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LIPSCHITZ SPACES ON THE SURFACE OF THE
UNIT SPHERE IN EUCLIDEAN rc-SPACE

HARVEY C. GREENWALD

This paper is concerned with defining Lipschitz spaces on
Σn-U the surface of the unit sphere in Rn. The importance
of this example is that Σn-± is not a group but a symmetric
space. One begins with functions in Lp(Σn-i)9 1 ̂  p ^oo. Σn^
is a symmetric space and is related in a natural way to the
rotation group SO(w). One can then use the group SO(n)
to define first and second differences for functions in Lp(Σn-^.
Such a function is the boundary value of its Poisson integral.
This enables one to work with functions which are harmonic.
Differences can then be replaced by derivatives.

For a brief historical survey of Lipschitz spaces, the reader is
referred to the introduction in Taibleson [18] and to the papers of
Nikolskii [9] and Peetre [10]. For this paper, the approach of two
people stands out as being of significant importance.

The first is Zygmund [20; Chapter VII]. Zygmund draws upon
the results of Hardy and Littlewood [6]. For brevity we consider
only the case 0 < a < 1. Let feLp[0, 2π] and be extended periodi-
cally, 1 <̂  p < oo, and let

ω,(δ) = sup {.A- Γ \f(x + h) -f(x)\pdxYlP .
o<h<δ I 2π JO )

Then feA* if and only if ωP(δ) = O(δa). For p = oo, let ω^δ) = sup
l/fo) — /O&i) I where the sup is over all xu x2 such that | xι — x2 | ^ δ.
Then feA? if and only if ω^δ) = O(δ«).

An important result is that u(r, x) is the Poisson integral of a
function feA~ if and only if (d/dx)u(r, x) = Oiδ"-1) where δ = 1 - r,
uniformly in x as r —> 1"".

The second person is Taibleson [18]. For brevity we consider
only the case 0 < a < 1. Let feLp{Rn), 1 ̂  p <* 00, and let
| | / (a + h) -f(x) \\P>dx be t h e Lp norm of [f(x + h) - f(x)] considered

as a function of x. Then feA(a;p, q)9 1 ̂  q < 00, if and only if

ΓIIΛ* + h) -Λχ)\\P,dx]
9dh/\h\ήllq

An important result is that f(x, y), 0 < y < 00, is the Poisson
integral of a function feA(a; p9 q) if and only if
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< oo for
II dv \\p>d%j y )

^ g < oo, sup?/1 4-
dy

+ Il/H* < °° for g =

Some of the results in this paper are contained in a paper of
Heideman [7]. Heideman deals with a generalization of these notions.
He considers Banach spaces of distributions.

Another paper of interest is one by Stein [16] where he has
worked out the important Littlewood-Paley theory for a compact Lie
group.

Lastly, Ragozin [11] also has defined Lipschitz spaces on Σn_x.
His notion is somewhat different and he is concerned mainly with
polynomial approximation.

For the most part, the approach used in this paper is similar to
Taibleson's approach as developed in [18], [19], and [20].

1* Preliminaries*

DEFINITION. The Poisson kernel is the function P(τx, y) =
CJX - τ2)/\rx~ y \ n w h e r e x,yeΣn_1 = {xeRn:\x\ = l ) , 0 S r < 1,

and Cn is a constant such that I P(τx, y) dy — 1 for each x e Σn_x
JΣn-l

where dy is non normalized Lebesgue measure.

NOTE. It is often convenient to consider P to be a function of
T and θ, 0 < θ ^ 2τr. Then

1 - r2

P(r, θ) = C M 1 _ 2 r c o S 0 + r T / 2 = P(r, cos θ)

where cos θ ~ x-y. We shall also write

P(r, χ.y) = C n [ 1 ~ J

DEFINITION. Let / e LP(2
T

%_1), 1 ^ p ^ oo. The Poisson integral

of / is defined as f(rx) = \ f(y)P(r, x-y) dy. We shall assume that

the reader is familiar with the properties of Poisson integrals. The
reader is referred to Zygmund [21] for the one dimensional case and
Stein and Weiss [17; Chapter 2] for the case of Rn,

NOTATION. Let Y[k), ί = 1, . -, n(k), be an orthonormal basis for
the spherical harmonics of degree k. Let Z{

y

k) be the zonal harmonic
of degree k with pole y. For a full discussion of spherical harmonics
see Stein and Weiss [17; Chapter 4].
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The following facts are well known:

fc=o

n{k)

k=0 i=l

and the convergence is absolute and uniform for r ^ r0 < 1.

