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POWER INVARIANT RINGS

JoonGg-Ho Kim

A ring A is called power invariant if whenever B is a
ring such that the formal power series rings A[[X]] and B[[X]]
are isomorphic, then A and B are isomorphic. A ring A is
said to be strongly power invariant if whenever B is a ring
and ¢ is an isomorphism of A[[X]] onto B[[X]], then there
exists a B-automorphism ¥ of B[[X]] such that ¥(X) = ¢(X).
Strongly power invariant rings are power invariant. For any
commutative ring A, A/J(A)" is strongly power invariant,
where J(A) is the Jacobson radical of A, and » is any posi-
tive integer. A left or right Artinian ring is strongly power
invariant. If A is a left or right Noetherian ring, then A[t],
the polynomial ring in an indeterminate ¢ over A, is strongly
power invariant.

Introduction. Coleman and Enochs [2] raised the following ques-
tion: Can there be nonisomorphic rings A and B whose polynomial
rings A[X] and B[X] are isomorphic? Recently Hochster [4] answered
this question in the affirmative. The analogous question about a
commutative formal power series ring was raised by O’Malley [7]:
If A[[X]] = B[[X]], must A = B? We know no counterexamples.

In this paper all rings are assumed to have identity elements.
The Jacobson radical and the prime radical (the intersection of all
prime ideals) of a ring A will be denoted by J(4) and rad(A4), re-
spectively. Let A[[X]] be the formal power series ring in a com-
mutative indeterminate X over a ring A, and let 8 be a central
element of 4[[X]]. Then (8") will denote the ideal of A[[X]] gener-
ated by 3" for a nonnegative integer =, and (A[[X]], (8)) denotes
the topological ring A[[X]] with the (g8)-adic topology. It is well
known that (A[[X]], (8)) is Hausdorff if and only if N, (8") = (0).
The (B)-adic topology is metrizable in the obvious way, and we say that
(A[[X]], (B)) is complete if each Cauchy sequence of A[[X]] converges
in A[[X]]. Then clearly (A[[X]], (X)) is a complete Hausdorff space.

Extending the terminology used in [2], O’Malley [7] defined
“power invariant ring” and “strongly power invariant ring” as follows:
A ring A is power invariant if whenever B is a ring such that
A[[X]] =z B[[X]], then A = B. A ring A is said to be strongly power
invariant if whenever B is a ring and ¢ is an isomorphism of A[[X]]
onto B[[X]], then there exists a B-automorphism + of B[[X]] such
that (X) = ¢(X).

Let A be a strongly power invariant ring and let ¢ be an iso-
morphism of A}[X]] onto B[[X]]. Then there exists a B-automorphism
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4 of B[[X]] such that 4(X) = ¢(X). Then +'¢ is an isomorphism
of A[[X]] onto B[[X]] such that (y'¢)(X) = X. Therefore, A =

A[[XN/(X) = B[[X]]/(X) = B. Thus a strongly power invariant ring
is power invariant.

In this paper we attempt to impose conditions on a ring 4 so
that A[X] = B[[X]] implies A = B.

1. Strongly power invariant rings. The following theorem ex-
tends Theorem (4.5) in [8].

THEOREM 1.1. Let B be a ring and B = 3.2,b.X% an element
of B[[X]]. Then the following statements are equivalent:

(1) b, is central for each i, b, is a unit, and (B[[X]], (B)) is
complete Hausdorff space.

(2) There exists a B-automorphism of + of B[[X]] such that
P(X) =

Proof. Suppose that (2) holds. Since (B[[X]], (X)) is a complete
Hausdorff space and + is a uniformly bicontinuous mapping of
(B[[X]], (X)) onto (B[[X]], (8), (BI[X]], (B)) is a complete Hausdorft
space. Since X commutes with every element of B, 8 commutes with
any element of B and therefore b, is central for each 7. Let C be
the center of B. Then C[[X]] is the center of B[[X]] and hence
#(C[[X]]) = C[[X]]. Then 4 induces the C-automorphism of C[[X]]
which maps X onto B. Therefore, by Theorem (4.5) in [8], b, is a
unit. Thus (2) implies (1).

