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LIPSCHITZ SPACES ON THE SURFACE OF THE
UNIT SPHERE IN EUCLIDEAN #-SPACE

HARVEY C. GREENWALD

This paper is concerned with defining Lipschitz spaces on
2.-1, the surface of the unit sphere in R*. The importance
of this example is that X,_; is not a group but a symmetric
space. One begins with functionsin L,(%,_,),1<p=<co. %, _,
is a symmetric space and is related in a natural way to the
rotation group SO(n). One can then use the group SO(n)
to define first and second differences for functions in L,(2,_,).
Such a function is the boundary value of its Poisson integral.
This enables one to work with functions which are harmonic.
Differences can then be replaced by derivatives.

For a brief historical survey of Lipschitz spaces, the reader is
referred to the introduction in Taibleson [18] and to the papers of
Nikolskii [9] and Peetre [10]. For this paper, the approach of two
people stands out as being of significant importance.

The first is Zygmund [20; Chapter VII]. Zygmund draws upon
the results of Hardy and Littlewood [6]. For brevity we consider
only the case 0 < a < 1. Let fe L,[0, 2z] and be extended periodi-
cally, 1 < p < o, and let

0,0 = sup {2 " @ + ) — f@) P as}” .

o<n<s \ 2T

Then fe A2 if and only if w,(6) = 0(6%). For p = o, let w(0) = sup
| f(z;) — f(z,) | where the sup is over all z, x, such that |z, — @,| < d.
Then fe A7 if and only if . (8) = O(5%).

An important result is that w(r, ) is the Poisson integral of a
function fe 47 if and only if (8/0x)u(r, x) = O(6**) where 6 =1 — r,
uniformly in ¢ as r— 1.

The second person is Taibleson [18]. For brevity we consider
only the case 0<a<1l Let feL,(R"), 1<p<, and let
[|ft@ + k) — f(x)||ps, be the L, norm of [f(x + k) — f(x)] considered
as a function of . Then feAd(a;p,q), 1 <qg< «, if and only if

{, Ul + ) = @) adidn | h P} < e

R?”

An important result is that f(z, ), 0 < y < «, is the Poisson
integral of a function fe A(a; p, q) if and only if
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.l

1=qg < oo,supy™™
Y

d%f(x, y>|]d7?’}’ + (£, < oo for

L fw v, + 171 < o for g = oo
Y prdz

Some of the results in this paper are contained in a paper of
Heideman [7]. Heideman deals with a generalization of these notions.
He considers Banach spaces of distributions.

Another paper of interest is one by Stein [16] where he has
worked out the important Littlewood-Paley theory for a compact Lie
group.

Lastly, Ragozin [11] also has defined Lipschitz spaces on X,_,.
His notion is somewhat different and he is concerned mainly with
polynomial approximation.

For the most part, the approach used in this paper is similar to
Taibleson’s approach as developed in [18], [19], and [20].

1. Preliminaries.

DEFINITION. The Poisson kernel is the function P(rz, y)=
C.A —»)/|re —y|* where z,yel,_ ={zxeR"|z|=1}, 0=r<1,
and C, is a constant such that S P(rz, y)dy = 1 for each ze X, ,

z

n—1
where dy is non normalized Lebesgue measure.

NoTE. It is often convenient to consider P to be a function of
r and 0,0 <6 < 2r. Then

1— 7
2r cos 6 + 7]

P(Ty 0) = C'n [1__ :P(’r, COS&)

where cos § = x-y. We shall also write

1 —
P(’V’, -’B'!/) = Cn[l — 2rmey + 7.2]7»/2 N

DEFINITION. Let fe L, (2,.), 1 <p =< . The Poisson integral
of f is defined as f(rz) = S S P(r, z-y)dy. We shall assume that

n—1

the reader is familiar with the properties of Poisson integrals. The
reader is referred to Zygmund [21] for the one dimensional case and
Stein and Weiss [17; Chapter 2] for the case of R".

NoraTioN. Let Yi®, I =1, --., n(k), be an orthonormal basis for
the spherical harmonics of degree k. Let Z® be the zonal harmonic
of degree k with pole y. For a full discussion of spherical harmonics
see Stein and Weiss [17; Chapter 4].
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The following facts are well known:
P(r,-9) = S Z0(@) ,

fore) = 3,3 aurt Y

k=0

and the convergence is absolute and uniform for » < r, < 1.

