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POINTWISE BOUNDED APPROXIMATION
BY FUNCTIONS SATISFYING
A SIDE CONDITION

A. STRAY

In this paper necessary and sufficient conditions on a
subset S of the unit disc D are given such that every bounded
analytic function f on D is a pointwise limit of a sequence
{f.)3=1 of uniformly continuous analytic functions on D bounded
by the sup norm of f and in addition satisfying sup{| f.(2) |,
2e S} <sup{|f(2) |, ze S} for all n.

Let D = {z:]2]| < 1} denote the open unit disc and T = {z:|z]| =1}
the unit circle. H=(D) denotes all bounded analytic functions on D
and A(D) consists of all uniformly continuous f in H=(D). For any
JSe H=(D) and any subset S of D we put || flls = sup {|f(2)|, ze S} and
we set || ]| = || fllp-

A sequence {z,};-, in D converging to ze T converges nontangen-
tially to z if for some constant N we have [z — z,| < \M1—|z,]|) for
all n. If fe H=(D) then Fatou’s theorem [2, page 34] tells us that
S has a nontangential limit at almost every boundary point. Thus
at almost every boundary point lim f(z,) exists and is independent of
the choice of sequence. If fe H=(D) is known a.e. on T we recapture
its values in D by the Cauchy or Poisson integral formula. We will
therefore consider functions in H*(D) as defined in D and a.e. on 7.

A relatively closed subset S of D is called a Farrell set if for
each fe H>(D) there are f,e¢ A, n =1, 2, ---, converging pointwise to
fon D with || £, || £ || £ and such that an”s [| fllss This concept
was introduced to us by Professor L. A. Rubel who also raised the
question of describing such sets. The object here is to characterize
Farrell sets in terms of their cluster points on 7. The author is very
grateful to Dr. A. M. Davie for valuable conversations on this subject.

First we observe that if #z¢ S whenever 0 <7 <1 and z¢S,
then S is a Farrell set. Indeed, letting f,(2) = f(»2)(0 < r <1), we
have: f.(z) — f(z) as r — 1.

On the other hand, let S = {z,};_, where >, (1 — [2,|) < « and
assume that the set of cluster points of S on T has positive linear
measure. Then there are fe¢ H=(D) with f = 0 on S, but f # 0, while
if fe A(D) and f =0 on S we must have f = 0. The set of cluster
points of S on T which are not nontangential limits of sequences from
S is here too large. In fact we will prove the following.

THEOREM. A relatively closed subset S of the open unit disc D is
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a Farrell set if and only if the set S, of cluster points of S on T
which are nontangential limits of sequences from S has zero linear
measure.

Proof. First assume S, has positive linear measure. Using ideas
from [1] we construct a function fe H=(D) which shows that S is not
a Farrell set. If ¢t > 0 and ze T we define

Az, ) ={w:0 <1l —|w|=st|z—w|=201—|wl)}.

For t > 0 we also define E, = {ze SN T: 4(z, )N S = @}.

Since S, S U, F, has positive measure, we can find for some ¢, a
set £ = E, of positive measure.

Let u be the harmonic extension to D of the function on 7 which
is zero on E and —1 on T\E. Define f = exp [u + iv] where v is a
harmonic conjugate to 4 in D. Then fe H=(D) and by the theorem
of Fatou we have |f|=1a.e.on Fand |f| =e¢" a.e.on T\E. In
particular || || = 1.

We claim that || f|ls <1. Assume this proved. Let {f.}=,C
A(D), ||f.1] =1 and assume f,(2) —f(2) ze D. We prove that || f, ||s—1
which in turn will show that S is not a Farrell set.

Given ¢ > 0 it follows from Fatou’s theorem that there exists ze D
such that

(1) If@)|>1—¢
(2) m(E)>1—c¢.

Here m, denotes harmonic measure on T w.r.t. z.
There exists a number N such that

(3) Ifu(®) —f(e)| <e ifn>N.

By (1) and (3) we have |f.(3)| > 1 — 2¢ if » > N.
But on the other hand we have

212 | hddm | (fdm S £l + e

sothat L= [|fulls=|fullz=1 -8 if n=N.

It remains to prove that || f|ls <1. Choose zc¢S such that
[2] > 1 — &,

Define J, = {we T:|w — 2| <2(1 — |2])}. By a well-known esti-
mate of harmonic measure there exists a constant ce (0, 1) depending
only on ¢, such that

(4) m(J)=c.
Since ze S we have J, N E = .
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By (4) we therefore have since | f| <1 a.e. on E and | f|<e ' a.e.
on T\E:

@< 1f1am + | 1f1dm < m(E) + Lm(T\B)
1

<1—c¢c+eet<l—c2 if zeS.

Since clearly sup {|f(?)|: |2]| = 1 — ¢} < 1, the claim is proved.

Suppose now S, has zero linear measure.

We first consider the special case where B = S N T itself has zero
measure.