DEFINITION. Let Fe L^I^) and G e Li([-1,1], dμ) where
dμ(s) = ωn_x{l - s2yn-*)l2ds f o r - l ^ s ^ l a n d ωn_γ i s t h e s u r f a c e
area of Σn^. The spherical convolution of F and G is the function

F*G(x) = \ F(y)G(χ.y)dy.

(1.1) Let Fe L9(Σn^) and G e Lg([-1, 1], dμ) where 0 ^1/p + 1/q -

1 = 1/ί ̂  1 and 1 ̂  p, q £ oo. Let if(#) = ί F(y)G(x y) dy. Then

HLt(ΣM) and ||£Γ|| ^ | | F | | | | G | U

REMARK. This is a standard result known as Young's inequality.
See Calderon and Zygmund [4] or Askey and Wainger [1] for a more
extensive discussion of spherical convolution.

(1.2) Let/(r) be a nonnegative function defined on 0 < r < 1, a Φ 0,

p ̂  1. Let F(s) be defined by F(s) = ['f(r) driίa>0 and F(s) = Γ
JO

if a < 0. Then

[£[(1 - r)"F(χ)]'dr/(X - r)J" ̂  \a

χ[[[(i-rr/wf*/(i-

REMARK. This is a standard result known as Hardy's inequality.
See Hardy, Littlewood, and Polya [6] or Taibleson [18, Lemma 3,
p. 418].

2* Radial derivatives* In this section Lipschitz spaces are
defined. A justification for calling these spaces Lipschitz spaces will
be given in §4.

There are two questions to be decided. The first is which differ-
ential operator to use. The simplest would be d/dr. Unfortunately,
fr(rx) is not harmonic in general. However, rfr(rx) and djdr (rf)(rx)
are harmonic. rfr(rx) has the disadvantage that the constant term in
the expansion f(rx) = Σ*,ιtf*ιf* Ylk){%) is lost. Furthermore, the operator
(rf)r is related to the Bessel potential operator. Thus, the operator
(rf)r will be the one most often used. However, there will be circum-
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stances in which the other operators will be useful. For this reason
the relations between these operators will be studied in this section.

The second question is: Which mixed norms are to be used?
There are essentially two approaches. One uses Zygmund [21; Chapter
VII] as a starting point and the other uses Taibleson [18] as a starting
point.

The Taibleson norm

" 11%^ > S Ί U

can be transformed to

y-°\\rfr(rx)\\Ptdx]
rlnl/r.

with the change of variables r = e~y where 1 ̂  q < oo, and

This approach also correspond to that of Stein [16] for a compact Lie
group. (Note that Σn_x is the symmetric space SO(n)/K where SO(n)
is the group of rotations on R% and K is the stability group of ex,
R, •••, e«} is the canonical base for Rn. SO(n) is, of course, a com-
pact Lie group.)

On the other hand, if one chooses Zygmund [20; Chapter VII]
as a starting point one should choose

LV-1- ' / II 'Jr\i &) llp.dαjj α ' ' /V1- ' /

as a norm where 1 ̂  p ^ oo and 1 ̂  q < oo.
We now proceed to investigate the relationship between these

various norms.

DEFINITION. Let x e Rn, 0 < r < 1, and 1 <: p, q<, oo. We define

and

H * X * αO l i t , = II [II F(

(2.1) Let fe L^Σ^), l^p^oo. Then if a > 0 and 1 ̂  q
the following are equivalent:

( i ) || (1 - r)'Ί*f(rx) \\pq + \\f(x) \\p w h e r e Tf - (rf)r ,
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(iii) || (1 - r)°TΪΛrx) \\pq + \\f(x) \\P w h e r e TJ = rfr,

(iv) || (lnl/r)*Tϊf(rx) ||*M + \\f(x) \\P ,

( v ) \\{rlnllrγτkf{rx)\\\q + \\f{x)\\P.