DEFINITION. Let FeL(2,.) and GeL,(—1,1],d¢) where
du(s) = 0, (1 — ) 2ds for —1<s=<1 and w,_, is the surface
area of Y, ;. The spherical convolution of F' and G is the function

F6@ = | Fa)6evdy.

(1.1) Let Fe L,(3,.,)and Ge L(—1, 1], dy) where 0 <1/p + 1/q —
1=1/t<land 1 <p,qg < . Let H(x) = Sz F(y)G(z-y) dy. Then
He L(2,.) and ([H|l, < [|F ||, | G lloan-

REMARK. This is a standard result known as Young’s inequality.
See Calderon and Zygmund [4] or Askey and Wainger [1] for a more
extensive discussion of spherical convolution.

(1.2) Let f(r) be a nonnegative function definedon 0 < » < 1, @ #0,

p=1. Let F(s) be defined by F(s) = 3 f(r)dr if &> 0and F(s) = S fir)dr
if ¢ < 0. Then )

([t —Ferara - n]" < jar-
<[ 1@ = e sorara - n]".

REMARK. This is a standard result khown as Hardy’s inequality.
See Hardy, Littlewood, and Polya [6] or Taibleson [18, Lemma 3,
p. 418].

2. Radial derivatives. In this section Lipschitz spaces are
defined. A justification for calling these spaces Lipschitz spaces will
be given in §4.

There are two questions to be decided. The first is which differ-
ential operator to use. The simplest would be d/dr. Unfortunately,
Jf(rx) is not harmonic in general. However, rf,(rx) and 8/or (rf)(rx)
are harmonic. 7f.(rx) has the disadvantage that the constant term in
the expansion f(rz) = 3., r* Y (x) is lost. Furthermore, the operator
(rf). is related to the Bessel potential operator. Thus, the operator
(rf), will be the one most often used. However, there will be circum-
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stances in which the other operators will be useful. For this reason
the relations between these operators will be studied in this section.
The second question is: Which mixed norms are to be used?
There are essentially two approaches. One uses Zygmund [21; Chapter
VII] as a starting point and the other uses Taibleson [18] as a starting
point.
The Taibleson norm

Ll

can be transformed to

[[L1@ntpry=<iinsra) l ol 2"

rinl/r

q i/q
] dy/y]
p,dw

0
-a—y—f(w, Y)

with the change of variables r = ¢ where 1 < ¢ < «, and
f(@, y) = 3 aule™)* Yi¥(@) .

This approach also correspond to that of Stein [16] for a compact Lie
group. (Note that X, , is the symmetric space SO(n)/K where SO(n)
is the group of rotations on R™ and K is the stability group of e,.
{e, ++-, e,} is the canonical base for R*. SO(n) is, of course, a com-
pact Lie group.)

On the other hand, if one chooses Zygmund [20; Chapter VII]
as a starting point one should choose

U:[(l — 1) [ 7f (@) [lp.a0] dr/(L — r)]llq

as a norm where 1 < p < o0 and 1 < ¢q < .
We now proceed to investigate the relationship between these
various norms.

DEFINITION. Let xe R 0 <r <1, and 1 < p,g< . We define

[| Fra) o, = [ I F(r®) ||5,00] g, 0m
and

1 E @) e = U Fro) e loaririny- -

(2.1) Let feL,(¥,_),1=p=Zco. Thenif a>0andl=<¢q= o,
the following are equivalent:

(1) (@ = )T f(re) [l + [ /(@) |l, where Tf = (rf).,

(ii) @ = Zsen| + 1501,
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(iii) @ = ) Tef(ro) lloe + || /(@) ||, where T.f = =f,,
(iv) | (Endfr)*Tif (ra) [0 + [1F@) s »
(v) | (rind/r)*T* f(ra) |5 + [1/@) [l -

REMARK 2.2. Let f(rx) be harmonic on B, = {re R |z| < 1}.
Assume f(0) = 0. Thenif a« >0 and 1 < p, ¢ < oo, the corresponding
pq norms of (2.1) are equivalent.

