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NONSOLVABLE FINITE GROUPS ALL OF WHOSE
LOCAL SUBGROUPS ARE SOLVABLE, VI!

JOHN G. THOMPSON

This is the last paper in this series® and it contains the analysis
of the remaining case, that is, 2e 7, and ¢ = 1. As it happens, earlier
work on this case was faulty, as I missed the group *F(2) and its
simple subgroup of index 2. This lacuna is filled here, and the only
change it necessitates in the earlier work is that the Main Theorem
needs to be altered by added 2F(2) to the list of simple N-groups.?

16. The case £ _#Z*. All results in this paper are proved on
the hypothesis that 2e 7, and e = 1. In this section, we also assume
that if T is a S,-subgroup of &, then Te _#Z*. And we assume that
& is a minimal counterexample to the Main Theorem.

Set M = M(X).

LEMMA 16.1. IFf § I M and F is an elementary abelian 2-group,
then Fe 2 *.

Proof. Suppose false, so that I = M) for every solvable
subgroup of U of & which contains §. In particular, C(F) = M for
all Fe %, and also, of course N(T) & M. By Lemma 13.2, there is
a 2,3-subgroup $ of & satisfying (a) through (e) of Lemma 13.2.

Let §o=FN Y T =TNH, where $, = 0,(H). Since Fe 7%,
we have & CF. Since e = 1, §H,is cyclic. Since N(H.) & M, it follows
that | 9. 9.] = 2, whence [T B, | < 2.

If ¥ = B, then since F, CF, O, centralizes a subgroup &/, of
F/F, of order 2. Hence, [, €] S T & 9., and so {H,, € is a 2-sub-
group of N($,). Since Lemma 13.2(e) holds, we have €S $, N T =
T = B, against |E/F,| = 2. Hence, |F: B, | = 2.

Choose Fe®, — $.. Since F¢O(H), we may assume that F
normalizes ;. Set & = [H,, D:]. Thus, $; has no fixed points on
K/K, and so

& =([8, F], [8 F]*>,

1 An historical note is in order. In January, 1963, I announced at the meeting of
the American Mathematical Society that with finitely many exceptions, the simple
N-groups were L.(qg) and Sz(q). Had I been content to leave the explicit determination
of the exceptions to someone else, I would have avoided the embarrassment of having
missed *F,(2)'. Furthermore, several of the proofs would have been shortened considerably.
But part of the fun and a great deal of the work involve pinning down the exceptions.

® The other papers are: Nonsolvable finite groups all of whose local subgroups are
solvable, I-V: Bull. Amer. Math. Soc., 1968, Vol. 74, no. 3, pp. 383-437, Pacific J. Math.,
Vol. 33, no. 2, 1970, pp. 451-536, Vol. 39, no. 2, 1971, pp. 483-534, Vol. 48, No. 2, 1973,
1p. 511-592, Vol. 50, no. 1, (1974), 215-297.

3 T have not taken the trouble to check Corollary 5 for the case ® = 2F,(2)’.
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574 JOHN G. THOMPSON

where H is a generator for $,. Since [®, F] =g, it follows that [&, F']
is a normal elementary abelian subgroup of & and so cl(R) < 2,
'SR, FIN[K, F]?. Since F centralizes &', so does $;. Since C(F,)= M
for all F,e®* and since & = F, while §, £ M, we conclude that

R =[R® F] x [R], F]¥ is elementary abelian .

Also, Cy(F)=[R®, F1=F N K, C;($) N K =1. Suppose F,€F,. Then
F, = UV, where Uc C;(,), Ve ®. Since F, = FY, and since F' normal-
izes Cy,(9.) and &, it follows that U= U", V= V"e C(F)=[R, F]=3.
Hence, U=F,-V*e . Since ;L M, weget U=1,andso [®, F] =F..

Set A = [®, F]7 = F, so that & = F, x A. Furthermore, since
$. is a S,-subgroup of N(R), it follows that N (&) = . Let F/So
be a subgroup of F/F, of order 2 which admits A. Thus, [] F] =
[, F] S B and F* £ N(R), so that [, F] £ T Let F = F x U,
and choose 4 in 2 such that [4, U] = Ve, — .. Since 4> =1, we
have [4, V] =1, and so Ve C;(A). Since AcF,, and since Co(F') = F,,
we get VeF,.. This contradiction completes the proof.

Set 8 = Q,(R(IN)), and let .7 be the set of involutions J of M
such that Cy(J)e Z*. Since Te_7Z*, we have

(16.1) UZER) < 7 .

LEMMA 16.2. One of the following holds:
(a) |Bl=2.
(b) CB,) & M for every hyperplane 3, of 3.

Proof. Suppose that (a) does not hold, so that |3] = 4. Let
8% = 2(Z (X)), and suppose that 8, is a hyperplane of 8 with C(3,) £ .
By (16.1), we have 3,N 8 = 1, and so {Z*) = 8* is of order 2. Set
€ = C(3) and let /€ be a minimal normal subgroup of MN/€. Since J is
2 reducible in M, |D/C| is odd. Since |8*| =2 and |3|> 2, we have
|D/E|>1. Set 8,=1[8, D], so that 1 = 8, <{ M, whence Z* ¢ 3,. Since
8. =18, 9], we have Z* ¢ ®'. By (16.1), we have Z** ¢ 3, for all M in IN.

Let Q be a S,-subgroup of D, and let &= 3,Q. Since[3,, D] =3,
so also [Q, 8,] = 8,- Let 83°= 8,N 8,. Since Z*e 8,, we get that 3°
is a hyperplane of 8,, and so Z*?c 8, — 8° for all Qe Q. This violates
Lemma 5.38, and completes the proof.

LEMMA 16.3. Omne of the following holds:
(a) [3]=2.

(b) C(8,) = C(8) for every hyperplane 3, of 8.
(c¢) M has a normal four-group W such that Ax(TW) = Aut .

Proof. Suppose | 3| > 2 and 3B, is a hyperplane of 3 such that
C(3,) #= C(8). By Lemma 16.2, C(8,) = Cx(8,)- Since 8, 3, we have
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C(8)DC(B)=6€. Set € = C(8,). Since € stabilizes the chain 8>
8,01, we see that €/€ is an elementary abelian 2-group. Choose
Te € — €, and let /€ = O(IM/C), F/€C = F(D/C). Since O,(M/C) = 1,
and e = 1, §/€ is a cyclic group and T does not centralize /€. Let
B = [B, Z]-€, so that F,/€ == 1. Since T inverts F,/€, and since F,/€C
acts faithfully on 3, it follows that |g,/€| =3, while [8, ] =W is a
normal four-subgroup of M. The proof is complete.

LEMMA 16.4. |3] = 2.

Proof. Suppose false. Define F as follows: if Lemma 16.3(b)
holds, take ¥ = 3, and if Lemma 16.3(c) holds, but Lemma 16.3(b)
does not hold, let ¥ be a normal four-subgroup of M with AuF) =
Aut (F).

By Lemma 16.1, 3¢ _#Z*. Set

T ={B| BB, P is a 2-subgroup of M, P¢ _~Z*}. Choose T, in
7 with |%,| maximal. We assume without loss of generality that
T, = 2. This normalization is admissible, since 8 <] I. Let & be a
solvable subgroup of ® which contains ¥, and is not contained in I,
with |&| minimal. Since N (T,) e .7 *, it follows that T, is a S,-subgroup
of &. By minimality of |&|, we have & = £ Q, where Q is a p-group
and p is an odd prime. Since C(3,) & M for every hyperplane 3, of
8, it follows that 8 = C(0(®)), and so § = 0,(S) = 1. By maximality
of %, it follows that ¥, is a S,-subgroup of N(9). Since O(N(H)) =1
so also O(®) = 1. Since ¢ = 1, Q is eyeclic.

Let B = V(ecly(8); L,)- Thus, B LS, since N;(L¥) O F,. Choose G
in @ such that 3 =X2<= %, XL §. Since Q is a cyclic p-group,
XN $ =9 is a hyperplane of X. On the other hand, N,(9) = T,, and
so Z(®)= 2, whence Z() <= Z(H), as C«(H) = Z(9). Set N =
2(Z(X))° = 2(Z(T))>. Since L &L M, it follows from (16.1) that O
does not centralize 11, and so Cyo(l) = $Q,, where Q, & D(Q). Let
X =9 x(X). Since X inverts $Q/9, we assume without loss of
generality that X inverts . Thus, X does not centralize 1I. In
particular, C(®) > C(X), and so ¥ is a four-group.

Let B = V(cely(F); Ty). Since N(W) O F,, it follows that W« S,
and WZ H. Choose G, in & such that 2 =3=Z, 8L H. Set
8 =8N9, so that |L:8,| = 2.

Now & is a normal 4-group of M and Ars(¥) = Aut (8), so every
involution of & is central in some S,-subgroup of I¢%. Hence, by
(16.1), C(L) < M4 for all Le &. In particular, U & C(L,) & M%, and
so [U, 8] & 8. Since O does not centralize U1, and since 8 = &, x (T,
where T inverts $Q/9, T does not centralize I. Since [, & S &,
we get that [, 8] = &, < Z(H), and so § =M% |Q| =3. But now
we get that [9, 8] = £, whence [9, Q] = ©, is a 4-group, H = §, X
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. 9. = Cy(Q). Furthermore, $, <{S, and so & & Z(¥T,) whence T, &
M N ME., By maximality of E,, we conclude that I = M, & = F.

Since T, T, there is Ue N(T,) — %, with U*e€&, Thus, U
normalizes C;(F) = F X 9., and so U normalizes D(C:(T)) = D(.)-
Since Q & N(D(9,)), and since <T, Upe . #*, it follows that §, is
elementary. Since ©,N $7 is normalized by <%, U, Q), we conclude
that 9, N HY = 1, and so | H.| = 2*, where h < 2. In this case, T,
has precisely 2 elementary subgroups of order 2%, namely, $ and
C; (%), whence U normalizes . This is false, since %, is a Sy-subgroup
of N(9). The proof is complete.

LEMMA 16.5. If Ue %/(T), then C(U) < M for all Ue 1.

Proof. By Lemma 16.4, 8 = Q,(Z(2)) is of order 2, and 3&Z(M).
We assume by way of contradiction that C(U) = € £ M. Thus,
=38 x<KU). Let & be an element of _Z.<°(®) which contains €
and let ® 2 R 5, such that & is a maximal subgroup of 3.

It is crucial to show that

(16.2) je:enM|=3.

In any case, since € & &, we have & £ I, andso [&: SN M| =d > 1.
Let %, = C,(U), so that |[2:Z,| =2. Since TS NE,), we have
NE,) = M. Since Te _~*, it follows that T, is a S,-subgroup of &.

Since U centralizes every element of W(1;2’), it follows that
9 = 048) # 1. Since & = N(), it follows that O(&) =1. For each
odd prime p, let &, be a S,-subgroup of & permutable with &, and
let &(p) = £,-&,. Thus, O(&(p)) = 1 for all p. Since J(I,) and Z(T,)
are normal in £, it follows that (IN(J(Z,)), N(Z(Z,)) & M. Hence,
S(p)=M for all p =5, by Lemma 5.53. By Lemma 5.54, 0'(&(3)) = .
This is (16.2).

