehrenfeucht [1] this implies $c_{n(L)}$ and $c_{k}=\theta\left(c_{n(L)}\right)$ satisfy the same formulas of L. Hence $M_{\alpha} \vDash \varphi\left[c_{n(L)}\right] \equiv \varphi\left[c_{k}\right]$, hence $M_{\alpha} \vDash \varphi\left[c_{k}\right]$. As this holds for any $k \geqq n(L) M_{\alpha} \vDash(\forall x)\left[P(x) \wedge \Lambda_{i<n(L)} x \neq\right.$ $\left.c_{i} \rightarrow \varphi(x)\right]$. Hence $T_{\alpha} \cup p \cup\left\{\neg \varphi\left(x_{0}\right)\right\}$ is inconsistent. So p is complete
(for T_{α}, L_{α}) and we finish.
So let us define
Case I. $\alpha=0,1,2$
(A) Let us define M_{0} :
$\left|M_{0}\right|=P$, and its only predicate is P (and of course the individual constants c_{n}, which we will not mention in later cases). Clearly (1), (2) are immediate. (3) and (5) are satisfied vacuously. As for (4), let $n_{L}=\max \left\{n+1: c_{n} \in L\right\}$. Clearly θ is an automorphism of $M_{0} \mid L$ (the reduct of M_{0} to L).

So player II will play by the automorphism: if I chooses a_{n}^{0}, II will choose $a_{n}^{1}=\theta\left(a_{n}^{0}\right)$, and if I chooses a_{n}^{1}, II will choose $a_{n}^{0}=\theta^{-1}\left(a_{n}^{1}\right)$.
(B) $\quad\left|M_{1}\right|=\left|M_{0}\right| \cup P_{1}\left(M_{1}\right)$, where $\quad P_{1}\left(M_{1}\right)=\mathscr{P}\left(\left|M_{0}\right|\right)$, where $\mathscr{P}(A)=$ the power set of $A=\{B: B \subseteq A\}$.

The predicates of M_{1} are those of M_{0}, P_{1} and ε_{1}

$$
\varepsilon_{1}\left(M_{1}\right)=\left\{\langle c, A\rangle: c \in\left|M_{0}\right|, A \in P_{1}, c \in A\right\} .
$$

As in (A) it is clear that M_{1} satisfies the induction conditions, as if $\theta \in \Gamma\left(n_{L}\right) L \cong L\left(M_{1}\right), L$ finite, then θ can be extended to an automorphism of M_{1} by

$$
\theta(A) \stackrel{\text { def }}{=}\{\theta(c): c \in A\} .
$$

(C) Let us define an equivalence relation E_{1} on $P_{1}\left(M_{1}\right): A E_{1} B$ iff for some $\theta \in \Gamma(0) A=\theta(B)[=\{\theta(c): c \in B\}]$.

This is an equivalence relation, as $\Gamma(0)$ is a group of permutations, and as $|\Gamma(0)|=\boldsymbol{K}_{0}$, each equivalence class is countable. Define

$$
\begin{aligned}
\left|M_{2}\right| & =\left|M_{1}\right| \cup Q_{2}\left(M_{2}\right) \\
Q_{2}\left(M_{2}\right) & =\left\{S: S \cong P_{1}\left(M_{1}\right), A, B \in P_{1}, A E_{1} B \Rightarrow A \in S \longleftrightarrow B \in S\right\} \\
\varepsilon_{2}\left(M_{2}\right) & =\left\{\langle A, S\rangle: A \in P_{1}, S \in Q_{2}, A \in S\right\}
\end{aligned}
$$

The relations of M_{2} will be the relations of M_{1}, and Q_{2}, ε_{2}. By the definition of Q_{2}, each $\theta \in \Gamma\left(n_{L}\right)$ [L a finite sublanguage of $L\left(M_{2}\right)$] can be extended to an automorphism θ^{*} of $M_{2} \mid L$, which is the identity over Q_{2}. As before (1), (2), (4) hold, and as θ^{*} is the identity over Q_{2}, also (5) holds. As for (3) each E_{1}-equivalence class is countable, and $\left|P_{1}\left(M_{1}\right)\right|=2^{|P|}=2^{\aleph_{0}}$, the number of E_{1}-equivalence classes is \beth_{1}, so $\left|Q_{2}\right|=2^{\beth_{1}}=\beth_{2}$.