2.3) Let feL,(2,.),1<p=<o. Thenif a>0and 1<g=<
and if & is the smallest integer greater than « and % is any integer
greater than «, the following are equivalent:

(1) 1A — r)*=*T* f(r®) [l
and
(ii) (@ — )T () ||y -

REMARK. The proofs of the above use (1.1) and (1.2). See Taibleson
[18] for the analogues in R".

DEFINITION. Leta >0and 1 < p, ¢ < «. Then Ala; p, q; 2,_)) =
A(a; p, q) is defined to be the set of functions fe L,(2,_,) for which
the n0rm | £ lapg = | (1 — #Y=*T5£ () |l,, + || /(@) [, is finite.

3. Tangential derivatives. In this section globially defined differ-
ential operators on XY, , are discussed. The reader is referred to
Ragozin [11] for a more complete discussion of these operators. Let
D be an % x n skew-symmetric matrix and let fe L,(X,_). Define
Df(x) = (d/dt) fl(exp tD)(x)] |,=. Since d/dt (exptD)(®)|,-, = Dw, the
map from the matrix D to the differential operator D is linear. Define
an inner product by <D, D,y = —1/2 trace (D,D,). Let D,; be the
map which takes e; to ¢; e; to —e;, and e, to zero if k # 4,7 and
1< j. Then {D,;;} is an orthonormal basis for the skew-symmetric
matrices. Actually this is an inner product on linear transforms since
the trace is invariant under change of basis.

(3.1) Let f(rx) be harmonic on B,. Thenif a>0and1=<p, ¢ <o,
the following are equivalent:

(i) I @ — 7)) [lag 5
(ii) 2

i<J

(A — 7)*Dy;f(ra)

’

(iii) @ = 1)V f(ra) |5

where /, is the gradient in the tangential plane for f(rx) considered
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as a function of x.

REMARK. The proof is similar to the proofs of (2.1), (2.2), and
(2.3). Again, the reader is referred to Taibleson [17].

4. First and second differences. In this section, first and second
differences for functions with domain X, , are defined. The equiva-
lence between the norms based on differences and the norms introduced
in § 2 is shown. It is at this point that the symmetric space property
of ¥, , is used. X,_, can be identified with SO(n)/SO(n — 1).

For this chapter only, we assume that the Lebesgue measure dy

is normalized so that g dy = 1. We also normalize the Haar meas-
Ip—1

ure du on SO(n) so that S du = 1.

S0(n) -
If fis defined on X,_,, we can construct a function f(u) = flu(x,)]

where x,¢ 2%, , and is fixed. Then

anﬁlf(y) dy = SSOW Fuw)ydu = st) Flu(z)]du -

Equality holds for any point z,¢ 2,_,. For a more extensive discussion
of these notions see Coifman and Weiss [5]. This enables one to work
with the group SO(n) in attempting to define differences.

We are going to decompose SO(n) into a “polar decomposition”.
Let pe80(n) be such that o(e) = e¢. Then by an abuse of notation
we can consider o to bein SO(n — 1). For u e SO(n), it is easily seen
that the spherical distance between (upexptD,)(e) and (up)(e) is t.
[The spherical distance between =z, ye X, , is defined by d(z, y) =
cos™H(x-y).]

DEFINITION. Let #eS8O(n), 0e8SO(rn —1), 1< p,qg =< o, and
0<t<m. We define

I G(u, t) o = 11l G(u, t) “p,du) gvaere

and

e, 0,015 =411 (160, 0,0l do ™
if 1=g< o
=sup sup ||G(w, 0,7) [ if ¢= oo

0<t<tr peSO(n—1)

SO(n—

We consider the following first difference:

1™ [(u exp tDy)(e)] — Flule)]} [lua
= [[t7{f[(uo exp tDy)(e)] — fluole)} 5, -
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Similarly we can define a second difference. The points
(up exp tD,)(e;), (up)(e), and (upexp —tD,,)(e;) all lie on a great circle
and are equally spaced with (xo)(e,) between (upexpiD,)(e)) and
(ulo exXp — tDlz)(el)’

We consider the following second difference:

[t~ f[(w exp tDy,)(e))] — 2f[ule)] + fl(wexp —EDp)(e)]} |l
= |[t7{fl(uo exptD,;)(e)] — 2f[(wpo)(e)] + fl(we exp —tD,,)(e)]} I,
where 1 < p,¢ £ « and a > 0.