Next, set &, = &N M and suppose that &, < M, & M, and that
M, contains a S,subgroup of M. Let 7 = n(@) and let M be a
S, -subgroup of 9, which contains &,. Let § = oz(sm), @0 =9N6G,.
Since T, = &, and ¥, is of index 2 in a S,-subgroup of M, it follows
that | 9: §.| < 2.

We argue that I, — @0 contains a 2-element T which normalizes
&,. This is clear if i@ @ol = 2, since in this case, we may_ take
TeH — H,. Suppose & = H,. Let %/@ F(EIR/.S?), so that §/9 is a
cyclic group of odd order, and ™ = %. Let &, be a S,-subgroup of
®, and let 8 be a S,-subgroup of ¢ which contains &,. Since R is
a Z-group, it follows that subgroups of & are conjugatejf and only
if they have the same order. This implies that Nz(®,)9 contains a
S-subgroup of M, and since T, < H.Nz(®), it follows that &, is
normalized by a S,-subgroup of M, so T exists.
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Case 1. ¥, is not a S,-subgroup of R.

Let &, be a S,-subgroup of R which contains £,. Since T = N(T,),
we have NE)S M, and so T, M. Let M, = MNR, so that
M, 2<%, &,). Choose T'e Ny (&) — &, T a2-element. We may assume
that T*€&,. Now Sc R, and so R is not solvable. Since @ is an
N-group, so is R, and so 1 is the only solvable normal subgroup of

R. In particular,
ner=1,
Re®R
and so RN is represented faithfully as permutations of the cosets of
& in R. Since & is a maximal subgroup of R, this permutation group
is primitive. Since &N & = &, & has an orbit of size 3. By the
Main Theorem of Wong [Determination of a class of primitive permu-
tation groups, Math. Zeitschr. 99, 235-246 (1967)], R is isomorphic
to one of the following groups:
4;, S;, PGL(2, 7), PSL(2, 11), PSL(2, 13), PSL(2, q)
(¢ a prime = +1 (mod 16)), SL(3, 3), Aut (SL(3, 3)).
Since 2 € 7,, it follows that &% _#5(¥) # @. However, a S,-subgroup
of each of the above groups has no elementary normal subgroup of
order 2°.

Case 2. %, is a S;-subgroup of R.

In this case, since ¥, is not a S,-subgroup of &, we have Rc G.
Since ® is a minimal counterexample, R contains a simple normal
subgroup R, such that Cx(R,) = 1, and such that R, is one of the groups
listed in the (augmented) Main Theorem. Let R, = R, If R, =
2F(2), then either R, = R, or R, =*F,(2). Both possibilities are excluded
since 2,(Z(T,)) = U, while S,-subgroups of both *F,(2)" and *F(2) have
cyclic centers.

Suppose R, = U,;(3) = PSU(B, 3)(= SU(B, 3)). Since GU(S, 3) =
SU(3, 3) x Z(GU(3, 3)) it follows that either R, = Uy3) or R, = U,(3XS),
where S is induced by a field automorphism. In either case, a
S,-subgroup of R, contains no normal elementary subgroup of order
28, against ¥, = C(U).

If Ry, = M, then R, = M,, = Aut (M,,). This case is excluded since
FEN(E) = D.

If R, = L,(3), then R, is either isomorphic to Ly(3) or to L,(3)XS),
where S is the transpose inverse map. This case is also excluded, since
& %-/Vs'(go) * .

If R, = A, then U (T,; 3) = 1, against 2¢ 7,.

If R, = Sz(q), then R, = R,, since Aut (Sz(q))/I(Sz(q)) has odd order.
In this case, every 2-local subgroup of R, is 2-closed. This is false,
since %, is a S,-subgroup of & and & £ M, while N(T,) & M.
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Suppose R, = L,(2"). Since & is not 2-closed, T, is non abelian.
Since N, is an N-group, the only possibility is that R, & X;. This
violates % 15(%,) = @.

So R, = Ly(q) for some odd q. Let ¢ = p° p a prime. Then
Aut (L,(q))/I(L(q)) is the direct product of a group of order 2 and a
cyclic group of order a. Thus, %, /R, is abelian, and is either cyclic
or of type (2, 2.

Let @ =%, NNR,. Thus, T° is a dihedral group. First, suppose
|2 = 16. In this case, & 43(T) = @, and so it is straightforward
to verify that &% 75(%,) = @, the desired contradiction. Hence
|21 <8. If [T =4, then a =0, and so b =0, and T, is non abelian
of order 8, against . % 15(¥,) = ©@. Hence, |T°| = 8.

Since |T°| = 8, it follows that a is either odd or twice an odd
number. Since &, contains an element of & _#;(2), it follows that
U(Z,: 2') = {1}. Thus, if Z, is the central involution of ¥°, then Cy (Z,)
is core free, that is, if ¢ = ¢ (mod4), then (¢ — ¢) is a power of 2.
Since |¥°| =8, we get ¢ —¢ =8, whence ¢ =T or 9. If ¢ =17, we
get 5 15(%)= . Soq=29, and the only possibility is that R, = ¥,.
In this case, we see that & = Z, x X,. Thus, ¥, has precisely 2
elementary subgroups of order 8, one of which is an element of
€ A" (T). Hence, T normalizes both of these elementary subgroups,
and so ¥ normalizes 0,(&). This is false, since & = N(0,(S)), and TLS.
The proof is complete.

LeMMA 16.6. If § is a non cyclic normal elementary abelian
2-subgroup of M, then C(F,) & M for every hyperplane T of F.

Proof. Since ¥ is non cyclic and Z(®) is cyclic, ¥ contains an
element U of Z/(T). Since F, N U = 1, this lemma is a consequence
of Lemma 16.5.

By Theorems 13.5, 13.6, 13.7, I contains a non cyclic normal ele-
mentary abelian 2-subgroup, so we can choose § such that

(a) F M.

(b) % is an elementary abelian 2-group.

(c¢) /8 is a chief factor of M.

LeEmMMA 16.7. Suppose T is an involution of M. Then one of the
following holds:

(a) I3, TI< 8.

(b) B/8 is a free FLT>-module.

_ Proof. Suppose [F, T1Z 3. Set = B/3, and let € = Cm(fg),
N = M/E, T=GCT. Thus T=+1, and O,(M) = 1. Let § = F(I).
Thus, § is a cyclic group of odd order and Cx(§) = §. Hence, T
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inverts a subgroup P of & of prime order. Since P char fg, we have
B <IM, and since M acts faithfully and irreducibly on &, we have
C;(B) = 1. The lemma follows.

LEMMA 16.8. Suppose X2 =(X) x {Y) is a four-group contained
in Fand 8 ZLE. Suppose S is a S;-subgroup of Cu(X). Then there
is S in & such that [Y, S] generates B.

Proof. Let € = C(F), D/€ = 0,(M/€). Since F is not 2-reducible
in M, we get that Cy(D) = B, [F, D] = B, and so D/€ is isomorphic to
the stability group of the chain §>8>1. Let &, be a S,-subgroup
of Cy(X) and let &, be a S,subgroup of Cy(X) which contains &,.
Since [D, X] = 38, &, is of index 2 in a S,-subgroup of D. Also & =&
for some Me Cyp(X), and so & contains S¥. Since ® <] M, S is of
index 2 in a S,-subgroup of D, and so (X, 8) = C;(&¥). So we can
choose S in &Y — C(Y), whence [Y, S] generates 3, as required.

LEMMA 16.9. If |§| < 2% then C(F) = I for all FeFt.

Proof. Since |F| < 2¢ and F/8 is a chief factor of M, while F~FZ
for all F in § — 8 (where 3 = (Z)), it follows that I is transitive
on & — 3, so this lemma is a consequence of Lemma 16.5.

LEMMA 16.10. Suppose € is a hyperplane of F and T is an
involution of M with Cy(T) = . Then one of the following holds:

(a) B T1=238.

(b) & =2

Proof. This lemma is a consequence of Lemma 16.7.

With these results at our disposal, we turn to the final configu-
ration of this section. By Lemma 16.1, ¢ _#Z*. Let

T =|FSS=MS¢ #* & is a 2-group} .

Choose %, in .7~ with | ¥,| maximal. Since § <] M, we assume without
loss of generality that €, = <. Thus, if £, is any 2-subgroup of &
which contains ¥, properly, then T, & MM, and L, e _~Z*. Let

F= (BT, S6,6=6,SZ N, S solvable} ,

and choose & in . of minimal order. Thus & = T, P where P is a
p-group for some odd prime p. Since C(F,) = M for all hyperplanes
Bo of F, it follows that O(©) = M. Hence, F centralizes 0(S), and
S0 0,8) =9 # 1. By maximality of ¥, it follows that £, is a
S;-subgroup of N(9), and so O(&) = 1. Since ¢ = 1, P is cyelic. By
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Lemma 5.53, p = 3.

Set B = 2,(R(S)), so that 3= B. Since PZL M, we have
[B, Pl =B, = 1. Set W = V(cely(F); T,). Since N (W) D T, we have
WS, and so WZ H. Choose G in & such that X =F° = <, X L $.
Let %, = XN §, so that %X, is a hyperplane of X. Choose FeX — X%,.
Since F' inverts some S;-subgroup of &, we assume without loss of
generality that F inverts 8. Now B, is a free F,(F )-module, and
B, = C(%) & M¢.  Also, B, T, = $<F), and so0 [B,, F] = Z(T;). We
argue that C([B, F]) < M¢. This is clear if 3°< [B,, F], and if
B Z [B,, F], then Lemmas 16.10 and 16.9 imply that C(V) < IM¢ for
all Ve¥. So in any case, C([B,, F]) S M°. In particular, T, & ME.
By a previous remark, this forces M = M?, ¥ = F. So F <L, Since
F inverts P and I(P) = M, we have |P| = 3.

Let ©, = [9, Pl, . = C;(P), and let P be a generator for P.
Let € =[$, F]. Thus, & is a normal elementary subgroup of §,,
and <G, G7) = §,, the equality holding since §,/D($,) is a free F,(F')-
module.

Since §, = G”-€, we have cl($,) < 2, $ S N E”". Since F cen-
tralizes §;, so does P, and so 83 & ;. We argue that

1pil=2.

In any case 9] <{S, so if §. =1, we can choose Xe ;N Z(S).
Suppose | §!| =4, and (X, Y) is a four-group contained in $!. By
maximality of Z,, it follows that ¥, is a S,-subgroup of C(X). By
Lemma 16.8, [Y, S] is a generator of 3 for some Se¢Z,. This is false,
since 3 £ &, while §;<]S. So |§!| < 2.

Case 1. &, is a four-group.