REMARK 2.2. Let f(rx) be harmonic on Bn = {xeRn: \x\ < 1}.
Assume /(0) = 0. Then if a > 0 and 1 ̂  p, q ̂  ©o, the corresponding
pq norms of (2.1) are equivalent.

(2.3) Let fe Lp{Σn_λ), 1 ̂  p ^ oo. Then if α > 0 and 1 ̂  g ^ oo
and if a is the smallest integer greater than a and k is any integer
greater than a, the following are equivalent:

( i ) \\(l-ry-°Tkf(rx)\\pq

and

(ii) -

REMARK. The proofs of the above use (1.1) and (1.2). See Taibleson
[18] for the analogues in Rn.

DEFINITION. Let a > 0 and 1 ̂  p, q g oo. Then Λ(a; p, q; Σn_,) =
Λ(a; p, q) is defined to be the set of functions f^Lp{Σn_^) for which
the norm || / | | σ ϊ M = || (1 - rf-«T«f{rx) | | M + \\f{x) | |, is finite.

3* Tangential derivatives* In this section globially defined differ-
ential operators on Σn_γ are discussed. The reader is referred to
Ragozin [11] for a more complete discussion of these operators. Let
D be an n x n skew-symmetric matrix and let /eL1(2'%_1). Define
Df(x) = (d/dt)f[(exptD)(x)] \t=0. Since d/dt (ex^tD)(x) | t = 0 = Dx, the
map from the matrix D to the differential operator D is linear. Define
an inner product by <A, A> = —1/2 trace (AA) Let Ai be the
map which takes e< to e, , ey to —ei9 and βΛ to zero if k Φ i, j and
i < j. Then {Ay} is an orthonormal basis for the skew-symmetric
matrices. Actually this is an inner product on linear transforms since
the trace is invariant under change of basis.

(3.1) Let/(r#) be harmonic on Bn. Then if a > 0 and 1 ̂  p, q^oo,
the following are equivalent:

( i ) \\a-ryfr(rx)\\pq,

) |

(iii)

where Fτ is the gradient in the tangential plane for f(rx) considered
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as a function of x.

REMARK. The proof is similar to the proofs of (2.1), (2.2), and
(2.3). Again, the reader is referred to Taibleson [17].

4* First and second differences* In this section, first and second
differences for functions with domain 2T

W_1 are defined. The equiva-
lence between the norms based on differences and the norms introduced
in § 2 is shown. It is at this point that the symmetric space property
of Σ%_x is used. Σn_t can be identified with SO(w)/SO(w — 1).

For this chapter only, we assume that the Lebesgue measure dy

is normalized so that 1 dy — 1. We also normalize the Haar meas-

ure du on SO(n) so that I du = 1 .
jSO(n) _

I f / i s defined on Σn^ly we can construct a function f(u) = f[u(xQ)]
where xQ e Σ%^ and is fixed. Then

\ fty) dy = \ f(u)du = I f[u(xQ)]du .
jΣn__1 JSO(TC) jSO(n)

Equality holds for any point xQ e Σn^. For a more extensive discussion
of these notions see Coif man and Weiss [5]. This enables one to work
with the group SO(n) in attempting to define differences.

We are going to decompose SO(^) into a "polar decomposition".
Let p 6 SO(^) be such that ρ(ex) = ex. Then by an abuse of notation
we can consider p to be in SO(w — 1). For u e SO(^), it is easily seen
that the spherical distance between (up exp tD^{e^) and (up)(e^ is t.
[The spherical distance between x, y e Σn_x is defined by d(x, y) =

DEFINITION. Let u e SO(n), p e 8>0(n — 1), 1 ̂  p, q ^ oo, and
0 < t < 7Γ. We define

\\G(u,t)\\pq= M\\G(u,t)\\p.du)\\g,it/t

a n d

II H(u, p, t) \\*t = \\"\ (|| G(u, p, t) Wt.iu
I JO JSO(n-l)

if 1 <; q < oo

= s u p s u p II G(u, p, t)\\Ptdu it q =
0<t<π peQO{n—l)

We consider the following first difference:
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Similarly we can define a second difference. The points
(upexptD^Xe^, (uρ)(e^), and {up exp — tA2)(e0 all lie on a great circle
and are equally spaced with (up)(e^ between (up exp tD^(e^ and
(up exp -tDnXeJ.