We now proceed to establish the equivalence stated earlier.

PROPOSITION 4.1. Let fe L,(Y,.), 1 < p = o, and let f(rx) be its
Poisson integral. If 0 <a <1 and 1 X9 < o, the following are
equivalent:

(1) I = r)y~orfu(ra) [l
(ii) e={f(u exp tDy,)(e)] — flule)]}ss -

Proof. The proof is similar to the proof of the succeeding Propo-
sition 4.3. First, write

wfDre) = | {fl(upexptD.)(e)] — FloNe)]} rPAr, cos )dv -

One can now proceed as in Proposition 4.8 to get part of the result.
For the other part write

s f1s(u exp tD.)(e)] — s flsule)]
= " (@) do(u exp tD.)e)ldo — | @) loule)lds
+ rflr(u exptD)(e)] — rlru(e)]
and note that

Flrtuw exp tD.)(e)] — flru(e)] = | Df[r(u exp sDa)(e)ds -
The result now follows from (8.1).

LEMMA 4.2. Let fedA(a; p,q) where a« >0 and 1 < p, g < o<,
Then || (rf).(r) |per = o(L/(L — 7)) as r—1-.

Proof. The proof is analogous to the proof of Lemma 5 of
Taibleson [17; p. 426]. The proof uses (2.3) and the fact that
Il (r ) (r®) ||5,4- is increasing as a function of ».
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PROPOSITION 4.3. Let fe L(2,_), 1 £p Z oo, and f(rx) its Poisson
integral. If 0 <a <2 and 1 < q =X o, the following are equivalent:

(1) 1A = ) r(f?)(ro) |,
(i) [[t7{f[(u exp tDw)(e)] — 2f[ue.] + f(u exp —tDy;)(e)]} Iy, -

Proof. (a)(i) < A. (ii).

flue) = FluylPery-e)dy .

n—

Let A be a linear transform on R" defined by A(e) = ¢, and A(e;)) = —e;
for ¢ =2, ---,n. Then

flue] = | FlwA)PrAw)-e)dy

n

= [, Awa@IPey-ey
- Ssom)f[(uAv)(el)]P({r'v(el)‘el)dv .

There exists a e S0(n) such that pe, = ¢, and (0 exptDy)(e) = v(e)
where cost = v(e)-e, and p = p(v), t = t(v). Then A(v)(e) = (Ap exp
tD,)(e) = (0 exp —tD,,)(e,) since p(e;)-e, = 0. Therefore,

flue)] = | 7lup exp —tD)@)IP(r, cos tdo .
Hence

27 frue)] = | (710 exp tDa)(e)] — 27[uel]
+ flup exp —tD ) (e)}r(rP,).(r, cos t)dv ,

since d/drg P(r, cos t)dv = 0. Therefore,
)

SO(n

170FD) e = 7O F L] [
= 11710 exp tD.)(e)] - 2/T(uo)(en]
+ 10 €xp —tD.)(e)] lpau | 7P Lr, cos 8)] dv
= SSOW g(t)| r(rP,),(r, cos t)| dv

where

9(t) = || fl(wexp tDyu)(e)] — 2f[ue] + fl(u exp —tD)(e)] [lpon -

Case I. q = . Let A =sup t7°g(¢). Then

o<t
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1 — )7 r(rf ) (r2) |50
< (1 — r)—AC, St sin"¢ | #(rP,).(r, cos t) | dt

by the previous inequality since the integrals over SO(n) and X,_, are
related. The above is bounded by

(1 — r)=AC, SH t sin™ ¢ | r(rP,) (r, cos t) | dt
0
+ (1 — r)AC, j t*sin* ¢ | #(rP,)(r, cos t) | d .

The first term is bounded by

(1 — ) ACLL — 7)1 — )" L — )L — 7)~"
x (1 —r)1—7r) =2C.A

since |r(rP,),(r, cost)| < B(L — r)2P(r, cost). In as much as
(sin*?¢)[1 — 2rcost + ] 7"* < Bt*,

the second term is bounded by

T

1-— r)z‘“AC;’S t*(1 — 7)1 — r*)Bt~*dt < AB, .