Given fe H*(D) we first choose functions g, continuous on
DU T\B and analytic in D such that [[g.|b = [ fI, llg.lls = || flls
and ¢,(2) — f(z) if ze D. (See [3] §1.)

We then choose {a,};., < A(D) converging pointwise to 1 on D
such that ||a,|| =1 and a, =0 on B. See [2], p. 80 for a construc-
tion of the a,’s.

Define f, =0 on B and f, = a,9, in D\B. Then f,c A(D) and
{f.}z-. approximates f as required.

Finally we consider the case where B has positive linear measure.

Define H(6, z) = (e + 2)/(¢? — 2) if —w < 6 < m and ze D.

Choose fe H=(D) with || f||=1. Let =]/ fllss If =0 it
follows from Fatou’s theorem and that S, has zero linear measure,
that | f| =0 a.e. on B which is impossible since f # 0 and B has
positive measure. Hence 7 > 0.

We can factorize f as f = I-F where I and F denotes the “inner”
and “outer” part of f. [[2], Ch. 5.]

Here F' is given by

F(z) = exp [2_1,7_ S:_ H(o, z)u(b’)dﬂ:\

and it follows from the hypothesis that v < 0 a.e. on T and « < log7
a.e. on B.

Fix a positive integer n. Let u, be a continuously differentiable
function on 7 and VO B a set open in T such that u, <0, u, < logy
on V and with the following properties:

(5) [ w0 - w0 < =
— n
(6) gm | H6, 2)(u(6) — u,(0)) | df < % for all ze S .

To obtain %, on V one first defines 4, in a neighborhood of B such
that S [w(0) — u(0)| df <1/2n. This inequality will still hold if B is
B
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replaced by some open set V containing it if linear measure of V\B
is small enough. But then it is easy to extend u, to T so that (5)
and (6) hold.

Since u, < log 7 on V and u, < 0 there is a compact subset K of

S such that
(7) Suldnglog(ﬁ-i-l) if zeS\K.
n

Let A = {ze V:u(2) < u,(2)} and M be a compact subset of 4. We
choose a continuously differentiable function a < 0 such that supp a
(the support of a) is contained in V and we have

(8) HV HO, 2)(u, + a — u)(e)da[ < % it zeK.

If @ approximates u — u, sufficiently well on M and if the linear
measures of A\M and supp a\M are sufficiently small we can obtain
that (5) and (6) still hold if we replace u, by (4, + @) there.

We define g,(z) = exp [1/2z§” (H(O, 2)(u, + a)(o)da} ze D.

Since %, + a is smooth g, € A(b) and ||g,|| =1 since %, + a = 0.

By (5), g.(23)— F(z) if ze D. When zeS\K, (7) implies that
[9.(2),| < 1 + 1/n and if ze K we get from (6) and (8) that |g.(2)| < ne'.

Define now &, = (9/(p + 8/n))g, and B,(z) = I(2(L — n™)) if ze D
and n =12 ...,

The sequence f, = B,h,n = 1,2, --- approximates f as required.

We have completed the proof that S is a Farrell set if S, has
zero linear measure and the proof also shows how to construct the
functions {f,} given f such that they satisfy the requirements given
in the definition of a Farrell set.

If S, has zero linear measure and B has positive linear measure
there is a proof based on functional analysis showing that S is a Farrell
set. This proof is due to Dr. A. M. Davie. Since the proof is short
and rather different from the one given above we would like to include
it here.

So we assume fe H*(D), |f| =1 and || f|ls =7>0.

Let N={feCD)|| flls<7n and || f|| <1}. We have to show
that f is in the closure of NN A(D) in the topology of uniform con-
vergence on compact subsets of D.

By the separation theorem and Riez representation theorem it is
sufficient to prove that |#(f)| <1 whenever # is a regular complex
Borel measure with compact support in D such that |¢(h)| <1 for
all he Nn A(D). (NN A(D) is a convex set in the space of all con-
tinuous functions in D, with the topology of uniform convergence
on compact subsets of D and the dual space is the space of regular
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complex Borel measures with compact support in D.)

N is the unit ball w.r.t. some norm on C(D) which is equivalent
to sup norm on D since 7 > 0.

Hence we can extend the functional g — p4(g) from A(D) to C(D)
and represent it by a measure v on D such that |[v(g)| <1 for all
ge N.

But the last fact implies

(D: (v (D\S) +7[v|S=1

where |v| denotes the total variation of v.

We claim that v(£) = 0 if Ec T has zero linear measure. To see
this let K E be compact. Choose {a,};-, © A(D) such that |[a,|| =1,
a, =0on K, and a,— 1 on D\K. (The sequence {a,} mentioned in the
previous proof will do.) Then 0 = (% — v)(1—a,) — (¢ — V)I(K) = v(K)
by dominated convergence.

This means that f is defined a.e. v and if {f.} < A(D) converges
pointwise to f on D and a.e. to f on T such that || f.|| = || f|l we
again have by dominated convergence that 0 = p(f) — v(f). But
[f|=<1lae. vand |f|=7ae. vonSso|uf) =|v(f)|=1by ().
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