We consider the following second difference:

D12)(ei)] ~ 2f[u(ei)] + f[(uexp -*A2)«>]} II,,

\%fe)] - 2f[(up)(ei)] + f [(upexp -

where 1 ̂  p, q rg oo and a > 0.
We now proceed to establish the equivalence stated earlier.

PROPOSITION 4.1. Let fe Lp(Σn^)f l<^p<, oo, and let f(τx) be its
Poisson integral. If 0 < a < 1 and 1 S Q ̂  °°> the following are
equivalent:

( i ) ||(1 -ry-«rfr(rx) | |M

(ii) || r«{/[(« exp tI>12)(e1)] - /MO1U

Proof. The proof is similar to the proof of the succeeding Propo-
sition 4.3. First, write

rfDr(rx) = \ {f[(up exp ίA2)(^)J - f[{up)(ed\) rPr(r, cos ίjdv .
JSO(«)

One can now proceed as in Proposition 4.3 to get part of the result.
For the other part write

sf[s(u exp tA2)(βi)] - sfisufa)]

= ^iσfXM

+ rf[r(u exp ίD^e,)] - r/Irwfe)]

and note that

/Ir(uexpίAt)(βi)l ~/ϊrw(eO] = Γ-D/[r(w exp
Jo

The result now follows from (3.1).

LEMMA 4.2. Let feΛ(a; p, q) where a > 0 and 1 <; p, # g
|| (r/)r(rα?) ||p,d, - o(l/(l - r)) as r — 1".

Proof. The proof is analogous to the proof of Lemma 5 of
Taibleson [17; p. 426]. The proof uses (2.3) and the fact that
|| (rf)r(rx) \\Ptdx is increasing as a function of r.
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PROPOSITION 4.3. Let f e LP(Σn-1), 1 <: p <: oo, and f(rx) its Poisson
integral. If 0 < a < 2 cmd 1 ^ # ^ oo, £/&# following are equivalent:

( i )

(ϋ) Wt-iMuexptDJied] - 2f[ueί\ +/[(«exp -

Proo/. (a) (i) ^ -Aα (ii).

/[^ej = \ f[uy]P{ry ex)dy .

Let A be a linear transform on i?" defined by A{e^) = eί and A(e() = — e{

for ί = 2, ••, n. Then

βil = ί f[(uA)y]P(rA(y) ei)dy
JΣn~l

= \ f[(uA)(y)]P(ryeOdy

SO(Λ)

There exists ape SO(n) such t h a t pex = ex and (^ exp ί A2)(^i) = 'ΦO
where cosί = v(e1)-eί and ô = ^(t;), t = ί(v). Then A ^ ) ^ ) = (A^oexp
tD^e^ = (pexp —tD^fa) since p(e2)-e1 = 0. Therefore,

/ [ ( ^ ) ( ) ] ( n cos
SO(TO)

Hence

2r(r/r)r[rw(β1)] - ( {f[(up exp tA2)(^)]
JSO(w)

+ /[u^ exp -*Aa)(ei)]}r(rP r) r(r, cos ί ) ^ ,

since d/dr 1 P(r, cos ί)dv = 0. Therefore,

JSO(tt)

| |r(r/ r) r(r») \\,,dx = WHrfrMrφd] ||,1((.

^ ( || /[(w,o exp i£>12)(ei)] - 2/[0*/ί)(βl)]
JSO(n)

+ / [ ^ exp - ίAί)(e i) ] IIP,<I. I K ^ r ) r ( r , cos t) \ dv

= \ 9(t) I r{rPr)r{r, cos t) \ dv
JSO(n)

where
9(t) = II /[(wexpίAOW] - 2flue,] + /[(uexp - ίAOWl ICase /. g = oo. Let A = sup t~ag{t). Then

0<ί<7Γ
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(l-rγ-«\\r(rfr)r(rx)\\P,dx

^ (1 - rf~aACn ί V sin*"2t \ r(rPr)r(r, cos t) \ dt
Jo

by the previous inequality since the integrals over SO(n) and Σn_γ are
related. The above is bounded by