Case II. 1 <q < . By an argument similar to the one used
in Case I we have (1 — 7)* || r(rf,)(r%) ||5 4z

< Cu(1 — 7)o S:"”"(sin"—z 1)g(t) | 7(rP,).(r, cost) | dt

+ Cut =y |’

(1—

) (sin”2t)g(t) | r(rP,)(r, cos t) | dt .

Hence, || (1 — ryr(rf,).(rx)||,, < I+ II where I and II are the
L [0, 1], dr/(L — 7)) norms of the first and second terms respectively.
Now I

C;{g]:(l — ) g:‘rsinn—z (zt)g(zt) | 7(rP,).(r, cos 7t) | dt]q

dar/(1 — r)}l’q
1/q

< C::{S:[(l — ) S:—rsin"‘z (zt)g(xct) P(r, cos m)dt]”dr/(l —n}

But (sin"?*nt)[1 — 2rcosat + | ™® <1land (1 — r)"'[1 — 2r cos 7wt +
] <t since t < (1 — 7). Hence I
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1
0

= Bof |10 = 0l — rymliarit - )"

= 233” [(1 - T)‘“S:—rt‘sg(ﬂt) dt:r dr/(1 — r)}”"

by (1.2). But this is equal to

Bl | tteateraye}”

0

By a similar argument
n = k{{fa—n_ eoEna]ara-n}".
By (1.2) this is bounded by
1 1/q
Koof | 10 = eglw(t — 11 dr/L = )}

k4 1/q

= Ko eg@ratt) .
(b) (i) <A, (¢). We may assume f(0) = 0. Let wueSO(n), 0<t< =,
and » be such that #(1 — ») = ¢.

(s2) = | (0 ox)do + 11(r0)

= /@ = DN lendo — 1 = (1) (s0)
(L= N0 + 10)
Thus

t=|| s f[s(u exptDy,)(e.)] — 2sf[su(e,)]
+ sfIs(u exp —tDy)(e)] |l an = 41 — )t7|| (rf).(5) |[5,45

+ 4z @ =y | (= Ol ©@er02) e

+ 2z%(1 — )7 [ (r f) [r(u exp tDy)(e)] — (rf)rule)] |]5.e
+ H rf[r(u €xXp tDw)(el)] - 27‘f[7‘u(61)]
+ frf['r(u exp _tDm)(ex)] Hp.du .

(I) For the first, by Lemma 2.2 we have that
lim (1 = )11 (),(55) llex = 0 -

(II) The L0, 1], dr/(1 — 7)) norm of the second term is bounded
by
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K {S[(l —~ ¢)““S:(1 — 0) [1(0f)re(0) ||,,,d,¢dp]’ dr/(1 — r)}"‘
S K| (@ = 17 f)ee llng bY (1.2) if ¢ < oo

This is bounded by K,|| (1 — r)*T*f(rz)|l,, by Remark 2.2 since
f(0) = 0. The above is bounded by

Al @ = )7 T2 f (o) [log = Ball (1 — )70 (rf ) (1) |15 -

A similar argument applies if ¢ = .
(III) For the third term let D = uD,u™".

() lr(u exp tDa)(e)] — () fu(e)]
= |\ £ (r/).Ir (exp sD)(u(e))lds
= 5 | 8uDutr ) Ir(w exp sD.)e)1ds

where D = >;.;b;;D;; and 3 ;% = 1.

Therefore,
[ ( ).lr(u exp tDy,)(e)] — (f) [ru(e)] |5
< 3¢l D), fru(e)] lpse -
Hence

[[E7*@ — r){(rf).Ir(w exp tDy)(e)] — (rf).[rule)]} [l
= Ce (@ = 1) Dii(r £),(ra) |l

S ANQA = P T (o) g = Bell (1 — 7)7r(rfo)(r) |15

by (3.1) and Remark (2.2).
(IV) For the remaining term,

flr(u exp tDy;)(e)] — 2f[ru(e)] + flr(u exp —tDy)(e,)]

- S_S dff;s flr(exp (¢ + s)D)(u(e,))ldsdo

with D as in (III) above. This equals

50" [ bubuDuDustrtu exp (0 + D) e)ldods

Since (1 — r)7 =t,
[1£7*{f[r(w exp tDy,)(e))] — 2f[ru(e)] + flr(w exp —tDy)(e)]} |5,
< O3 51167 DuDuflru(e)le < B 511 = 1¥DyDus f7) .