Here we get § = $, X 9,. Choose T e Ni(T,) — T, with T?€ Z,. Then
$:.N H7 =1, since (B, T, T> = N(H. N $7), and (T, Ty)e #Z*. Since
T,/9, is a dihedral group of order 8, we conclude that §, is isomorphic
to a subgroup of a dihedral group of order 8. First, suppose that 9,
is elementary abelian. Since § = J(Z,), we conclude that F' centralizes
9. Thus, C;(F) and $ are the only elementary subgroups of ¥, of
index 2. Since T normalizes C;(F), we get T'e N(§), which is false.
Next, suppose . is cyclic of order 4. If §, < C(), then &, = &, X
{&,, Fy, so that D($,) char ,. This is false, since 9, N $7 = 1. If
[©,, F1#1, we get that D($,) = F. In this case, since [F|= 25,
Lemma 16.9 implies that C(D($,)) S M, against P = C(D($,)). So H.
is a dihedral of order 8. Hence, |¥| < 2!, and so by Lemma 16.9,
FN H, = 1. In particular, F centralizes H,, and T, = 9, X (Y, F') =
D, x Dy Since Co(F) = $, x {[9,, F1) x {(F'), we get that T normal-
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izes Cy(F')’ = ;. This contradiction shows that this case does not
arise.

Case 2. .= 1.

Since P acts faithfully on §, and since Case 1 does not hold, we
have |9,| = 2*, where w=2. Also C(F)=1[9, Fl=$.NT is of
order 2** A standard argument now shows that

%1 & C(@l), %1 = ('@2 N %1) X (@1 n %1) .

Since w = 2, there is H in §, such that [F, H]¢ 8. Since §, = C(H),
Lemma 16.10 implies that |§| = 2°. Hence, w = 2. It follows readily
that J(T,) & &, and so J(T,) < S, against N(J(T,)) & M.

Case 3. §;# 1.

Let 9 = Z(9,). Since P has no fixed points on £,/9:, it follows
that 9 = 9, x 9!, where 9, = [3, B]. Hence, $, = 9, X B, where B
is extra special. Since 3 centralizes §,, we conclude that Z¢ .

Case 3a. £, is extra special.

Since ©,/D(9,) is a free F,(F)-module, it follows that $, NF
contains a four-group % with 9] = <X ) A. Since I, is a S,-subgroup
of C(X), Lemma 16.8 implies that 8 & &, = B. This is false, and so
this case does not occur.

Case 3b. §, is not extra special.

Here we can find a subgroup 9' of 9 of order 2° such that
9.9 <S. Since H = 9.9 we get 9 S Z(9), and so [¥, P] =
D* ]S, P* a four-group. Choose Y* € P* — Cyou(F'). Thus, Cx(Y*) =,
is a hyperplane of F. If [Y* F] is not a generator for 3, then
Lemma 16.10 implies that |F| = 2. Since ([Y*, F]> x 9! S B, we get
that §, = ({Y*, F]D x $!. This is false, since ©,/9] is a free F(F)-
module, and since [$,, F)] & F.. So [Y* F] is a generator for 3.

Let §. = ¥ N ., and suppose that |B| = 2*+'. Then n =2, and
80 |F|> 2% Furthermore, , N $, = $; and if He §, and [H, F] = §!,
then [H, F'] =1. Thisis so since [9,, F'] covers C; ;5i(F), and [9,, FIS T,
so that [§,, F, F'] = 1. Now suppose Fi.eF,. Then F, = UV, Uc §,,
Ve $,. Since F normalizes both $, and $, we get UV = U". V7,
Ur.u=vV*-v'eH NH,. Thus, UF-U=V"-V*'=1, and so
Ve Cy(F) =3 N $,, whence UeF. So once again we have F, =
@ NH) X (BN YH,). Since FN H. centralizes P and FN $,, we con-
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clude that § N 9. centralizes ..

Let |9| = 2. If r =2, there is We9 such that [W, F']¢ 3.
By Lemma 16.10, we get || = 2°. This is false, as we have seen.
So » =1.

Choose He (N ) — 9., where P is a generator for P. Then
[B, Hl S ©%, and [F.N O, H] = §,. Since §; = 8, we conclude that
He¢ Cy(%/3). By Lemma 16.7, F/8 is a free F,(H)-module. Since
& is a hyperplane of ¥ and C;(H) is a hyperplane of F,, we have
|8: C(H)| = 2°. Hence, |F| = 2°. Since ¥/3 is a chief factor of IN,
we get that 5 | | 4n(F/3)|. If 8.5 divides Ay(F/3), then M is transitive
on =3, and so C(X)< M for all XeP*. This is false, since
C(9) L M. So a S,-subgroup of Ax(F/3) is of order 5, and An(F/3)
is isomorphic to a subgroup of a Frobenius group of order 20. In
particular, A4,(%/3) contains no four-group.

On the other hand, # = 2, and |[BNF| = 2°. Let & be a comple-
ment to §] in BN, so that F* is a four-group normalizing F and
acting faithfully on $%/8. This contradiction shows that

Te 7%,
the aim of this section.
17. Some properties of _#Z(¥)'. From now on, T denotes a
S,-subgroup of &. For each solvable subgroup & of ®, #Z(&) is the

set of elements of 7 .¢°(®) which contain &. Thus, | .Z(¥)| = 2.
Set

B =27, 8 =2J®), B.=42J®F).

If 8 is a solvable subgroup of ®, denote by f(&) the number of integers
1 such that

O é 7/ é 2 ’ -812 q 8 .
As it turns out, f(¥) is an important invariant.

HyproTHESIS 17.1. There are M, Ne #(T), M = N such that
MWNANDOZ.

Lemmas 17.1 through 17.11 are proved under Hypothesis 17.1.

LEMMA 17.1. Let p be the largest prime in

U 7).

Xe 7(2)
Then p=T.

¢ 1 am indebted to I. M. Isaacs for making available to me some notes which he
took, based on lectures of mine given several years ago.
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Proof. Suppose false. Let D be a S, -subgroup of M N N. Then
D= 1since MNRNDOIT. Let D, D, be S,-subgroups of M, N respec-
tively, such that @ & 3, N D,.

Since p £ 5, and D,, D, are Z-groups, they are both cyclic and so
E =P, D)<= C®), so that & is solvable. Since I = ITD,, and
N = ITD,, it follows that TE = L is a group. Now

A= AN 2D,

Leg Ee€
and so % has a non identity solvable normal subgroup. As © is an
N-group, & itself is solvable, and so M = 8 N = L. The proof is
complete.

LEMMA 17.2. _#Z(T) has a unique element of order divisible by
p (where p is as in Lemma 17.1).

Proof. Choose X¢ _# (%) with p||X|, and let X, be a S,-subgroup
of X. Let & be a S,-subgroup of X containing %,, so that & is a
Z-group and %, <]|&. Let & =2%.%,. By Lemma 5.53, f(¥) = 2.

Suppose ¥*e _#Z (%) and p||X*|. Let X} be a S,-subgroup of ¥*,
let &* be a S,-subgroup of X¥* which contains X#, and set €* =% .%}.
Since f(%*) = 2, there is 1¢{0, 1,2} such that B, <] ¥ &*). Set
& = (&, &>. Since K is solvable and p is the largest prime in 7(R),
while a S,-subgroup of & is a Z-group, it follows that TP = T.P*,
where P = Q,(X,), B* = 2,(X}). Thus, thereis Tin T such that P' = P*.
Hence, § = (&, &*) = N(L*), and so F is solvable. Since X = &,
so also ¥ = T-&7, and so N = TF is a solvable group. Hence, X = R,
X* = R. The proof is complete.

Next, let

Z =18, 3) ;e Z%), S+ 6, SN6,0%}.
We may assume that notation is chosen so that

max {¢} = max {q},

gex(MNN) qe=(6yNSy)

for all (&, &) c ..

Let © be a S,-subgroup of M N N and let € F be S,-subgroups
of M, N respectively with D = EN F.

LEMMA 17.3. If 1D, <D, then either D, A€ or D, 43.

Proof. If D, <€, F>, then (€ F)> is solvable, and & = I(E, F>
is also solvable, whence M = & N = &. The proof is complete.

Let X be the unique element of _#Z(¥) such that p||%X]|.
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LEMMA 17.4. Either & =1 or § = 1.

Proof. This lemma is an immediate consequence of Lemma 17.3.
Choose notation so that & = 1.

LeEMMA 17.5. I = X%.

Proof. Let 7, s be primes such that a S, ,-subgroup of € is non
abelian, with » > s. Let & be a S, ,-subgroup of M, & O, and
choose a Sylow system Z, K,, &, for & Then R, = (],8,), since &,
and &, are cyclic. Also, » =1 (mod s), and so r = 7. If /B is a chief
factor of & of order r, then & centralizes 11/B. Since &, does not
centralize &,, it follows that &, £ &, and so TR, < K, so that T <] ZTK,.
Hence, f(TR,) = 8 and so f(TR,R,) = 2. By Lemma 17.2, we conclude
that & < %.

Let & be a S,-subgroup of ¥, & 2 &,8,. Then &, <{S, and so
(&, &) = N(R,), whence & = T(S, &) is solvable, and so & =%, & = M.
The proof is complete.

Note that we now know that ¥’ = 1, since N = .

LEMMA 17.6. @ 4s a Frobenius group with complement D and
kernel &,

Proof. Suppose 1D, & D. Since D is cyclic and is permutable
with 2, so is ®,. Hence, Ny(D,) is also permutable with T, and so
IUN(D,), > is a solvable group, whence I(N(D,), F) = RN. Thus,
MNAN=TD2IT-N(D) 2MNN, and so D = Ng(D,). The proof is
complete.

From Lemma 17.6, we conclude the D@ N M =1, and so © has a
normal complement in M, namely, T-G. Hence, T <] ITD.

LemMMA 17.7. If 1C D, & D, then Ci(D,) contains no four-group.

Proof. Suppose false. We may assume that D, is of prime order
7, and that 2 is a four-group in Cy(D,). Thus, S,-subgroups of & are
cyclic and ©, & N(D,)'.

Choose Xe N(®,); then T, T¥ecU*(D,; 2). Since Cy(D,) + 1 and
C.x(®,) = 1, it follows that T = T*¢ for some C in C(D,). Hence N(T)
covers N(D,)/C(D,), and in particular, D, & N(T)’. Then N(T)/Z is non
cyclic. Hence, N(T) < I, since otherwise (M, M,)e & for some
M, e _7(T) such that N(T) = M,. This violates F' =1. So N(T) = M,
whence D, & N(Z) = M. This is false, since D has a normal comple-
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ment in M, and D" = 1. The proof is complete.
LEMMA 17.8. |D| =17 is a prime.

Proof. G is faithfully represented on B = 0,(IN)/D(0,(IM)). Hence,
LB contains a free F,D-submodule LB,. If |D]| is not a prime, then
| Coi(D)| = 2° for each subgroup D, of D of prime order. Hence
0,(M) N C(D,) has a section which is not generated by two elements,
and so O,(M) N C(D,) has more than one involution, so contains a four-
group, against Lemma 17.7. The proof is complete.

Let %, be the unique subgroup of € of order p and let & = TD-%,.
Thus, 8 is a subgroup of M = %, and D-X%, is a Frobenius group with
kernel %,.

LEMMA 17.9. Omne of the following holds:
(a) T

(b) 8 has a unique central involution.