(1 - r)2~°ACn Γ~V sin""2t \ r(rPr)r(r, cos ί) | dt
Jo

+ ( 1 - r ) 2 - a A C n Γ ta s i n " " 2 1 \ r ( r P r ) r ( r , c o s t ) \ d t .
Jl-r

The first term is bounded by

(1 - r)2~aACn(l - r)β(l - τ)^\l - r2)(l - r)"w

x (1 - r)"2(l - r) - 2CU

since | r(rPr)r(r, cos ί) | ^ B(l — r)~2P(r, cos ί). In as much as

(sin*-2 ί)[l - 2r cos ί + r2]~w/2 ^ B r 2 ,

the second term is bounded by

(1 - r)2~aAC: Γ <β(l - ^ " ' ί 1 - r2)Bt~2dt ^
Jl-r

Case //. 1 ^ ^ oo. By an argument similar to the one used
i n C a s e I w e h a v e ( 1 — r)2~~a \\r(rfr)r(rx) \\Ptdx

^ Cn(l - τ)2~a \{1r)T:(sin*-2 t)g(t) \ r(rPr)r(r, cos t) | dt
Jo

+ Cn(l - rf-a [' (sin*"2 %(ί) I r(rPr)r(r, cos ί) | dt .

Hence, |] (1 - r)2-αr(r/r)r(rα;) | |M ^ / + II where I and II are the
L9([0, 1], dr/(l — r)) norms of the first and second terms respectively.
Now / ^

S Γ s i n % " 2 ί&Mrt) I r(rPr)r(r, cos πt) \

- r)}

^ C.'UT(1 - r)2-αί^1"sinM-2(7rί)ff(7rί)P(r, cos

But (sin"-2πί)[l - 2rcosπt + r2]1"""21 ^ 1 and (1 - ry'll - 2r cos πt +
r2]-1 g r 8 since ί ^ (1 - r). Hence I
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drl(l - r)\""

by (1.2). But this is equal to

By a similar argument

II rg #.{Jj~(l - r)-«

By (1.2) this is bounded by

*„,„{£[(1 - r)-

(b) (ii) S Aa (i). We may assume /(0) = 0. Let « e SO(w), 0 < t < π,
and r be such that π(l — r) = t.

sf(sx) = ^(pf)P(px)dp + rf(rx)

l - P)(Pf)ff(px)dρ - (1 -

+ (1 - r)(rf)r{rx) + rf(rx) .

Thus

uJίβ,)] - 2s/[s%(e1)]

exp -tAOfe)] ||,,d. ^ 4(1 - β)r« |

4τr"(l - r ) " β j ]( l - p) || (ρf)fP(px) \\»i

r)-α+11| (r/)r[r(« exp ί

+ t-"\\rf[r(uexpίA2)(eO] - 2rf[ru(ex)]

+ r/[r(«exp -ίAs)^)] H,,̂

(I) For the first, by Lemma 2.2 we have that

l im(l- S ) | | ( r/) r ( S a0!U = O.
s—>1

(II) The £,,([0,1], dr/(l — r)) norm of the second term is bounded

by
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^ ΛΓα |i (1 - rf-%rf)rr \\M by (1.2) if q < °° .

This is bounded by K'a\\ (1 - ry~aT*f(rx) | |M by Remark 2.2 since
/(0) = 0. The above is bounded by

A. || (1 - r)2-*2V(«0 |U =S ft II (1 - rγ-"r(rfr)r{rx) \\» .

A similar argument applies if q = °c
(III) For the third term let D = uDι2u-\

= Σ

where D = Σ«y&ίiAy and Σi<y&l = 1.
Therefore,

II (r/),[r(t* exp ίAOfe)] -

Hence

| | r α ( l - r){(rf)r[r(
< Γ V II Π — <rY-aD (<rf\ (<rΆ II
=^ ^ α 2-ι II ^ L r) •L'iJVJ)p\rjc) \\pg