The above is bounded by
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Aaw 211 = 1) Dyrfo(r@) ||pg = Bayu [| (1 — 1) (rf2)(r2) |14 -
This completes the proof of Proposition 4.3.

5. The Bessel potential operator. In this section the Bessel
potential operator is defined and some of its more elementary properties
are listed.

ProposiTION 5.1. Let f(rx) be harmonic on B, and bounded for
0=r =<0 where 0 < p <1l. Suppose ||(L — )i T*f(rx)|l,, = D for
some k>a>0, 1< p q=o. Assume also that there exists an 7,
such that 0 < r, <1 and || f(r®)|lpe. = D for 0 =Zr =7, Then f(rx)

is the Poisson integral of a function fe A(w; p, q) and
1 f e S Awierr, D -

Proof. The proof is analogous to the proof of Lemma 5 of
Taibleson [18; p. 426]. The proof uses Proposition 2.3.

DEFINITION. Let G*(rx) = X5 ,7*(k + 1)™Z;"(»). For a > 0 this
will turn out to be the Poisson integral of a function G*(2)e L,(Z,_,).
For a« < 0 this will be the Poisson integral of a distribution. The case
a < 0 will be discussed in a later paper.

REMARK. G° will be used to define a multiplier J* with the
property that if fe L,(%,_) and f~ >}, a,Y", then

JU ~ >k + 1) YR
Tl

Multipliers similar to this have been investigated by Hirschman [8]
for L,0, 27) and by Askey and Wainger [1] for L,(%,_)).

NoTaTION. Let Pi(t), » >0, —1 <t <1, be the Gegenbauer
polynomials defined by >.7.2*Pi(t) = (1 — 2tz + 2%~ for |z| < 1. It
is well known that Z(x) = Z"%(x-¢) = C.(k + \)Pi(x-e) where
A= (n — 2)/2 and C, is a constant. The following facts will be useful
in obtaining information about G*(x).

(5.2) Let a >0 and ¢t = z-¢,. Then
(i) G*(rx) is the Poisson integral of a function G*(x) e L,(2,_,).
(ii) For t = 1, G%(») = lim G*(rz) in the pointwise sense.
(iii) G*(x) is continuous if ¢t # 1.
(iv) Ift=+1,
|G(ra) | £ Mo, (1 — )« if a <2\ 41,

| Go(rz) | < M., In(l — t) ifa=2u+1,
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where M, , is a constant depending only on « and A.
(v) If a>2x+ 1, G*(x) is continuous for all x€¥,_, and hence
G*(rx) is bounded for all ze2,_,.

Proof. See Askey and Wainger [1].

We shall also need some information about G*(rx) when — o < a < 0.

5.3) Ifv+l<a<2n+1and —1<t<1, then

S50 + V| Pi) | < M1 — e,
k=1

Proof. See Askey and Wainger [1; Lemma 5, p. 204].

(5.4) Let F.(t) = >, (K + M(e ) (k + 1)~PXt) where ¢ >0 and
—oo < a<2n+ 1. Then if -1 <t<1,

IFe(t) ' é Ma,l(l — t2)(°‘—22—1)/2 .

Proof. Choose y so large that a + 2v > (A + v) + 1. By Askey
and Wainger [1; p. 199, line 5]

F(t) = 3 3 05,0,a(€7) k777" PLH(R)[Gik) + Grin(R)]

Jlym k=1
where G,(k) = maX,<i<iss, | d/dt' (1 + £)7%], @;4,.,» and b, are bounded,
l+ 37+ m=y;l,j, m are nonnegative integers, and v — 7 =1. If «
is a nonpositive integer we assume that —a — 7 = 0. Since (¢7%)%™ =
O(k~™),

| Foo| < Ay S0 S B m(k + 1)~1| Pi*(t) |

Jlym k=1

iy
= A,,,z 2”, ety P;ﬁ“(t) | < My,z(l _ t2)(“‘21—1)12

k=1

by (5.8) for —1 <t < 1.