Proof. Let © = 0,(2). Suppose (a) does not hold. Then $c Z.
Let 8=29/9. Now 0,,()ND%, =1, and so %,< 0,,(?). Since
0,8) = 1, it follows that F(]) = $-%,/9 = %,. Thus, & is a Frobenius
group with kernel £, and complements of order 2°-», where a = 1.
Since Ci(®) contains no four-group, this implies that %X, centralizes
every characteristic abelian subgroup of $. Let ©,=[9,%,], 8=9,/D($,).
Then since Cy(D) contains no four-group, and since a = 1, it follows
that [8] = 27, and Cg(D) is a four-group. Since H, is special and
C; (D) contains no four-group, it follows that C (D) is a quaternion
group of order 8. Since B is a chief factor of &, we have [9, ] = i,
and so [9, §,, $.] =1. Hence, $;: S Z(9), and so C; (D) = {Z), where
Z is a central involution of 8. Since Cy(D) contains no four-group,
Z is unique.

LEMMA 17.10. T < &.

Proof. Suppose false. Now N =3IF, F cyclic, FOD. Let
A = Z(X)* be the normal closure of Z(T) in N. Since Z(T) & Z(0,N)),
A is abelian. Also Ze Z(T) & A, where Z is the unique central invo-
lution of €. Since p||Cu(Z)|, we have C(Z) < M. But 0,N) N C(D)
contains no four-group and so Z is the only involution in Cy(®). Since
¥ normalizes 2 and centralizes ®, we get F<S C(Z) = M, Nk & M.
The proof is complete.

Since T <] &, we have f(T%,) = 8. Hence, N(B)S M, :=0,1, 2,
by Lemma 17.2.

LEMMA 17.11. »> 3 and |JNN M| = 3.



586 JOHN G. THOMPSON

Proof. The assertion |M: N N P | = 3 is a consequence of Lemmas
5.53 and 5.54, together with N(8) & MM, 7=10,1, 2. If r = 3, then ¥
is a cyclic group of order 3% and ® = 2,(F). Since T<JITD, we get
TN, so NS NE) = M, which is false. The proof is complete.

Since N =2T-F, and [F:D| =38, we have F =D x A, where
[A[=3, |[D|=r>3. Let & =IA, & = 0,8,). Since & £ M, while
NE) = I, we have T L, and so &,/% =3,

Let 8 = O,(M), 3 = Z(R). Then 8 2 Z(T), and since f(¥) =3, A
does not centralize Z(¥). Hence, T = [2,(B), Al = 1, and W admits D.

Let d =max{m(B) | BS I, B =1}. Since J(T) <L, there is
BEIE, B =1, m(B) =d, such that BL L. Let B, =BN L, so that
|B:B,] = 2. Let € = BN K. Thus, B/C acts faithfully on FK/K, and
B/€ does not centralize AK/K. Since W contains a four-group, it
follows that [, D] = W, = 1, and W, <{N. Since m(B/C) < 2, and
since m({€, W) = m(€) + m(W,/W, N €), it follows that W, N € is of
index at most 4 in W,. Since FW, is a Frobenius group with kernel
B, it follows that |, | =2 » = 5. But this forces m(B/€) = 2, and
so B/€ has an involution which inverts &F/®. This is false, since the
elements of GL(4, 2) of order 15 are not real. So we have shown that
P = @, that is

(17.1) MWNAN =L if M, Ne Z(T), M= N.
HypoTHESIS 17.2. T N(2).

Suppose Hypothesis 17.2 is satisfied. Let M = M(N(Z)), and
choose Ne _#(T), "= M. By (17.1), Lemmas 5.53 and 5.54, we have
[N =3|F].

Since T N(T), N has an orbit of size 3 on the cosets of N in ©.
By the Main Theorem of Wong already used, we conclude that % is
not a maximal subgroup of ®.

Let Rc R @, with N a maximal subgroup of R. Since & is a
minimal counterexample, R satisfies the conclusion of the (augmented)
Main Theorem of this paper. Let R, be the simple normal subgroup
of R, and let R, = RT.

It is straightforward to verify that if * is a S,-subgroup of *F,(2)
or of its simple subgroup of index 2, then Aut(¥*) is a 2-group.
Since Aut (%) is not a 2-group, we have R, % *F,(2)’. Similarly, we
see that R, is none of Uy3), Ly(3), 4, M,,. Since N is not 2-closed,
R, & Sz(g), and since Aut (T) is not a 2-group, while & 44(%) = @,
R, is not isomorphic to L,(qg) for any odd ¢q. Since N is not 2-closed,
R, is not isomorphic to L,(2") for any n. This contradiction shows
that

17.2) T =NE).
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18. An exceptional case.
HypoTHESIS 18.1. |M| = 3|Z| for all Me _Z(Z).
All the results in this section are proved under Hypothesis 18.1.
LeMmA 18.1. If X is a 2-local subgroup of ®, then |% |, =1 or 3.

Proof. This lemma is an easy consequence of Lemmas 5.53, 5.54,
and Hypothesis 18.1.

HyproTHESIS 18.2. There is M = TP e _~(T) such that P = Cu(P)
is of order 3.

Lemmas 18.2 through 18.5 are proved under Hypothesis 18.2.
Set § = 0,(IM), so that WM/H = 7.
LEMMA 18.2. §Pe 2 7(O).

Proof. If 9P = &, and & is a solvable subgroup of &, then by
Lemma 18.1, together with I = N(9), we conclude that § = 0,8),
whence @ S M. The proof is complete.

Set 3 = Z(9).
LEmmA 18.3. | 3] = 24

Proof. 1If false, then since B9 is a Frobenius group, we have
[131=2% If 9 is of index at most 4 in 3, and if P = (P>, then
DNY =1, and PN Y? admits P. Hence, CQ)) = CANYY) = NON YY),
and since 9B = NP N Y?), we conclude that C(Y) & M.

Set

Ay = Z(T), A, = Vieely(B); T), WLs = (V(eelo(B); ) 113: 8.1 = 2) .

We argue that if Xe _Z(%), and ¢ is a permutation of {0, 1, 2}, then
XS (XN NW))ENNQR,L). Namely, if 9 is a subgroup of 3 of
index at most 4, then C(Y) = = C(8). The desired factorizations
are straightforward consequences of these equalities. But then
NL)-N@QL) is the only member of _.Z(%). This contradiction com-
pletes the proof.

LEmMMA 18.4. | 3| = 4.

Proof. Suppose false, so that | 3| =2t If 9 is of index 2 in 3,
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then CO) =S CONY)S NYPNY), and since HPP S ND N Y), we
conclude that C(9) = . Set A = V(ccly(B); £). Since C(Y) = C(3)
for every subgroup 2 of index 2 in 8, it follows that A = §, whence
A<M = ITP.

Choose ¥e _#Z(%), X = M, and let & = O, (%), so that X/R = 3,.
Since M = N(A), there is G in & such that 3°=S T, 3° L K. Set
8% =38% 8f =8N 8* Thus, 8f is of index 2 in 3*. Let X = ZQ,
where <@> = Q is of order 3. We see that ;M N 8*¢ = B¢ is of order
8. If 8r¢< §, we get 3 < C(8) = C(8*9), and so 3*° <= C(3) = 9,
which is false. So 8%¢ Z ©, and 8/¢N $ = 859, where 3}¢ has index
4 in 3*°. Set € = C(385?. We argue that M N € contains a full
S;-subgroup of €. In fact, if U is any non identity subgroup of 3
then since $ S C(N), |T:H| =2, and N(®) = M, it follows that
M N CN) contains a full S,-subgroup of C(I). So M N € contains
a full S,-subgroup of €.

Set &, = M2 N €, so that T, is a S,-subgroup of €, and 3 & Z..
Since | Z,: 04(C)| < 2, it follows that 3N 04€) = 3, is of index at
most 2 in 3.

Next, 872 < M and 8 < M, so [39, 8] & 8. Also, 0,(€) normal-
izes 3*¢, so [3r9 B, & 8*°. Hence,

[87% Bl &8N 8.

Now, B3 & & = C(8) = C(8,), so [8F¢ 8] # 1. Choose an invo-
lution U in [8}¢, B.].

Let ® = C(U) 23, 3*%. Thus, DN M contains a S,-subgroup
of ®. On the other hand, § = D, since Ue 8. Thus, H, = H N M
0,(D)N H. Since 0,D) has index at most 2 in every S,-subgroup of
D, we get [H: §| = 2. Also, [BF¢, §] S B*N Y = 3% a group of
order 4.

Choose Z in B/? — . Let §, = $,N 7. Thus, H, has index at
most 4 in § and §, admits B. Now [9, 3] S [9, 35 = B¢ <
HNM* = &, that is, Z normalizes 9,. We claim that |9, | < 2"
Since [[$,, Z]| = 2, C;(Z) has index at most 2* in §,. Since P is
a Frobenius group, and since Z inverts some element of 9/, of order
3, our assertion follows. Since |§,| <2, we get |H| < 2% and so
|| =2 or 2°. There are no groups of order 2° which has a fixed
point free automorphism of order 3 and whose center is of index 4.
Hence, |$| = 2!, and so § = 8 is abelian. Since . % 1;(%)+ @, it
follows that § is elementary abelian. So ¥’ = Z(2) is a four-group,
and ¥ = D(T). Hence, C(Z(T))/Z(T) has abelian S,-subgroups, and so
C(Z(¥)) = 2. Ontheotherhand, 8;°< $ = 3, and T = $- 3}, whence
8¥¢ = Z(T). This implies that 8*? = 8, the unique elementary subgroup
of C(Z(%)) of order 2. This contradiction completes the proof.
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Set B, = Z(T), so that | 8,| = 2. Since $P is a Frobenius group,
it follows that if J is any involution of § — 3, then [, J] = 8. This
then implies that 3 is the only normal four-subgroup of ¥, an im-
portant fact.

LEMMA 18.5. Let % = C(8,). Then #(%) = (M, N .

Proof. Choose Xe _#(Z%), X+ M, and let 11 be a minimal normal
subgroup of X. Since |X| = 3|%|, we have (1| < 2% If U is a four-
group, we have U = 8, ¥ = M. This is false, and so U = 3, X = N.
The proof is complete.

Since % 45(¥) + @, it follows that § O3, and so & = 3.
Let =230, Q> =Q, @ =1. Since 3 centralizes T/3,, we get 3 S
oM =R Also 3°+ 3. Since 3= &, so0 also 3= & Let €=
(8, B3%. Since 3N3°= 3, wehave [G|=2% IfE =1, let H,=HNK
so that |9: 9| =2, and [8% §] < [3% &] = 8f = By and so 3¢
centralizes ©,/8,, whence centralizes $,/8. Since 3¢ £ 9, it follows
that if Ye 3% — §, then Y centralizes a hyperplane of $/3. This
forces | /8] = 2%, against " = 8. So & = 1.

Set € = C(€). Then €<= C(8) = 9, and € = C(8? = H° Since
€ = Cy(8Y) admits P, and € = Cye(8) admits P2, and since € = §, we
get N(€) 2 <9, B, B°>. This forces P° = M. But H¢ <= N(€), and so
OB = (PH)?, which gives Qe M, which is false. This contradiction
gives us
(18.1) Every element of _#(%) contains an element of order 6.

LEMMA 18.6. Si;-subgroups of & are not cyclic.

Proof. Suppose false. Choose %, e _Z(2), X, =3P, | B;|=3, i=1, 2.
Let §; = 04(%;). Then §; is a maximal element of N(;; 2). Since P,
and B, are conjugate, the transitivity theorem (or rather its proof)
implies that §, and §, are conjugate. Since ¥ is self normalizing in
®, this gives , = ©,, which is false if we take %, # X, (as we may).
The proof is complete.