Case II. We define $M_{\alpha+1}$, where M_{α} is defined, $(\exists \beta)(\alpha=\beta+2)$. Let

$$
\left|M_{\alpha+1}\right|=\left|M_{\alpha}\right| \cup \mathscr{P}\left(Q_{\alpha}\left(M_{\alpha}\right)\right)
$$

The relations of $M_{\alpha+1}$ will be those of M_{α} and in addition $Q_{\alpha+1}\left(M_{\alpha+1}\right)=\mathscr{P}\left(Q_{\alpha}\left(M_{\alpha}\right)\right)$

$$
\varepsilon_{\alpha+1}\left(M_{\alpha+1}\right)=\left\{\langle a, A\rangle: a \in Q_{\alpha}\left(M_{\alpha}\right), A \in Q_{\alpha+1}\left(M_{\alpha+1}\right), a \in A\right\} .
$$

Clearly Conditions (1), (2), (3) are satisfied. As for (4), (5) the winning strategy of player II in $E G\left(M_{\alpha+1}, L, \theta\right)\left[\theta \in \Gamma\left(n_{L}\right)\right]$ will be as follows: when I chooses elements in $\left|M_{\alpha}\right|$ he will pretend all the game is in $\left|M_{\alpha}\right|$ and play accordingly; and if player I chooses $a_{n}^{i} \in Q_{\alpha+1}\left(M_{\alpha+1}\right)$, then player II will choose $a_{n}^{1-i}=a_{n}^{i}$. As M_{α} satisfies (5) this is a winning strategy, and trivially it satisfies (5).

Case III. δ a limit ordinal, M_{α} is defined for $\alpha<\delta$; and we shall define $M_{\tilde{\delta}}, M_{\delta+1}, M_{\tilde{\delta}+2}$.

Part A. By changing, when necessary, names of elements and relations, we can assume that for $\alpha<\beta<\delta$,

$$
\left|M_{\alpha}\right| \cap\left|M_{\beta}\right|=P, \quad \text { and } \quad L\left(M_{\alpha}\right) \cap L\left(M_{\beta}\right)=\left\{P, c_{n}: n<\omega\right\}
$$

but that if $(\exists \beta)(\alpha=\beta+2)$ then still $Q_{\alpha} \in L\left(M_{\alpha}\right)$. Choose an increasing sequence of ordinals $\alpha_{n} n<\omega, \delta=\bigcup_{n<\omega} \alpha_{n}$ and $(\exists \beta)\left(\alpha_{n}=\beta+2\right)$. Define M_{o} as follows

$$
\left|M_{\tilde{o}}\right|=\bigcup_{n<\omega} M_{\alpha_{n}}
$$

The relations of $M_{\dot{o}}$ will be those of $M_{\alpha_{n}}$ for each $n<\omega$ and $R_{\bar{\delta}}^{M_{\dot{o}}}$

$$
R_{\dot{\delta}}^{M_{\dot{\delta}}}=\left\{\langle c, a\rangle: c=c_{n} \in P, a \in\left(M_{\alpha_{n}}-P\right)\right\}
$$

It is easy to check that Conditions (1), (2) are satisfied. Conditions (3) and (5) are vacuous. So let us prove Condition (4) holds. Let L be a finite sublanguage of $L\left(M_{\partial}\right)$; then $L \subseteq \bigcup_{j<n_{0}} L_{j} \cup\{R\}$, where $L_{j}=L \cap L\left(M_{\alpha_{j}}\right)$ is a finite sublanguage of $L\left(M_{\alpha_{j}}\right)$. Define $n_{L}=$ $\max \left[\left\{n_{L_{j}}: j<n_{0}\right\} \cup\left\{n_{0}\right\}\right]$. Let $\theta \in \Gamma\left(n_{L}\right)$. We shall describe now the winning strategy of player II in $E G\left(M_{\dot{\delta}}, L, \theta\right)$. When player I will choose $i \in\{0,1\}, a_{n}^{i} \in M_{\alpha_{j}}, j<n_{0}$, player II will pretend all the game is in the model $M_{\alpha_{j}}$, and so play his winning strategy for $E G\left(M_{\alpha_{j}}, L \cap\right.$ $\left.L\left(M_{\alpha_{j}}\right), \theta\right)$. If player I chooses $i \in\{0,1\}, a_{n}^{i} \in M_{\alpha_{j}} j \geqq n_{0}$ then player II will choose $a_{n}^{1-i} \in M_{\alpha_{k}}$ [where $i=0 \Rightarrow k=\theta(j), i=1 \Rightarrow j=\theta(k)$] such that for any $m<n a_{m}^{i}=a_{n}^{i} \Leftrightarrow a_{m}^{1-i}=a_{n}^{1-i}$.

Note that for $j \geqq n_{0}$, in $M_{\dot{\delta}} \mid L$, every permutation of elements of $M_{\alpha_{j}}$ is an automorphism, as the only relation an $a \in\left|M_{\alpha_{j}}\right|$ satisfies is $R_{\delta}\left[c_{j}, a\right]$.