REMARK. If we set r = ¢, we have from the above that
|G () | £ Moa(L — t)e—sivr
if —oo<a@<20v+1 for t = +1 where t = z-¢,.
(5.5) G(2) =0 if a > 0.

Proof. In view of (5.2), it suffices to show that G*(rz) = 0.
P(rz, e) = 32, r*ZP(x) = 0. Hence 35 ,rfe™*ZP(x) = 0 and so

0 <I'(@) rt“e“<k§‘, 'r"e‘””Z;f’(ac)>dt/t
0 =0

= I'(a)™! ki r*ZF (x) rt““e“‘”‘ dt .
=0 0
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This is justified since the series converges absolutely and uniformly
for 0 < r < 1. The above is equal to

i r*ZF (@) ()™ r telgm (k1 (It
k=0 0

Il
Ms

P a1 s ds
k700 () I 1 S 8 s
U O R N o e

|
I

0

= S|z (@) + 1) = G(ra) .
=0
(5.6) § Gewds =1 if @>0.
Zp—1
G.7) Guto(z) = Gou*Goalw) if @, > 0 .

Proof. (5.6) and (5.7) are clear since G*(rz) — G*(x) as r— 1" in
L(Z,-)-

(5.8) G“(w)e/l(a—(n__’_l)_;p,oo) foca_=1 1.
vy D

!

Proof. Let A = (n — 2)/2. We are going to apply Proposition 5.1
to G*(rx),
(a) Suppose @ < 2\ + 2. G*(rx) = X5, (k + 1)™Z(x) and

TG (rx) = g (& + 1)"Z9(x) = G=(ra) .

By (5.4) with t=2-.¢, if t+# x1,|TG*(rx)| = M,,.(1 — t)e22,
Thus if p < oo, || TG*(rz) ||,,
= [T reee nira - eporar]”

—1+(1—7)2

+ MU | TG(r, t) |2 (L — &)~ dt]‘“’

1—(1—7)2

—1+(1—r)2 1/p
+ MH | TGo(r, ) |7 (1 — ¢3)ie dt:| .

—1

The pth power of the first term is bounded by
1—(1—7)2

MS (1 —_ tZ)(a—ZX——Z)]Z(l . t2)1—-l/2 dt é M"(l — T)(a—22—2)p+22+1 .

—1+(1—7)2
Hence the first term is bounded by
M"(l — ,,.)(a~2z—2)+(2x+1)r1 — M"(l — T)a-(n/p')—wulp')

since 2x +1 = @xn + 1)/p + n/p’ — 1/p’ and thus 1/p' — n/p' — 1 =
x4+ 1)/p — 2n — 2. For the last two terms we use the fact that
| Z¥(x)| < BE*. So the pth power of the second or third terms is
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bounded by
had b4
’ 1—a a2 0k — 22+l < 4 _— (@—22—2)p+22+1
B(kﬁz‘,llc k 'r) (1 — 75 < B'(L — 7)
since >, kfr* < A1 — r)™# if 8> —1. Hence, the second and third
terms are bounded by
B'"(l _ ,r)a-—ZA—-2+(21+1)p'—1 — B"’(l _— ,r)a—(ﬂ/p')—l-Hl/P') .

Thus (1 — )=+ | TG*(rx) ||p,e. = K if p< oo. If p = oo, agin the
estimates for the second and third terms we have

I TG*(re) [|w,0o = K(1 — 7)™ = K(1 — 7)™ .

Hence 1 — 7)" || TG*(r%) ||, < K. The result now follows from (5.2)
and Proposition (5.1).

(b) If a =2\ + 2, a similar argument applies.
(5.9) Ga(x)eA<a—(’”'“1);p,oo) if a—r=15y9.

’ ’

Proof. The proof is similar to the corresponding result by Taibleson
[8; p. 428]. One can write G* = G%*...*G°T where d = a, + - -+ + a5,
0<a,—(n—1/p"<1,and 0 <a,=--- =az<1l. The result easily
follows from (5.8).