LEmMA 18.7. If X =3IPe Z(X), |B| = 3, then C(P) does not
contain o four-group.

Proof. This lemma is a consequence of the preceding lemma.
LEMMA 18.8. C(D) is a 2-group for every four-subgroup T of ©.
Proof. This lemma is also a consequence of Lemma 18.6.

We introduce the following notation: _Z(%) = {M, ---, M,},
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i = OZ(EIR,-), 3: = 2(Z(9.)), B of order 3 in M, B, = (P;).

LeMMA 18.9. Suppose Z(T) 1s not cyclic. Then for i =1, -+ n,
8; contains a hyperplane 9); with C(9);) D C(3;).

Proof. Suppose false for 7. Let ¥ be the weak closure of 3;
in T with respect to ®&. We will show that T8 centralizes 3; for every
J. Choose X in @ with 3 = . Then 85N §; is of index at most
2 in 3, and 3 N &, centralizes 3;. Hence, 3{ also centralizes 3;,
since this lemma is assumed false for 7. Thus, T centralizes 3; for
all j, and so W = 9, whence W <] M;, all . This is false, since n = 2.
The proof is complete.

LEMMA 18.10. If Z(X) is not cyclic, then |3;| = 2° for all <.

Proof. Z(¥) = Z($;) and so 3; 2 2(Z(%)). By Lemma 18.8, C(3;)
is a 2-group, and so §; = C(B;). And since Z(T) is non cyclic, it
follows that | 3;| = 2°.

Suppose | B;| = 2. Set U; = [3;, P;|]. Since |C,,(PB;)| = 2, we have
U] = 2% and so |1;] = 2'. Let ¥; be a hyperplane of 3;. Set ¥ =
NP NA; N YD) Then X admits B, and X == 1. Since X contains
a four-group, it follows that C(¥) = ;. This then implies that C(9),)= 9.,
against Lemma 18.9. The proof is complete.

We continue to treat the case where Z(¥) is not cyclic. We have
B = [8;, Bl x &, where F; = Cs,(%) is of order 2, and [3; P is a
four-group.

LEMMA 18.11. Suppose Z(X) is not cyclic and Z is an involution
m B;. Let E, be a S,i-subgroup of C(Z). Then the following hold:

(a) Z,N WM, has index at most 2 in <.

(b) C®) = M, for all hyperplanes Y of 3..

Proof. Let € = C(Z). IR, has 3 S,-subgroups, each with a distinct
centralizer in 3, so each involution of 3, centralizes one of these
S,-subgroups of M,. Thus, |€| =d|<T|, where d =1 or 3. Thus,
|€: 0,€) |, =2, so if T; is a S,-subgroup of €, then [Z;: T, N W, | =
| T, M,, T*| < 2, where T* is a suitable S,-subgroup of M, N €. This
is (a). As for (b), observe that C(¥) is a 2-group containing §,.
Thus, |C(Y): ;| = 2, and so C(¥) & N(9;) = M,.

LEMMA 18.12. Z(%) s cyclic.

Proof. Suppose false. Set 3 = 3, and let I be the weak closure
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of 8 in ¥ with respect to ®. Now J is elementary of order 8 and
C(Y) = M =M, for all hyperplanes Y of 8. Choose ¢ such that T « M,,
and then choose G in & such that 3°= %, 3° £ ;. Set 3* = 3% and
let 9* = 8* N §,, so that Y* is a hyperplane of 8*. So B, = C(Y*) =
M* = ME. Since 8* £ H; = C(3,), we get that X* = [8,, 3] = 1. Also,
= 3N3% So CE*)2KH* 9., where H* = 0,(MF. Since
|8:| =8, we get that |X¥*| = 2. By Lemma 18.11, we conclude that
| §5 §: N W[ < 2.

Choose Z*e¢ 8* — 9*. Then Z* is an involution of I, — H,, and
so we may assume that Z* inverts ;. Since | ;1 . N IM*| <2, it
follows that | §;: C5.(Z*)[[2*. On the other hand, B; = U; X &, where
U, = [8;, Bul, and F; = Cy(Py), and Z* does not centralize U;. Hence,
| 920G (Z7)] = 2.

Write §; = 9,/U;. The dihedral group (Z*, ;> acts on $,, and
Z* centralizes a subgroup of §; of index 2.

Case 1. B, centralizes H;.

In this case, we have §; = C;(%;) x U;. By Lemma 18.8, C;(%;)
contains no four-group. Hence, every involution of §, is central in
9; and in particular, §* = Z(9,;). Since H; = M*, it follows that Z*
centralizes a subgroup of §; of index 2. Hence, Z* centralizes C; (%)
Let G = (8% C;,(%,)>. Then € = N(P;) = N, say. Enlarge €P,; to a
S, -subgroup of M, say L. Since a S;-subgroup of €& is not cyclic, a
S,-subgroup of £ is not cyclic, and so 0,%8) = 1.

Now F; x {Z*) normalizes 0,(%), and since |C(J)|, < 3 for every
involution J of ®, we get that | 0,(%)| < 3°. If C;(%:) contains a cyclic
subgroup 2 of order 4, then since U x (Z*) acts faithfully on 04%),
we get |C(J)|, = 3 for some involution J of ®. As this is false, we
conclude that C; (%;) =P is of order 2, and |¥| = 2'. Thus, T=Z,x D,
and so £ Z &', by a standard transfer argument. This contradiction
shows that this case does not arise.

Case 2. %, does not centralize 9.

Let [§;, B.] = R/U,. Since Z* centralizes a subgroup of §; of
index 2, R;/U; is a four-group so |R;| = 2¢. Since PLLR; is a Frobenius
group, N; is abelian. Also, setting &, = C;,(By), we have $; = SR,
&, NN, =1. Suppose [S;, R;] = 1, so that H; = &; x R,. In this case,
since &; contains no four-group, we conclude that every involution
of §; is in Z(9;), and so P* = Z(9,;). But then Z* centralizes a
subgroup of index 2 in §,;, as §; & C(Y*) < M*. This is false, since
C;(Z*) has index 4 in R,. So, [S;, R] = 1.

Since | §;: C;(Z*)| < 2%, we conclude that Z* centralizes &;. Thus,
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|&;| = 2, since otherwise &; has a cyclic subgroup 9 of order 4, and
since 9 x {Z*) acts faithfully on some 3-subgroup of &, we would get
|C(J)|; = 8 for some involution J or &. So &; is of order 2. Thus,
©; = B: & Z(T), against [R, S;] = 1. The proof is complete.

Let Z be the central involution of , and set M = C(Z).

LEMMA 18.13. Me ~Z ().

Proof. The only other possibility is that M =2. Let 3, =
2(Z(%)) 2 8. Since $, has index 2 in %, it follows that 3, is a four-
group. Choose Ue 8,, U= Z. Then U and Z are fused in IM,, since
M =2Z. Let W be the weak closure of 3, in T with respect to ®.
Now T is not normal in every M;e _#(T), so choose M; such that
W M;. So there is G in G such that 3 £ ;, 3 = <. Since 3;
is a four-group with C(8;) = $,;, we have [8;, 8f] # 1. Since 3f
normalizes 8;, U = [8;, 8] = <U>c 8,. Now 8¢ does not act faith-
fully on 8; and so 8; = M¢. Hence, Ue 8¢. But now §,< C(U) = M¢,
and so ©; normalizes 8¢. This implies that §, = 8; x C;,(%;), which
contradicts 3; = 2,(Z($,)). The proof is complete.

Choose MNe Z(T), N = M, and let U be the minimal normal
subgroup of N, so that W 2 <(Z). Since Z¢ ZMN), it follows that U
is a 4-group. Hence, 1 = 2,(Z(0,N))), and Ay(11) = Aut (11). Since
[T, U] =<(Z), it follows that U < O,(IM). Let W=10"=U"*=17*
(where 3 = (P) is of order 3).

LEMMA 18.14. B is elementary of order 8.

Proof. Suppose false. Then U = U, x (Z), U, =U), so W=
(Z, U, U?, U?*y. Since 1 g, soalso U <] H = 0,(M), and so U* < M,
whence || < 2. Let W, = [W, P]. Since P L N = NN), it follows
that L, = 1.

Since I does not normalize U, we have || =8 or 16. If || =38,
then since B is generated by involutions, and since a dihedral group
of order 8 has no automorphism of order 3, it follows that T is
elementary. So we conclude that | L8| = 16.

If W is elementary abelian, then since 83 LW and P centralizes 3,
it follows that Cx(P) is a four-group. This violates Lemma 18.8.
Hence, B is not elementary, and since I is generated by involutions,
we conclude that B’ == 1. Since W/3 is elementary, it follows that
Z(T) > 3. Since W = 1, |W: Z(W)| = 27, and so Z(W) is of order 4.
Since Cyx(P) contains no four-group, it follows that Z(W) is cyclie.
Thus, W is the central product of Z(W) and W,, and LW, is a quaternion
group. Since W Z(W) = W has just one quaternion subgroup, we
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conclude that T, <] M.

Set N=NN) =2, QL=AKQ), @ =1, & =0,N) = C). Since
Co(W) = Z(W) is cyclic, we have W, L K. Let & = [&, Q]. Then
=[] c 8.

If 8 =1, then & =1 x C(R), and Co(L) <{N. This is false, since
1 is the only minimal normal subgroup of . So & DU.

Suppose R, is non abelian. Then & <N, and so U & &,. Hence,
€ = [®, W,|R}/R! has order precisely 2. Choose We B, — & Then W
centralizes a hyperplane of /8], and so & = 2. This is impossible
since £ is a Frobenius group. We conclude that &, is abelian. Since
[8, W] = W, it follows that [R, W] is eyclic of order 4, and so &, is
the direct product of two eyclic groups of order 4.

Let &, = Ci(Q), so that & = &-8,. Since U is the only minimal
normal subgroup of N, K, acts faithfully on &,. Furthermore, by
Lemma 18.8, &, contains no four-group. Since & 7#3(2)# O, it
follows that ®, = 1. Since &, stabilizes the chain & DU o1, it follows
that &, is elementary abelian, and so &, = ¢(K) is of order 2, which
gives |T| = 2% The isomorphism type of < is uniquely determined by
the preceding data, and we see that § is the central product of 2
quaternion groups. Furthermore, £ has an element of order 8 which
is fused in ® to all of its odd powers. Since {Z) = 8 char CyK), it
follows that K is not fused to Z in ®. By a theorem of Brauer and
Fong [11] we have & = M,,. Since M,, is not an N-group, the proof
of this lemma is complete.

We use the following notation: MM = ITP, P = (P), N = IQ,
Q=AQ), 8=(Z), 0=, W=U® P=1 @=1. And we set ¥ =",

LeEMMA 18.15. % 4s abelian.