Suppose that (1) holds. Since (B[[X]], (8)) is a complete Hausdorff
space, there is a B-endomorphism + of B[[X]] such that ¢(X) =
This comes from the same argument as the commutative case; namely
(2.2) in [8]. Since b; is central for each ¢, that « is a B-automo-
rphism, also follows from the commutative argument; namely Lemma
(4.2) and Corollary (4.4) in [8]. This completes the proof.

Let ¢ be an isomorphism of A[[X]] onto B[[X]] such that ¢(X) =
B = >2,b0,X: By similar argument as in the proof of Theorem 1.1,
we see that b, is central in B for each 7 and (B[[X]], (8)) is a com-
plete Hausdorff space. Therefore, by Theorem 1.1, we see that a
ring A is strongly power invariant if and only if whenever B is a
ring and ¢ is an isomorphism of A[[X]] onto B[[X]] such that ¢(X) =

=0 0,X? then b, is a unit.

The following lemma has appeared as Result 4.3 in [7] for the
commutative case.

LEMMA 1.2. For any ring A, A/J(A) is strongly power invariant.
In particular, 1f A is a semisimple ring then A is stmngly power
mvariant.
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Proof. Let A be a semisimple. To prove this lemma, it suffices
to show that A is strongly power invariant. Let B be a ring such
that there is an isomorphism ¢ of A[[X]] onto B[[X]]. Let 4(X) =

2,0.X". Since J(A) = (0), it follows that J(A[[X]]) = (X), and

s(J(A[IX]]) = ¢((X)) = (s(X)) = ¢(X)- B[[X]] = J(B[[X]]) .

Clearly Xe J(B[[X]]), and so there exists >.2,;¢,X*e B[[X]] such that
(X)Xt =X, ie., CodX)- e, X) =X. Then be +
b, =1. But b,eJ(B), so 1 — b, is a unit. Therefore, b, is a unit,
and so b, is a unit. Hence A is strongly power invariant.

THEOREM 1.3. If A s a commutative ring, then for any positive
integer n, AJJ(A)" is stromngly power invariant.

Proof. Let A be a commutative ring such that J(A) is nilpotent.
To prove this theorem, it suffices to show that A is strongly power
invariant. Let B be a ring such that there is an isomorphism ¢ of
A[[X]] onto B[[X]], and let ¢(X) = B8 = 3.2, b, X°. Then clearly B is
commutative. Let N be the ideal of nilpotent elements of B, and
let {P,} be the collection of prime ideals of B. Then N = ), P,, and
for each v, P,[][X]] is a prime ideal of B[[X]]. Therefore, the ideal
of nilpotent elements of B[[X]] is a subset of N[[X]]. Note that
N[[X]] is not necessarily the ideal of nilpotent elements of B[[X]].
Since J(4) is nilpotent, J(A)[[X]] is the ideal of nilpotent elements
of A[[X]]. Therefore, ¢(J(A)[[X]]) & N[[X]]. In order to show the
opposite inclusion, let g = 3.2, 9, X?e N[[X]]; ¢.€ N for each i, and
let ¢7'(X) =a=>2aX% a,ec A. Then ¢7'(9) = 2.2, ¢~ (g, and
67 (9;) is a nilpotent element of A[[X]] for each 7. Note that a,c J(4)
i.e., a, is nilpotent, and $7'(g,) € J(4)[[X]]. Expanding 32,4 (9.)a’
in powers of X, we see that the coefficient of X°® is an element of
J(A) for each 1 since a, is nilpotent. Thus ¢7'(9) € J(A)[[X]]. There-
fore, we get 4(J(A))[[X]] = N[[X]]. Consider the isomorphism g@:
(A/JANIX]] — (B/N)[[X]] given by

(AT ADIX]] — A[[X)J(ADIX]] — BI[XTI/N[[X]] — (B/N)[[X]]

where the middle isomorphism is induced by ¢ and others are the
obvious ones. Then it follows that ¢(X) = 3.2, b X?, where b, denotes
the coset b, + N in B/N. Since A/J(A) is strongly power invariant,
b, is a unit in B/N. But NS J(B) so b, is a unit in B. Thus 4 is
strongly power invariant. This completes the proof.