DEFINITION. For e > 0 and fe L,(2,_), 1 < p < «, define J* by
Jef(x) = G** f(x). Since G*e L(Z,_,), this convolution is well-defined.

PrOPOSITION 5.10. Let a, 3> 0,1 <p,q < co. Then J* maps
A(a; p, @) isomorphically onto Al + B; p, 9)-

Proof. (a) J? maps A(a; p,q) continuously into A(a + B; p, q).
The proof is analogous to the proof of the corresponding part of Theo-
rem 5 of Taibleson [19; p. 429]. The proof uses (5.9).

(b) J? maps A(a; p, @) isomorphically onto A(a + B; p, q). For
B>0 and feL,(3,.) let

JEf(re) = G7H(r, )" f() .

This is well-defined since for fixed r < 1, G™#(rz) is a bounded function
of z. It suffices to prove the proposition for 0 < 8 < 1. G7%(rx) =
TG #*rx) and 1 >1—- 8> 0. By (56.9), G el — B; p, q). Again,
proceeding as in the proof of Theorem 5 of Taibleson [19; p. 429], one
can show that J~*f € A(a: p, q) for fe Ala + B; p, 9). We need to show
that J=4(J*f)(x) = f(x) for almost every ze X, _, if fe Ad(a; p, g). This
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follows from the fact that
[G—ﬁ(/rn °)*G’9(’I"2, )](x) = P(Tl7"2x'el) .

Similarly J*J*f)(x) = f(x) for almost every xe X, , if fed(a + B;
», @). This finishes the proof of the proposition.

REMARK. In view of the above, it follows that J* is an elliptic
pseudodifferential operator of order -a. See Seeley [14] for a more
extensive discussion of these operators.

6. Further remarks. In this section we would like to discuss
another way of defining Lipschitz spaces on %,_,. It involves the use
of local coordinates. For brevity we consider only the case 0 <a <1
and p = « = q. The reader is referred to Ragozin [12].

Let B= B, ,={zec¢R"|z| <1}. For fe L.(B), we say fe A,B)
if the norm

[ e = 1| f Il + esszsg?plzl = 2| f(z) — fz) | < oo
PO

REMARK 6.1. The following are easily seen to be linear transforms
of 4,(B) into itself:

(a) multiplication by C= functions and

(b) f+> fop where »: B— B is any C* map.

We now define 4,(2,_,) to be {f € L.(2,-,): For each xe¥,_,, there
exists a C* chart ¥: B— Y,_, such that » cint ®(B) and fo® € 4,(B)}.

REMARK 6.2. In view of Remark 6.1, if p;: B— 23, ,1=1, ---, n,
are a finite collection of C= charts with 2,_, = UL, int ¥,(B), then
fed(2,.) if and only if fo@,e A,(B) for each i. Moreover, one can
define a norm

I f E}Aa(rnﬂ) = é“f [| foP; I 4,(B) *

We would like to show that this definition is equivalent to A(a; oo,
co; X,_). By virtue of Proposition 4.1, A(e; oo, co; ¥,_,) is the collection
of functions for which the norm

S e = 11 F 1l + g§§§upd(x, y) 1 f(@) — W) ] < oo

“n—1

The following is well known.

REMARK 6.3. Let ® be a C~ chart: B— 2Y,_,. Then
(a) d(x, y) is equivalent to |z — y| for all z,ye¥,,,
(b)) |P(z) — P(z) | < M|z, — #] for all z,z,¢ B, and
(¢) P7Y(2) — P (W) | = M|z — y| for all , ye 3, .
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REMARK 6.4. In view of Remark 6.3, it easily follows that
ess sup (| f(@) | + d(@, 1) | /@) = FW)]) < o

if and only if || fo@||, s < co. Thus, the two definitions agree locally.
One can then use the Lebesgue number for the covering {int #,(B), -- -,
int @,(B)} to show that the definitions agree globally. Let ¢ > 0 be
such that if z, yeX,_, and d(z, y) < ¢, then there exists ¢ such that
reint®,(B). Thenif x, ye X, andd(x, ¥) =¢,| f(@) — fW)] £2]|fll..=
2(|] fllofe"e” = Md(z, y)*.

It is easy enough to see that the norms corresponding to the two
definitions are equivalent also.
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