Proof. Wehave T = I x (X), and T" = B* = U, X, X, X¢.
Also, B S C(1) = & = 0,(N), so W< K, and B <|R. Hence, |X| < 2°.
Since WAN, 2* < | X . ‘

Suppose X’ = 1. Since U is a minimal normal subgroup of N, we
have ¥ = U. If |X] = 2, then % is of maximal class, so does not have
an automorphism of order 3. Hence, |X| = 2°. Since X/ is elementary,
and since C(Q) contains no four-group, it follows that X/11 = %,/ x
%,/0, where X,/1 = C,;,(Q) is of order 2, and %,/U = [X, Q/U is a
four-group. Since X,Q is a Frobenius group, %, is abelian. Also, X,
is elementary of order 8, and %, = Iy, since O does not normalize .
Let ¥’ = C,(Q), so that X° is of order 2. Since %X’ #1, it follows that
C,(¥) =1, and so Z(X) = 1. Since %, is the unique abelian subgroup
of index 2 in %, we conclude that %X, <]{R, and so W Z %,. Choose
Wel —%,. Then W= X°X,, where X° generates X°, and X, e¥,.
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Since W* =1, X° inverts X,. Since %, = W, we have X, ¢U. Hence
X° does not centralize X,, and so X, is not an involution. Thus, %, is
the direct product of two cyclic groups of order 4, and X° inverts
X,.

Since X° inverts %,, it follows that ¥ has precisely 4 elementary
abelian subgroups of order 2%, one of which is . Thus, N permutes
these 4 subgroups, and the orbit which contains T has cardinal 3.
This implies that %, <{R. Hence, [T, %] =< U. This then implies that
[E, ¥]c %, and [T, %] 2 U. Since X — %, is a set of involutions, we
can choose an involution I in ¥ — %, such that [ W] £ 3. Since
W/B < Z(9/8), we have I¢H. Since [I, HJL X, it follows that
[, 9]/ | < 2. If I centralizes H/TB, then [H, P] & W, which gives
[B, 9] = [B, B] <{ H. This is false, since Z(¥) is cyclic, and Z(T) N
[T, P] = 1. We conclude that [/, I] is of order 2. Set 9, = [, P].
Then $, DWW and | H,| < 2°. Since H,/T admits P, we have | H,| = 2°.
If W< Z(9,), then S,-subgroups of M/C(W) are normal, and so
[T, B] <] M. This is false, as we have already seen, and so T £ Z(H,).
Thus, as P acts without fixed points on £,/3, we get that H: = 3.
If Z(9,) >3, then 9, = W-Z(9,) is abelian. This is false, and so
Z(9,) = 8, whence 9, is extra special. Since T exists, 9, is the central
product of two quaternion groups.

Since [I, 9] %, it follows that [I, §] contains no elementary
subgroup of order 8, and so I fixes both the quaternion subgroups
of ;.. We assume without loss of generality that I inverts 5. This
then implies that [§,, I] is abelian of type (2, 4), and so [9,, I] = [T, %].
Let ©, = Cy(P), so that H = §,9., and , admits I, while $, N $, = 3.
As we saw in a previous argument, N($P) contains no non cyclic abelian
subgroup of order 8, and since [9,, I] S [T, X] & §,, it follows that
[©. I] & B. Since §, is either cyclic or generalized quaternion, it
follows that {(§,, I) contains a non cyclic abelian subgroup of order
8 unless §, is cyclic of order at most 4. So &, is cyclic, and | H,| < 4.

Suppose |H.| =4. Then |H|=2° || =2 |®| =2° Thus, Q
acts on &/%,, a group of order 4, and L centralizes %/X,, whence Q
centralizes &/%,, whence [R], Q] = %,. Let %, = C,(Q), so that |%,| = 4,
X, N %, =1, whence %, is cyclic of order 4. But %, stablizes the chain
£, DU D1, and so X is forced to centralize %,. This is false, since
¥ %1, So|9.] =2. Since H, = 38, we conclude that $H, = 3, and so
9 = 9 = 0,0, where L, is a quaternion group of order 8, ¢ =1, 2.
Also, T = 9<{I). Since || = 2%, it follows that ¥ = &, and since X°
inverts ¥, the isomorphism type of ¥ is uniquely determined. It is
straightforward to check that & has more than 1 class of involutions,
and so the theorem of Brauer-Fong [11] implies that ® = M,,, which
is false. The proof is complete.

Since ¥’ = 1, we see that X is elementary of order 2‘ or 2°.
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For each conjugate TW* of W, define Z*(TW*) to be the unique
central involution in N(W*). Thus, Z*(W) = Z.

Now I acts on % the set of involutions of 2B, and on 57 the
set of hyperplanes of . In its action on % I has two orbits, of
sizes 1 and 6; and in its action on &Z I has two orbits, of sizes 3
and 4, and U is in an orbit of size 3. For each conjugate TW* of Iy,
let Z7(BW*) be the orbit of size 3 of N(W*) on the hyperplanes of T*.

LeMMA 18.16. If U is a hyperplane of B, and 3 L U, then
N & M.

Proof. Let &= N(), 8 = Ny(Ql). Since A,) = Aut (), it suf-
fices to show that C(Q) = M. In any case, C() is a 2-group, and
Cp(N) = Cn(W) <{ M. Since N(Cyp(N)) & M, the lemma follows.

Note next that 1 is the unique normal four-subgroup of RN, and
so if X* is a conjugate to X in ®, define 11*(X*) to be the unique normal
4-subgroup of N(%*), so that U*(%X) = 1.

If U* is a conjugate of U, and Uell*, set TWy(U*) = U*°Y, so
that W,(1*) is conjugate to L.

LEMMA 18.17. If B* is a conjugate of T in & and Zec W*, then
[W* 1] = 1.

Proof. Let " = W¥, so that Z¥ 'eW. If Z* ' = Z, then
X'eCZ)=M, s0 XeM, W* =, and [W, U] = 1. If Z¥" =« Z, then
Z*¥™ = UY¥ for some M in M, since M is transitive on W — 3. Also,
there is N in N such that U = Z", so Z* = Z"", whence NMX¢
C(Z) =M. Since NMX = M, e M, we have X = M'N'M,, and T* =
W = %N“‘Ml,

(%, 1] = [T, 1] S (87, W] = [, W

S EN=1.
LEMMA 18.18. If B* e ccly(W) and [* N N == 1, then [T* U] =1.
Proof. Choose Ye®*NU, Y+ 1. Then Y" = Z for some N in
N, so that Ze W*¥, and 1 = [W*¥ U] = [W*, U]*, so that [W* U] =1,

as asserted.

LEMMA 18.19. If T* ¢ cely(W), U* e cely(N), and W* N U* = 1, then
[T* 1] = 1.

Proof. This is an immediate consequence of Lemma 18.18.

LEMMA 18.20. V(ccly(11); T) S C(11) = & = O,(N).
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Proof. If U*ecely(l), and U* < T, then U* acts on U, and is not
faithful on U. Let Uf = C,.(11), and suppose by way of contradiction
that 11 is of order 2. Since U* ~ 1, and since N(1) is transitive on
¥ there is G in @ such that U*¢ = U, U7 = 3. Thus, CUF)* = M,
so that C(17) = M. And so U*™" = FE,

Now 1= [II, W*] < W', since U< C(UF). Thus, W NU =1,
and so [T U] =1, against U* = W', [U*, U] = 1. The proof is
complete.

LEMMA 18.21. If 9 is a four-subgroup of T, then C(Y) = M, and
if Z¢9), then NY) < M.

Proof. The lemma is clear if Ze9), and if Z¢9), this is just
Lemma 18.16.

LEMMA 18.22. [%, %7] = 1, where R = (P, M = TP, P* = 1.

Proof. Suppose false. Then [%7, ¥7°] = 1 = [X, 7], so that ¥ =
(X, X7, X"y is elementary abelian. Since B = V(ccly(%); T) <N it follows
that ¥ is not normal in M, and so B Z O = O,(M). There is therefore
X* e cely(X) such that ¥* = T X* £ §.

Choose X in & so that X* = X*. Since B < CUl), we have
U< CEY). Set & = XN C(W), so that L X. Since X stabilizes
the chain W DU D1, we have |X¥: Y| < 4.

Case 1. YN U* = 1.

In this case, ¥* = £ x 11* so that W & C(¥*¥). Since ¥ contains
a four-group, it follows that C(2Y) is a 2-group. Since C(¥*) N N~ is
a normal subgroup of N¥, we conclude that C(¥F) = N*. So W = NF,
and so W centralizes ¥, whence I centralizes X*, which is false.

Case 2. YN U*¥ = U has order 2.

Now WS &, so WS K, and if U S §, then 'S H = T, so
that 1** = &, by Lemma 18.20. But U has order 2, so that UI* does
not centralize ® = (U, W', Hence, U* does not centralize 17", and
so [UF, U7’ % 1, which gives [1¥%, 1] = 1. We conclude from this
that U¥ & &.

Set % = (U¥)“?0), so that We (W, W2, W'}, Since WS C(UY),
28 normalizes B, Also, W < (T, W, W = %, so W' S ¥* = F, and
8% normalizes T so that [fSX, B = W N W. Now UF = QNS"', and
0%, W] == 1, since N* £ ¥, Thus, 1 = [BF, W < BTN W, and we
argue that [8%, ®] £ 8. For if [B*, W] = 8, we get [1*, W] = 3,
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so that ¥ € Cp(W/3) = 9, which is false. Choose Ae [T, U] — 3.
Since N*¥ S X¥* = &, and since T stabilizes WU D321, we have
[, 0] < U, so that Ae .

Now BB ¢ {To%, WX, W%}, Choose 4 such that BW¥ = W',

Since Ae1l — 3, we have 4 = Z¢° for some generator Q' of Q.
And Ae B = WY, whence Z% ¢ WX and so Z¥¥ e W.

If Z¥*7% = Z then @ X'Q e M, so that Xe NMN, X = N,M,N,,
where N,, N,e R, M, e M, and we find that

Lo [, B S [, B = (B, @] S [
= &N, X" = 1.

So suppose then that Z¢*~'¢~" = U Uell, Me M. Now U = Z" for
some Nin R, so Z¢*¥e = 7% and thus M=Q'X'Q'M'N'e C(Z)=M],
and so @°'X = M'N'M'Q’, and

(87, W] = [T, ] = [
= [, B
S [T, WO S LR =1

Case 3. 0¥ < gF.

Here we have < C(UY) = K& <] N(XY), so [XF, W] < UF, the
containment holding since £ stablizes X DU D1. (And &£ stabilizes
X¥>5UD1, since & stabilizes each of the chains ¥ DU >1.) On the
other hand, ¥* = & stabilizes T D1 D1, and so [£¥, W] = U.

Thus, 1= [¥%, WU NN Choose AeW* NN, A1, Then
A elsothat A ' =Z¥ NeN. Also, A=2", N'eR,s0 ZV* " =Z",
and NX7N7 = Me M, so that X' = N7 MN, X = N7 M™N’, whence

[}:X, %] — [%N'“U[-LV” %] = [%M"L’V’, %] g [?6)1—1’ :,E].‘V’ =1 ,
the desired contradiction.
LEMMA 18.23. [%, ¥7] = 3.

Proof. It suffices to show that [%, ¥°] & 3. Now Wc ¥, and
¥ =1, so [BW ¥] =1, and since W = [, we also have [T, ¥7] = 1.
We claim that [¥7, X] = % for all j. Namely, ¥* = & = C(1), and
[R, W S U, since W<, and |W: 11| = 2. Since T normalizes both
£ and 1, we have [&, W) = U for all <. Since X is generated by its
subgroups W%, we conclude that [ X¥] S 1. Since ¥ = &, we get
[%7, ¥] = U = WY for all j. Since W N W = 11, we have in fact shown
that [¥7, %] S U. Since X = &, symmetry gives [¥7°, X] = U, and
conjugation by P gives [%X, ¥°] = 117, whence [¥7, ] S W N UF = 3, and
we are done.
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LEMMA 18.24. If 7, s, te{l, —1}, then MQP'QM = MQPQIM.