COROLLARY 1.4. Let A be a ring and C, the center of A. If
J(C) s nilpotent, them A is strongly power invariant. In particular,
if C is a Artinian ring, then A 1is strongly power invariant.
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Proof. Let B be a ring such that there is an isomorphism ¢ of
A[[X]] onto B[[X]], and let #(X) = 32, b,X:. If D denotes the
center of B, ¢(C[[X]]) = D[[X]]. But by Theorem 1.3, C is strongly
power invariant. Therefore, b, is a unit and so A is strongly power
invariant.

It is well known that the prime radical of a ring A, denoted by
rad (A), is the intersection of all prime ideals of A, and also it is the
ideal of all strongly nilpotent elements of A. (P. 55-56 in [6].)
Clearly, every strongly nilpotent element is nilpotent. In particular,
if A is commutative, then every nilpotent element is strongly nilpotent.
Note that if A4 is a commutative Noetherian ring, and N is the ideal
of nilpotent elements of A, then NJ[[X]] is the ideal of nilpotent
elements of A[[X]] [3]. The following lemma extends this statement
to the noncommutative case.

LEMMA 1.5. If A is a left or right Noetherian ring, then
rad (A[[X]]) = rad (A)[[X]].

Proof. We show that if P is a prime ideal of A, then P[[X]] is
a prime ideal of A[[X]]. Suppose that P is a prime ideal of A and
P[[X]] is not a prime ideal of A[[X]]. Then there exist f = 332, /;: X*
and g = >2,9.X° in A[[X]] such that f-A[[X]] ¢ < P[[X]] but
f¢é P[[X]] and g¢ P[[X]]. Let m be the smallest integer such that
fm€ P, and let n be the smallest integer such that g,¢ P. Since
fA[[X]]-9 € P[[X]], f-a-g belongs to P[[X]] for any element a of A.
Expanding f-a-g in powers of X, we see that the coefficient of X ™+"
is >, fiag; which is in P. But >, f.a0; — fa09.€ P, s0 fnag.
must be in P. Therefore, f,A4g9, & P, but P is a prime ideal of A4;
S0 f,eP or g, P. This is a contradiction to our choice of m and
n. Hence P[[X]] is a prime ideal of A[[X]]. Therefore, it follows
that rad (A[[X]]) < rad (4)[[X]]. To show the opposite inclusion, we
let 32, a,X*crad (4)[[X]]. Then each a, is strongly nilpotent. Let
A be the ideal of A generated by the set of all a;,’s. Then clearly
A Srad (A); therefore, 9 is a nil ideal of A. But since A is left or
right Noetherian, 9 is nilpotent. Thus >2,a;X*e rad (A[[X]]). There-
fore, rad (A[[X]]) = rad (4)[[X]].

THEOREM 1.6. Let A be a left or right Noetherian ring and let
N =rad (A). Then A is strongly power invariant if A/N is strongly
power invariant.

Proof. Let B be a ring such that there is an isomorphism ¢ of
A[[X]] onto B[[X]], and let M = rad (B). Since A is left (or right)
Noetherian, A[[X]] is left (or right) Noetherian. Then B[[X]] is left
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(or right) Noetherian, and therefore, B is left (or right) Noetherian.
So rad (B[[X]]) = M[[X]] (by Lemma 1.5). From the invariance of
the prime radical under isomorphism, we have that g(N[[X]]) =
MI[[X]]. Write ¢(X) = >z, X% b,e B. Consider the isomorphism,
¢: (A/N)I[X]] — (B/M)[[X]] given by

(A/N)[X]] — A[[X]YN[[X]] — Bl[X]I/M[[X]] — (B/M)[[X]],

where the middle isomorphism is induced by ¢ and the others are the
obvious ones. Since A/N is strongly power invariant, we can show
that b, is a unit of B by the same argument as in the proof of
Theorem 1.3. Thus A is a strongly power invariant ring.

COROLLARY 1.7. If A is a left or right Noetherian ring such
that J(A) is nil, them A is strongly power invariant.

Proof. Clearly J(A) is nilpotent. So every element of J(4) is
strongly nilpotent. Therefore, J(A) = rad (4). By Lemma 1.2 and
Theorem 1.6, A is strongly power invariant.

COROLLARY 1.8. A left or right Artinian ring is strongly power
invariant.