< Δ II Π — r\2-aT2f(<r<r\ II < 7? II Π — τ\2"ar(rf\ ίWl II

by (3.1) and Remark (2.2).
(IV) For the remaining term,

f[r(u exp tA2XO] - 2/[rtt(eO] + /[r(«exp -

J-(Jo

with D as in (III) above. This equals

Σ Σ Γ (' διAk-D«A*/[r(w exp (σ +
Kk i<j J-ί JO

Since (1 — r)π = t,

Kk i<

The above is bounded by

ΊOfe)] - 2/[rtt(e0] + f[r{

; jAu/[ru(ei)]M ^ S Σ Σ II (1 - rY-DiPufirx) \\,
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Aa,, Σ II (1 - rγ~"Dlkrfr{rx) | |M ^ £α>M || (1 - rγ-"r{rfr)r(τx) \\vq .
Kk

This completes the proof of Proposition 4.3.

5* The Bessel potential operator* In this section the Bessel
potential operator is defined and some of its more elementary properties
are listed.

PROPOSITION 5.1. Let f(rx) be harmonic on Bn and bounded for
0 ^ r ^ p where 0 < p < 1. Suppose || (1 - r)k~aTkf(rx) \\pg ̂  D for
some k > a > 0, 1 ^ p, q ^ °°- Assume also that there exists an r0

such that 0 < r0 < 1 and \\ f(rx) \\p,dx ̂  D for 0 ^ r ^ r0. TAe^ /(ra?)
is ίfee Poisson integral of a function f e Λ(a; p, q) and

Proof. The proof is analogous to the proof of Lemma 5 of
Taibleson [18; p. 426]. The proof uses Proposition 2.3.

DEFINITION. Let Ga(rx) = Y^^rk{k + l)-"Z™(x). For a > 0 this
will turn out to be the Poisson integral of a function Ga(x) e L^Σ^).
For a ^ 0 this will be the Poisson integral of a distribution. The case
a ^ 0 will be discussed in a later paper.

REMARK. Ga will be used to define a multiplier Ja with the
property that if feLp(Σn^) and f~ Y,kΛakιY[k\ then

Multipliers similar to this have been investigated by Hirschman [8]
for Lp(0, 2π) and by Askey and Wainger [1] for L^Σ^).

NOTATION. Let Pi(t), λ > 0, — 1 ^ ί ^ 1, be the Gegenbauer
polynomials defined by Σ~^zkPi{t) = (1 - 2tz + z2)~λ for \z\<l. It
is well known that Z{

e

k)(x) = Z^ίx-e,) = Cn(k + XjPKx e,) where
X = (n — 2)/2 and Cn is a constant. The following facts will be useful
in obtaining information about Ga(x).

(5.2) Let a > 0 and t = x-e,. Then
( i ) Ga(rx) is the Poisson integral of a function Ga(x) e Lγ(Σn^.

(ϋ)
(iii)
(iv)

For ί
Ga(x)
If t*

\G°

Q

Φ 1, G"(x) — lim
is continuous if

= 1,

r(rα;) | ^

M β f i ( l -

Ma>x ln(l

Ga(rx)

tΦl.
in the

/2 if a

if α

pointwise sense.

< 2λ + 1,

= 2λ + 1,
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where Ma>x is a constant depending only on a and λ.
( v ) If a > 2λ + 1, Ga(x) is continuous for all x e Σn^ and hence

Ga(rx) is bounded for all xeΣn^.

Proof. See Askey and Wainger [1].

We shall also need some information about Ga(rx) when — oo < a ^ 0.

(5.3) I f λ + l < α : < 2 λ + l and - 1 < t < 1, then

I Pi(t) I ̂  Mα,,(l - *»)(«-«-«/» .

Proof. See Askey and Wainger [1; Lemma 5, p. 204].

(5.4) Let Fε(t) = Σ?=i (Λ + λ)(*re)*(& + l)~aPλ

k{t) where ε > 0 and
- oo < a < 2λ + 1. Then if - 1 < t < 1,

Proof. Choose y so large that α + 2u > (λ + v) + 1. By Askey
and Wainger [1; p. 199, line 5]

Fit) = Σ Σ aM,m{e~rk-^+1ε-Pi^{t)[Gι{k) + Gι+I{k)\
j l / l

where Gt(k) = max fc^^ fc+^ dι/dtι(l + 0~αb αy.t.ί.m a n ( i h are bounded,
Z + j + m — v l, j , m are nonnegative integers, and v — j ^ 1. If a
is a nonpositive integer we assume that — a — I ^ 0. Since (e~ε)kem =
O(AΓ"),

Σ Σ k—j+1k~m(k + l)-«-» I Pί+*(ί) IΣ
/e=i

Σ
k=l

Pl+"(t) I g AT, ,(1

by (5.3) for - 1 < t < 1.