Proof. Let 9, = C(BW). Then 9/, is a four-group which maps
isomorphically onto the stability group of the chain ¥ >3 >1. Thus,
B acts non trivially on $/9,. Now £, & C(1) = &, and $ N K/, is of
order 2. Hence, there are elements T, T, in § — $ N & such that

T 'edN, T 'epnNR, TrepHnNKR.

Since T, ¢ &, we have QT, = T\Q'K], where K| c &, whence Q"PQ'T, =
Q' PTQ'K, = QT 'PQ'K, = K*Q"PQ*K,, where K, K*c¢&. So
TR PRT = TQ'PQ™*T. Similarly, T,Q"PQ' = K,Q"PQ'K,, where K,
K,c 8, so that SQ"PR'T =ITQ"PQR'T. Since T <& M, it suffices to show
that MEPRM = MEP QM. Now K = K7 =« §, so we can choose
Te & such that QTQe¢ . Set U= QTQ ™. Then QPQT = QPUQ.
Now PU = HUP™, where He §, and so QPQT = QHUP™'Q. Now
HUeZ, and so TQUHU) = TQ or TQ™, according as HUe ® or HU ¢
T — & Thus, TQPET = TQ'P'QT, fe{l, —1}. By the first part of
the argument, the lemma follows.

LEMMA 18.25. For all Q, Q,c QF, P,e ¥, [TB, Wore] = 3%,

Proof. [T, Wahe] < [X, X019%] = [X, ¥71]% = 8%, and so it suffices
to show that [ZB, WeFi%] « 1.

If [, War:e] =1, then for all M, M’ ¢ M, we have [T, W' @ e =1,
whence by the preceding lemma, [¥3, W2 7] =1, if 4,5e({l, —1}.
Hence, conjugation by @ gives [T8%/, TW¢7] = 1.

On the other hand, ¥ = (B, TW°, Wy, X7 = (W, W, W**). Since
¥ =1, we have [T, ] = 1 for all 5. By the preceding paragraph,
we conclude that if j e {1, —1}, then 3% centralizes ¥7. Since [, ¥7] == 1,
we conclude that [T8, ¥7] = 1. Since T’ = 1, this forces [T, W' 7] = 1
for some 4. Since P normalizes W, we get [TW, W] = 1, against
(W, Wy = %, and ¥ = 1. The proof is complete.

We now begin the construction of the final configuration of this
section. Set € = [W, P], so that W =& x 8. Since U and € are
distinet hyperplanes of LB, it follows that W N & = (U) is of order 2.
Thus, there is a unique generator @ of Q such that Z° = U.

Set & = (W, W, W, W**>.  Since P normalizes W, we have
(B, W'y = %, and so W S Z(Q), so that L= C(W) < §, T admits
P, and if §, = C(W), we have [W, ]S [X, HJS [} RSN W.
Thus, $ S N(R). If We I — U, then 8 = (W, W, W, W, and
[We, Wer] [We, Wer*| [We, W e 3. Hence, |8 <2, and & = 3.
Thus, € is a direct factor of &, so & = € x &, where & admits 5. If
|& | =38, then & = D,, and so B centralizes &. This is false, since
C(*P) contains no four-group. So |¥| = 16. Since &, is generated by
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involutions, we have C,(P) = £ D 3, so that £ is cyclic of order 4.
Let & = [%, $B], so that & = 3, and P acts faithfully on &,. Hence,
&, is a quaternion group. Also, ¥ is a central product of ¥ and .

Now [T, W] = 82« 8, and so W &L H, as 9 stabilizes B>
8>21. Since W = < 9 <2, we have W = R, and so WP S K.

The crucial step is to show that TB°"? normalizes ¥. Recall that
W=E€x 3, where € = [T, PB]. Let M, = Nyu(€). The number of
conjugates of €in Mis 4, and so |IM: M, | = 4. Also H, = C(W) = M,
and = M, and so | M: PH, | = 2.

Now [€, ] < [W, W] = 8?° < G, by our choice of @, and so
Were = Ny(€).  Since WP £ §, we conclude that M, = H WP,
Since ¢ = &, it follows that W2 normalizes both W and W?. Thus,
(B, W™ = (W, WHo* = (W, WH* = Q8. So LM, and WL
normalizes &.

Choose Ie p97? — 1N%F¢, Now e = UM = W < §, and so UP¢ =
BWereN Y, and IeT — . Since P <= NZ(R)), it follows that
0,(N(Z(®)) = 9 N N(Z(¥)). Hence, I inverts some S,-subgroup P* of
N(Z(®). Set © = PB*, I>. Thus, D acts on Z(¥), and Z(2) is of type
(2,2,4). Since Cy(P) = &' is cyclic of order 4, it follows that C,(P*) =
{L*), where L* is of order 4. Also, as I inverts *, I normalizes
(L*). Since N(P) has no non cyclic abelian subgroup of order 8, it
follows that I inverts L*. Since L** = Z, we have [I, L*] = Z. On
the other hand, U¥? = W? = 8, so Z(Q) = C(179) = K2, Since &
stabilizes W DN D1, we conclude that [Z(Y), W] < U2 Hence,
Z e NP =1r?, Also, of course, Z7% = Z? ¢ 17?, and so UW¢ = (Z, Z*) =1.
Hence, I = 107, which is false. This completes a proof that

(18.1) #(Z) contains an element of order > |Z|-3 .
19. Another exceptional case.

HypoTHESIS 19.1. If ¥ is a solvable subgroup of & which contains
¥ properly, then f(2) < 1.
All results of this section are proved under Hypothesis 19.1.

LEMMA 19.1. (a) If & is a 2-local subgroup of G, them |8,
divides 15.

(b) There is precisely one element of _#(ZT) of order divisible
by 5.

Proof. Lemmas 5.53,5.54, and Hypothesis 19.1 imply that (a) holds.
By (a) and the results of § 18, there is at least one element of _#(2)
of order divisible by 5.

Suppose P is a subgroup of & of order 5 and € = TP is a group.
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By Lemma 5.53 and its proof, we have
8= (&N CZ3)) (BN NJIE®)) = (&N CZ(J())- (8N NJI®X))) .

Thus, if J(T) 4 &, then f(¥)=2. By Hypothesis 19.1, we conclude that
J() (8 So M(N(J(R)) is the unique element of _Z(T) of order
divisible by 5.

From now on, let I be the unique element of _#Z(¥) of order
divisible by 5, and let § = 0,(M). Let D be a S,-subgroup of M, so
that |D]| =5 or 15. Let € = Q,(R(I)). Let B be the subgroup of
D of order 5, and let &, = [€, P].

LEMMA 19.2. (a) B S NZJR))).
(b) P EZ NZET), B £ NZJ(T)))-
(c) [&|=24

Proof. (a) and (b) follow from the proof of Lemma 19.1 (b).
Since (b) holds, we have @ 1. Since P < M, (b) also implies that
Ji(Z) £ 0,(EP), which then implies that (¢) holds.

LEMMA 19.8. If Ne #Z (%), and N = M, then N has an element
of order 6.

Proof. Let Q be a S,-subgroup of . Then |Q| = 3, by Lemma
19.1. Let 8 =0,M). Suppose by way of contradiction that C,(Q) =Q.

Since N(J(2)) & M, we have J(X) £ R. Hence, Z(®) is a four-
group, and so & is special. Hence, T/’ is elementary abelian. This
implies that Cy(€,) has index 2in . Hence, & = &. But & is special,
Z(®) is a four-group, and L acts without fixed points on &, so that
| ®: Co(U)| = 4 for every non central involution U of & This contra-
diction completes the proof.

LEMMA 19.4. One of the following holds:

(a) PB=2D is of order 5.

(b) Z®) = {IM, N}, where N = C(Z(T)), Z(T) s cyclic, and C(B)
s a 2-group for every four-subgroup B of &.

Proof. Suppose PC D, so that D = P x Q, where [0 =3. We
argue that I has an element of order 6. Suppose false. Then M/H
is a dihedral group of order 30 which acts faithfully on &,. This is
false, since elements of GL(4, 2) of order 15 are not real. So I has
an element of order 6.

Choose Ne #Z(%), M= M, so that N =IR, |R| =8. Let =
O,(N), and let H, = 0,(TQ). Thus, H,c N*(Q;2), Re N*(R; 2), C5(Q)+~1,
Ci(R) = 1. Since §H, and & are not G-conjugate, we conclude that
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S.-subgroups of & are not cyclic. Hence, C(8) is a 2-group for every
four-subgroup B of ®. In particular, if |E: @&, | =2, then C(€) is
a 2-group. Since Cy(€) = C(&) = 9, and N(9) = I, we conclude that
C(G,) = CalG) = §.

Let B = V(ccly(&,); T). Since C(E,) = C(€,) for every hyperplane
€, of G, we get W <M. Hence, WA N, and so N centralizes R,(N),
whence R = C(Z(¥)). Since C(V) is a 2-group for every four-subgroup
B of G, Z(T) is cyclic. The proof is complete.

LEMMA 19.5. = D.

Proof. Suppose false. Then ©® =P x Q, where | Q| =3, and
D acts faithfully on &,. Hence, $ = C(E,), and since Z(%) is cyclic,
|Z/9| > 2. Since element of GL(4,2) of order 15 are not real, it
follows that T/ is cyclic of order 4. Thus, there is Te ¥ such that

PT=P2, QT=Q~1, 5,B=<P>, Q=<Q>

Let N = C(Z(Q) = TR, R = (R, B* = 1. Let Ue % (3), UG,
and let T = 0¥ = 10" = AL, UZ U, Also, let

£ =0,8), B= Viel);T).

We argue that 2B is elementary of order 2°. In any case, since
B =02(Z%) N1 < CR), and since C11) is a 2-group, we have U Ty,
[W| < 2. If W is abelian, then since Cyx(R) contains no four-group,
we have |T| =2°. Suppose W' == 1. Thus, [II, UF] %= 1. Since [], U] =3,
so also [® U] = 8. Choose UcU® — 8. Then |&:C(U)| =2, so
[2:C(U)] =24 as |T: R =2. But U?=1,and so Ue <9, T, whence
Ue C). This contradiction shows that W' =1, | W| = 2%

The crucial step is to show that C() & M for every 4-subgroup
F of €. In any case, C(F) =2 9, C(F) is a 2-group, and C(F) is not a
S,-subgroup of ©, as Z(T) is cyclic. So § <] C(F). Since N(H) = M,
we have C(%) < M.

Since C(€,)) = C(&,) for every hyperplane €, of &, we have T <] I.
Hence, B 4 N, so there is G in @ such that Ef S E* =T C* £ K.