Part B. Here we define $M_{\hat{o}+1}$. Let $A^{*}=\bigcup_{n<\omega} Q_{\alpha_{n}}\left(M_{\alpha_{n}}\right)$, and $\left|M_{\hat{o}+1}\right|=\left|M_{\hat{o}}\right| \cup \mathscr{P}\left(A^{*}\right)$.

The relations of $M_{\delta+1}$ will be those of $M_{\dot{\delta}}$, and in addition

$$
\begin{aligned}
P_{\delta}\left(M_{\dot{o}+1}\right) & =\left|M_{\dot{\delta}}\right|, P_{\delta+1}\left(M_{\dot{\delta+1}}\right)=\mathscr{P}\left(A^{*}\right) \\
\varepsilon_{\delta+1}\left(M_{\dot{\delta+1}}\right) & =\left\{\langle b, B\rangle: b \in A^{*}, B \in \mathscr{P}\left(A^{*}\right), b \in B\right\} .
\end{aligned}
$$

It is easy to see that Conditions (1), (2) are satisfied, and (3), (5) are vacuous. So let us prove (4) - let L be a finite sublanguage of $L\left(M_{i+1}\right)$. So

$$
L \subseteq \bigcup_{i<n_{0}} L_{i} \cup\left\{R_{\delta}, P_{\delta}, P_{\delta+1}, \varepsilon_{\delta+1}\right\}, L_{i}=L \cap L\left(M_{\alpha_{i}}\right)
$$

Define again

$$
n_{L}=\max \left[\left\{n_{L_{j}}: j<n_{0}\right\} \cup\left\{n_{0}\right\}\right]
$$

Let $\theta \in \Gamma\left(n_{L}\right)$ and we should describe player II's winning strategy in $E G\left(M_{\delta+1}, L, \theta\right)$. When player I chooses an element in $M_{\alpha_{j}} j<n_{0}$, player II will ignore all elements chosen outside $M_{\alpha_{j}}$, and play by his winning strategy in $E G\left(M_{\alpha_{j}}, L_{j}, \theta\right)$. In the other cases player II will play so that the following conditions are satisfied for every n
P (1) $\quad a_{n}^{0} \in P_{\dot{\delta}+1}\left(M_{\dot{\delta}+1}\right) \Leftrightarrow a_{n}^{1} \in P_{\tilde{j}+1}\left(M_{\dot{\delta}+1}\right)$
$P(2)$ if $c_{j}=\theta\left(c_{k}\right)$, then $a_{n}^{0} \in\left|M_{\alpha_{k}}\right| \Leftrightarrow a_{n}^{1} \in\left|M_{\alpha_{j}}\right|$
$P(3)$ if $m<n$ then $a_{m}^{0}=a_{n}^{0} \Leftrightarrow a_{m}^{1}=a_{n}^{1}$
$P(4)$ if $m, l \leqq n$ and $a_{m}^{0} \in A^{*}, a_{l}^{0} \in P_{\dot{\delta}+1}$ then $a_{m}^{0} \in a_{l}^{0} \Leftrightarrow a_{m}^{1} \in a_{l}^{1}$
$P(5)$ if $a_{m}^{0} \in P_{\delta+1}, l<\omega, c_{l}=\theta\left(c_{l}\right)$ then $a_{m}^{0} \cap Q_{\alpha_{l}}\left(M_{\alpha_{l}}\right)=a_{m}^{1} \cap Q_{\alpha_{l}}\left(M_{\alpha_{l}}\right)$
$P(6)$ if $c_{j}=\theta\left(c_{k}\right) j \neq k<\omega$, then $\left\langle a_{m}^{0}: m \leqq n, a_{m}^{0} \in P_{\delta+1}\right\rangle$ and $\left\langle a_{m}^{1}: m \leqq n, a_{m}^{1} \in P_{\dot{j}+1}\right\rangle$ genarate corresponding finite Boolean algebras of subsets of $Q_{\alpha_{k}}\left(M_{\alpha_{k}}\right)$ and $Q_{\alpha_{j}}\left(M_{\alpha_{j}}\right)$ correspondingly; then the corresponding atoms in those algebras are both infinite, or have the same power.

It is easy to see that this can by done, and it is a winning strategy.