REMARK. If we set r = β~% we have from the above that

I G"(rx) I ̂  Λfβii(l - ty*-2*-"'2

if - oo < α < 2λ + 1 for t Φ ± 1 where t = x eL.

(5.5) G"{x) ̂  0 if a > 0.

Proo/. In view of (5.2), it suffices to show that G%rx) ̂  0.
P(rx, e,) = ΣΓ=orfc^f»(x) ^ 0. Hence Σ Γ ^ Λ - ' ^ f ^ a j ) ^ 0 and so

0 ^Γ(α)- 1 (<"ίββ- |fΣr*e-"Zίf)(α)Wt
JO \fc=0 /

= Γ(a)~ι
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This is justified since the series converges absolutely and uniformly
for 0 ̂  r < 1. The above is equal to

Σ rkZ{

e

hHx)Γ{a)-1 Γ t"-ιe~ik+l)t dt
k=o Jo

s""1

 β ds

= Σr*^*'(a;)(fc + 1)-" = G"(rx) .
k=0

(5.6) ί Ga(x)dx = 1 if α > 0 .
Jί n —1

(5.7) Gαi+βK«) = Gaί*G"2(x) if «!, α2 > 0 .

Proof. (5.6) and (5.7) are clear since (?α(ra;) —• G"(a;) as r—*\~ in

(5. 8) G*(x)eA(a-(n ^ p, oo) if 0 < α - ( ^ y

 X ) < 1
P ' P

Proof. Let λ = (% — 2)/2. We are going to apply Proposition 5.1
to Ga(rx),

( a ) Suppose α < 2λ + 2. Gα(ra;) = ΣΓ=o (Λ + VfaZ^{x) and

By (5.4) with t = x elf if ί ^ ± 1 , | TGa(rx) \ g AΓβf.(l - tψ'
Thus if >̂ < ex?, || TGa(rx) \\pq

( l — r ) 2 ~]l/j)

i τcia(τ f\ \p (λ — /2y~5/2 ̂ 7/
+ (l-r)2 J

I TGa(r, t)\p(l - t2y~ίI2dt

Q~l+(l-r)2 Πl/p

|ΓGβ(r,t)lp(l-ίV""" "
- 1

The pth power of the first term is bounded by

Hence the first term is bounded by

since 2λ + 1 = (2λ + l)/p + njpr - 1/p' and thus 1/j/ - w/pf - 1 =
(2λ + ϊ)/p — 2λ — 2. For the last two terms we use the fact that

^ Bhn. So the pt\ι power of the second or third terms is
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bounded by

* 1 _ r\2^ + l < O"/1 _ r\(a-2λ-2)p+2X+l

since Σjk=ikβrk ^ A(l — r)~ι~β if β > — 1. Hence, the second and third
terms are bounded by

Thus (1 - ry-a+(n-1)IP' II TGa(rx) \\p>dx ̂ Kifp<oo. If p = oo, as in the
estimates for the second and third terms we have

TG«(rx)
dx ^

Hence (1 - r)n-a \\ TGa(rx) W^ ^ K. The result now follows from (5.2)
and Proposition (5.1).

( b ) If a ^ 2λ + 2, a similar argument applies.

(5.9) G«(x) eΛ(a~ { n ~ 1 ) p, oo) if α - i L l l l > o .
\ p / p

Proof. The proof is similar to the corresponding result by Taibleson
[8; p. 428]. One can write Ga = G"1* *Gα« where a = a, + - + α«,
0 < «! — (^ — ΐ)/p' < 1, and 0 < a2 = = as < 1. The result easily
follows from (5.8).

DEFINITION. For a > 0 and fe Lp(Σn^), 1 ^ p ^ oo, define J α by
j«/(x) = G°*f(x). Since Gα e L^Σ^* this convolution is well-defined.