COROLLARY 1.9. If A is a left or right Noetherian ring and if
A[t] is the polynomial ring in a commutative tndeterminate t over
A, then Alt] is strongly power inmvariant.

Proof. It is well known that for any ring A4, J(A[¢]) = N[¢] holds,
where N = J(A[t]) N A and N is a nil ideal in 4 [1]. Since A is left
(or right) Noetherian, N is nilpotent and A[¢] is left (or right) Noe-
therian. Thus J(A[¢]) = N[t] is a nilpotent ideal in A[t]. Therefore,
by Corollary 1.7, A[t] is strongly power invariant.

2. Perfect power invariant rings. The following proposition
extends Theorem 3.1 in [7].

PROPOSITION 2.1. Let A and B be rings and suppose that ¢ is
an isomorphism of A[[X]] onto B[[X]]. If ¢(4) & B, then ¢(4) = B.

Proof. Let ¢(X) =B = 32,0, X% b,e B. Then b, is central for
each 7 and (B[[X]], (8)) is a complete Hausdorfl space. Then there
exists a B-endomorphism + of B[[X]] into B[[X]] such that (X) =
B. Then by hypothesis, we have

BI[[X]] = ¢(AIIA]l < Bl < BIIX]] .
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Therefore, B[[B]] = B[[X]], which implies v is onto. Now let B be
B/(b,) and let b = b + (b,) for be B. Then X— 32, 5,X* induces a
surjective B-endomorphism of B[[X]]. But b, is 0, so this impossible
unless (b,) = B; i.e., b, is a unit. Therefore, by Theorem 1.1, + is a
B-automorphism of B[[X]]. Then ¢ is an isomorphism of A[[X]]
onto B[[X]] such that ¢+ '¢(4) < B and +'¢(X) = X. So ¢7'¢(4) =
B; but 4 (B) = B; therefore #(A) = B.

DEFINITION. A ring A is said to be perfectly power invariant if
whenever B is a ring and ¢ is an isomorphism of A[[X]] onto B[[X]],
then ¢(4) < B.

Let A be a perfectly power invariant ring, and let B be a ring
such that there is an isomorphism ¢ of A[[X]] onto B[[X]]. In the
proof of Proposition 2.1, we have shown that there exists a B-auto-
morphism + of B[[X]] such that ¥(X) = ¢(X). So a perfectly power
invariant ring is strongly power invariant. But a strongly power
invariant ring is not necessarily perfectly power invariant.

ExAMPLE. Let K be a field and let K[t] be the polynomial ring
in an indeterminate t over K then K[t] is strongly power invariant
(by Corollary 1.9). But, by Corollary 2.8 in [5], we see that there is
an automorphism ¢ of K[t][[X]] such that ¢(K[t]) £ K[t]. Therefore,
K|t] is not perfectly power invariant.

PROPOSITION 2.2. If a ring A is generated by its central idem-
potents, then A is perfectly power invariant. In particular a Boolean
ring 1s perfectly power invariant.

Proof. Let B be a ring such that there is an isomorphism ¢ of
A[[X]] onto B[[X]]. It is straightforward to show that the only
central idempotents of B[[X]] are those of B, therefore ¢(4) & B.
Thus B is perfectly power invariant.

PROPOSITION 2.3. Let K be a field and let I be the prime field
of K. If K is algebraic over II, then K is perfectly power invariant.

Proof. Let B be a ring such that there is an isomorphism ¢
of K[[X]] onto B[[X]]. Since K is strongly power invariant, we have
K = B. Therefore, B is a field. Clearly, ¢(I) is the prime field of
B. It is straightforward to show that any element fe B[[X]]; f¢ B,
is not algebraic over a field B. So f is not algebraic over &(/7).
But 4(K) is algebraic over ¢(/7), therefore ¢(K) = B. Thus K is
perfectly power invariant.
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COROLLARY 2.4. Let D be an integral domain and let II be the
prime ring of D (that is, II is the subring of D generated by the
identity element of D). If D 1s integral over I, then D 1is perfectly
power invariant.

COROLLARY 2.5. An algebraic number field is perfectly power in-
variant, and the ring of algebraic integers is perfectly power invariant.
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