Part C. Here we define $M_{\dot{\delta}+2}$.
Define equivalence relations $E_{\hat{\delta}+1}, E_{\delta+1}^{n}$ on $P_{\delta+1}\left(M_{\delta+1}\right)$: if $A, B \in$ $P_{\delta+1}\left(M_{\delta+1}\right)$, then $A, B \cong A^{*}=\bigcup_{n<\omega} Q_{\alpha_{n}}\left(M_{\alpha_{n}}\right)$; define $A E_{\delta+1}^{n} B$ iff $A \cap$ $\left[\bigcup_{\omega>m>n} Q_{\alpha_{m}}\left(M_{\alpha_{m}}\right)\right]=B \cap\left[\bigcup_{\omega>m>n} Q_{\alpha_{m}}\left(M_{\alpha_{m}}\right)\right] ; A E_{j+1} B$ iff for some n $A E_{\delta+1}^{n} B$.

Clearly each $E_{\delta+1}^{n}$ is an equivalence relation, $E_{\delta+1}^{n}$ refines E_{i+1}^{n+1}, hence $E_{\hat{o}+1}$ is an equivalence relation.

It is clear that

$$
\left|P_{\delta+1}\left(M_{\dot{\delta}+1}\right)\right|=\beth_{\tilde{\delta}+1}
$$

but for every $n<\omega, A \in P_{\delta+1}\left(M_{\delta+1}\right)$

$$
\begin{gathered}
\left|\left\{B: B \in P_{\delta+1}\left(M_{\delta+1}\right), B E_{\delta+1}^{n} A\right\}\right| \leqq\left|\mathscr{P}\left(\bigcup_{m \leqq n} Q_{\alpha_{m}}\left(M_{\alpha_{m}}\right)\right)\right| \\
=2^{\beth_{\alpha_{n}}=\beth_{\alpha_{n}+1} \leqq \beth_{\delta}}
\end{gathered}
$$

hence

$$
\left|\left\{B: B \in P_{\hat{\delta}+1}\left(M_{\delta+1}\right), B E_{\delta+1} A\right\}\right| \leqq \sum_{n<\omega} \beth_{\delta}=\beth_{\delta} .
$$

So each $E_{\delta+1}$ - equivalence class has cardinality $\leqq \beth_{\delta}$, hence there are $\beth_{\hat{j}+1} E_{\dot{\delta}+1}$-equivalence classes.

Define $M_{\hat{o}+2}$:

$$
\left|M_{\dot{\delta}+2}\right|=\left|M_{\dot{\delta}+1}\right| \cup Q_{\delta+2}\left(M_{\dot{\delta}+2}\right)
$$

where
$Q_{\dot{\delta}+2}\left(M_{\dot{\delta}+2}\right)=\left\{S: S \subseteq P_{\dot{\delta}+1}\left(M_{\dot{\delta}+1}\right), A, B \in S, A E_{\dot{\delta}+1} B \Longrightarrow A \in S \longleftrightarrow B \in S\right\}$.
Clearly $\left|Q_{\dot{\delta}+2}\left(M_{\dot{\delta}+2}\right)\right|=\beth_{\dot{\delta}+2}$.
The relations of $M_{\dot{\delta}+2}$ will be those of $M_{\dot{\delta}+1}$, and $Q_{\dot{\delta}+2}$, and

$$
\varepsilon_{\hat{\delta}+2}\left(M_{\hat{\delta}+2}\right)=\left\{\langle A, S\rangle: A \in P_{\hat{\delta}+1}\left(M_{\hat{\delta}+1}\right), S \in P_{\delta+2}\left(M_{\delta+2}\right), A \in S\right\}
$$

It is easy to prove all conditions are satisfied as in Case II, if we notice that by Condition $P(5)$ if for any instance of any game $E G\left(M_{\dot{\delta}+1}, L, \theta\right)\left[\theta \in \Gamma\left(n_{L}\right)\right]$ in which player II plays his strategy, if a_{n}^{i}, a_{n}^{1-i} are chosen for some n and they belong to $P_{i+1}\left(M_{j+1}\right)$ then they are $E_{\dot{j+1}}$-equivalent (as $\left\{n: \theta\left(c_{n}\right) \neq n\right\}$ is finite).

References

1. A. Ehrenfeucht, Application of games to completeness problem for formalized theories, Fund. Math., 49 (1961), 129-141.
2. J. Malitz, On the Hanf Number of Complete $L_{\omega_{1}, \omega}$ Sentences; The syntax and semantics of infinitary languages, edited by J. Barwise, Lecture notes in Mathematics 72, Springer, Berlin.
3. M. Morley, Omitting Classes of Elements; The Theory of Models, Proc. of the 1962 Symp. in Berkeley, Editors J. Addison, L. Henkin, and A. Tarski, North-Holland Publ. Co., Amsterdam, 1965, 265-273.

Received May 18, 1972.
The Hebrew University