PROPOSITION 5.10. Lβέ <x, β > 0,1 ^ p, q ^ oo. ΓΛβ^ jβ maps
Λ(a; p, q) isomorphically onto A(a + β; p, q).

Proof, ( a ) Jβ maps Λ(a; p, q) continuously into A(a + β; py q).
The proof is analogous to the proof of the corresponding part of Theo-
rem 5 of Taibleson [19; p. 429]. The proof uses (5.9).

( b ) Jβ maps Λ(a; p, q) isomorphically onto A(a + β; p, q). For
# > 0 and feLp(Σn^) let

J->f(rx) - G~β{r, .)*/(*)

This is well-defined since for fixed r < 1, G~β(rx) is a bounded function
of x. I t suffices to prove the proposition for 0 < β < 1. G~β(rx) =
TG'-^rx) and 1 > 1 - /3 > 0. By (5.9), G 1 ^ e Λ(l - /3; p, q). Again,
proceeding as in the proof of Theorem 5 of Taibleson [19; p. 429], one
can show that J~βf e Λ(a: p, q) for fe Λ{a + β; p, q). We need to show
that J~β(Jβf)(x) = f(x) for almost every x e Σn^ if fe Λ(a; p, q). This
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follows from the fact that

Similarly Jβ(J~βf)(x) = f(x) for almost every xeΣn_ι if feΛ(a + β;
p, q). This finishes the proof of the proposition.

REMARK. In view of the above, it follows that Ja is an elliptic
pseudodifferential operator of order -a. See Seeley [14] for a more
extensive discussion of these operators.

6* Further remarks* In this section we would like to discuss
another way of defining Lipschitz spaces on Σn^. It involves the use
of local coordinates. For brevity we consider only the case 0 < a < 1
and p = oo = q. The reader is referred to Ragozin [12].

Let B = Bn^ = {zeRn:\z\^ 1}. For fe LJB), we say feΛa(B)
if the norm

<*> = II / II- + e s s S U P I *i - *2 Γ I / f e ) - /fe) I < oo.
B

REMARK 6.1. The following are easily seen to be linear transforms
of Aa(B) into itself:

(a) multiplication by C°° functions and
(b) f^fo(P where φ:B-+B is any C°° map.
We now define Λa{Σn^ to be {/ e I/00(2T

%_1)
: F ° r e a c h x e Σn_u there

exists a C°° chart φ:B—>2T

%_1 such that #eint<P(I>) a n d / o ^ e/ία(

REMARK 6.2. In view of Remark 6.1, if φ^ 5—> 2f

Λ_.1, i = 1, , n,
are a finite collection of C°* charts with ^ . i = ( J l i ώ t ^ ΰ ) , then
feAa(In^) if and only if foφ.^ΛJβ) for each i. Moreover, one can
define a norm

We would like to show that this definition is equivalent to Λ(a; oo,
oo Σn_x). By virtue of Proposition 4.1, Λ(a; ©o, oo 27

W_1) is the collection
of functions for which the norm

II / IU.O. = II / IL + ess sup d(x, y)-* | f(x) - f(y) \< - .
x,yeΣn_ι

The following is well known.

REMARK 6.3. Let φ be a C°° chart: JB-^21^!. Then
( a ) d(x, y) is equivalent to \x — y\ for all x, y e Σn-19

( b ) I ^(^) - φ(z2) I ̂  MI zι - z2 \ for all zl9 z2 e B, and
( c ) φ-\x) - Ψ~\y) I g M\ x - y \ for all x, y e J ^ .
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REMARK 6.4. In view of Remark 6.3, it easily follows that

ess sup (I f(x) I + d(x, y)~a | f(x) - f(y) | ) < oo
χ,yeψ(B)

if and only if || f°<P\\Aa(B) < °° Thus, the two definitions agree locally.
One can then use the Lebesgue number for the covering {int Φ^B), ,
int Ψι(B)} to show that the definitions agree globally. Let ε > 0 be
such that if x, y e Σn_x and d(x, y) < ε, then there exists i such that
x e mt <Pi(B). Then ifx,ye Σn^ and d(x, y)^e,\ f(x) -f(y)\£2\\f\\m =

It is easy enough to see that the norms corresponding to the two
definitions are equivalent also.
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