Let & = C(W). Thus, &K, is a four-group, and N/K, = 3, since
&/, maps isomorphically onto the stability group of the chain T >
821. Let &/8%, = Z(Z/R,). Since T = K-E*, it follows that E* N
K< &. Hence, F* = & N K, contains a four-group. Since C(F*) 2 B,
and C(C*) 2 W, F* is a four-group. Let ¥* =E* N &K, so that
G* o8 DOF*. Hence, [T, &*] = 8, and [W, E*] = W* is a four-group.
Since W & C(F*) & M4, we get W* = €*, and so W* = F*. Hence
&, S CF*) = M, and so [],, €*] = F*. This implies that &* centralizes
&/, and so [R, &] & W, whence [R, &,] = [R, W] = W, is a four-group,
and so & = & x W, where & = C,(R). Since &° contains no four-
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group, it is either cyclic or generalized quaternion. We assume with-
out loss of generality that E* ¢ * — 2*, and that E* inverts R. Since
[, B*] = & N F*, we get [&, B*] = 8. Since N(R) contains no non
cyclic abelian subgroup of order 8, it follows that |&°| < 2°. Hence,
T =2-|8|=2"|8|=2°|8| < 2,and || < 2°. Thus, Q centralizes
9/C, and so H = €, x Cy(Q). Since Z(T) is cyclic, we have $ = G,
|T| = 2% Hence, 3 = & and T/T' is elementary abelian. This is false,
since T/9 = Z,. The proof is complete.

LEMMA 19.6. If ¥ is any hyperplane of &, there is Pc P such

Proof. Let .7 be the set of involutions of M/H. Thus, |~ |=5,
and if Ie _# then C¢ () is a four-group. Since C¢(P) = 1, it follows
that C;(I) N Ce(J) =1 if I, J are distinct elements of A~

Let P =<(P), and set F =FNF', i=12 3 4. Then the F;
are four-subgroups of ¥ and so F;NJ; %=1, 1 <14,5 < 4. Thus, if
Bi = Ce(L;) where I;e 7 then F, =F, = ---F.. But then

Qo %Pi
is a four-subgroup of & which admits . This is false, since C¢ (B) = 1.
The proof is complete.

LEMMA 19.7. C(F) = C(&) = © for every hyperplane T of &,

Proof. Since Cyn(F) =  and N(9) = M, it follows that © is a
Sy-subgroup of € = C(F). Suppose € D H. Since M = N(X) for every
non identity characteristic subgroup of §, it follows that € = $&,
where |&| = 3. Since & contains a four-group, S;-subgroups of ® are
of order 3.

Choose Pe % such that Cn(F N FF) = . It follows that C(F) =
CF") = C(F N BT). Hence, Pc N(€). Let & = CP, ¥ = 0,3). Then
[%, Bl = [9, ], and [, BI I M, [Z, B] <8 Hence, & = M, the desired
contradiction.

LEMMA 19.8. _2Z(Z) = {M, N}, where N = C(Z(X)).

Proof. Let B = V(cely(€); T). Since CE) = C(E) for every
hyperplane & of &, we have B <] M.

Choose Ne Z(T), N = M. Since B <] M, we have BAN. Also,
|N| =3|Z|. Choose Ge® such that € = T, € £ & = 0,N). Since
|T: 8| = 2, it follows that Z(R) = C(R N &) = C(E%). So Z(R) = ZN).
The proof is complete.



NONSOLVABLE FINITE GROUPS 603
LEMMA 19.9. O,R) 2 0,(M).

Proof. Set & = 0,(N), H = 0,(I). Since |[T: | = 2, and since
K = O, weare doneif |T: H| =2. Suppose |Z: | > 2, so that T/9 = Z,.
Suppose by way of contradiction that D §. Since J(T) <] M, we have
J®) = J(O) = J®) <M, Ny, which is false. The proof is complete.

LEMMA 19.10. If T 282 9, then N(®) = M.

Proof. If =% or % = 9, the lemma clearly holds. Suppose
TOY8DH. Then L= &, by Lemma 19.10, and £ = N(¥). This lemma
now follows from Lemma 19.8.

LEMMA 19.11. If Ic &, and I, 1s a 2-subgroup of C(I), then T,N M
18 of index at most 2 in I,

Proof. Let T, be a S,-subgroup of Cy(I). By Lemma 19.10, E,
is a S,subgroup of C(I). If C(I)= I, the lemma obviously holds.
Suppose C(I) £ M. Thus, € = C(I) has order |, |-d, where d = 3,5
or 15.

Case 1. = 3.

Since |Z: 0,(€)| £2, and 0,€) = M, we get |T: T, N 0,0)] £ 2,
and the lemma follows.

Case 2. d =5 or 15.

Let B, be a subgroup of € of order 5, and let & = I, P,. Let
& be a maximal 2,5-subgroup of & containing £,. Thus, € and I are
&-conjugate. By Lemma 19.10, it follows that & N I contains a S,-sub-
group of £ and of M. Since T = N(T), we get that & = M.

Since &, = & = M, and since € £ M, it follows that |€: & | = 3.
Now £, is permutable with Nyu($B,), and I = T, Np(B,), since T, 2 .
Also, of course, ¥, is permutable with N (B), and € = T - N(B.).
Let & = (Na($P.), No(PB.)), so that & is a solvable subgroup of & per-
mutable with £,. Hence, 8* = &%, isa group. By a standard argument,
&* is also solvable, and so & = I 2 €. The proof is complete.

It is now easy to show that Hypothesis 19.1 is not satisfied. We
preserve the previous notation. Choose G in & such that G =N,
G5 £ & = 0,(N). Let §¥ = G5 N &, a hyperplane of E. Let N = TQ,
Q=AQ, =1, and let F = F?% Thus, FCRCSL, and since N =
(&, €59, it follows that

(19.1) MG =G .
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Let =8N 9. Since T/H is eyclic, |F:B.|<2. If T =T, then
G =S C®) = C(€59, so that G < C(E) < M, against (19.1). So
[B: 3] = 2.

Let ¥, X <F> =%. Thus, T, = GF is a 2-subgroup of C(F,). By
Lemma 19.11, &, has a subgroup &, of order 8 such that €, = N(E59).
Hence, [3, €] S €¢N G, = F. Since F¢ , there is an involution I in
[F, €]. By Lemma 19.11 applied to I, $ has a subgroup £, of index 2
which normalizes €. Hence, [§,, T] = $ N F = B, and so | [, F]| < 28
This implies that [P, 9] = €, s0 H = §° X €, where §° = Cy(P). Since
N = C(Z(F)), and £° < M, we conclude that $°=1. So |[T| =2*|T: H|.

If |T/% | = 2, then T/Z(T) is abelian and so C(Z(T)) = N is 2-closed.
This is false, and so T/ = Z,.

Let @ =[G, %], T, = No(B). Thus, T, =T/, T =ET, and D(T) =
(&, T*>, where %, =(T). Since |T:8| =2, we have & D D(I),
|R: D(T)| = 2. Hence, & is either (&, T*, (€&, T), or (&, T? TE)
for some Eec@ — . Since € = J(T) 4N, the first possibility is
excluded. Each of the remaining two possibilities has the property
that the commutator quotient group is of type (2,4), so these two
groups do not have automorphisms of order 3. This contradiction
shows that

(19.2) & contains a solvable subgroup ¥ which contains T properly,
and satisfies f(¥) = 2.

20. The construction of *F,(2). From §19, there is a solvable
subgroup & of & which contains ¥ properly and satisfies f(¥) = 2. Set
M = M(Q).

LEMMA 20.1. If Ne Z(X) and N = M, then |N|, divides 15.

Proof. Suppose false for N. Then N has a subgroup &£ which
contains T properly and satisfies f(¥,) = 2. Thus, there is 7€ {0, 1, 2}
such that 3; <{<8, &> = &, say. Hence, = M(K) = M. The proof
is complete.

Set 3 = 2,(R,(M)). The first task is the usual one: to show that
|31 = 2.

LEMMA 20.2. One of the following holds:

(a) 18/=4.
(b) C®) <=M for every hyperplane Y of B.

Proof. Suppose |3| =8, and 9 is a hyperplane of 3 with
C=CO)Y LM Set € =CNM. Let & be a S,-subgroup of M.

Case 1. @ centralizes 3.
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Since 8 is 2-reducible in M, we conclude that 8 & Z(IN), and the
lemma follows.

Case 2. [€ B8]+ 1 and €, = C(3).

Let T, =T NE, Then €, <M, and M/C, is not a 2-group. Thus,
M = €, Np(T,), and Ny(T,) OF, whence Ny(T,) e ~Z*. Hence, N(D)= I
for all non identity characteristic subgroups ® of ¥,. In particular,
g, is a Sy-subgroup of €. By Lemmas 5.53 and 5.54, we conclude that
|€:€,| = 3.

Let 2 be a S;-subgroup of € permutable with &, and let T, = 0T ).
Then %, is not characteristic in ¥, and so |T:ZT,|=2. Since
N(E)e 2%, it follows that there is X in Ny(T,) with X ¢ N(T,). Let
R = (€, E> = CYNY*). Thus, S;-subgroups of & are cyclic. Let
P =2(N). Then T, e N (P), TF € No(P*). Since S;-subgroups of & are
cyclic, this implies that <%, TF) S 0,(f). But (¥, TF) = T, and since
T, is not 2-closed, we have a contradiction.

Case 3. [€, 8] = 1, and €, = C(3).

We regard €,/C(3) as a group of automorphisms of 8 which stabilizes
the chain 3 DY D1. Hence €,/C(8) is elementary abelian. Set D = C(3),
and for each subset % of I, set £ = ¥D/D. Then 0,(M) = 1. Since
is cyclic, we have € ], 1 = . Choose Xe €% Since X centralizes
9 and acts faithfully on €, it follows that [€, X] = P is of order 3,
and 3 = 8° x 3, where 3° = C;(B), 3' = [8, Bl, and ' is a four-group.
Also, 9 = 8’ x ¥, where §'C 8!, [9'| = 2.

Since P is the only subgroup of & of order 3, we conclude that
|€,: C(8)| = 2. Since P char €, we have 3 <] M. Since C(Y) < C(3"),
we get C(P) < M. The proof is complete.

LEMMA 20.3. Suppose |3|=8, 9 is a hyperplane of 3 and
C(Y)DC(B). Then:

(a) [CR):CB)]| = 2.

(b) If € is a S,-subgroup of M, then [E, C()] C(B8)/C(8) =D
has order 3.

(c) 83=38"x 8,8 =0Cyd), 8 =1[8, 9], 3 ts a four-group and
B<IMi=0,1.

(d) 9=23 %9, where §' = [8, C®)] s of order 2.

This lemma was proved in the course of the preceding lemma, and
is simply recorded here.

LEMMA 20.4. Suppose |B| =8, and & = TP is a solvable subgroup
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of &, where B is a cyclic p-group. Assume that Z(T) A & Then
3SR = 048,

Proof. Suppose false. Since £/&, has a normal cyclic S,-subgroup
on which Z/R, act faithfully, it follows that ¥/, is cyclic. Hence,
9) = & N 8 is a hyperplane of 3. Set 1 = 2,(Z(%))*. Since Z(T) ¢ &,
we have 1l D 2,(Z(%)), and so U, = [U, P] = 1, and 1, < &.

Choose Zc¢ B — 9. Without loss of generality, we assume that Z
inverts PB. Since 1, & C(Y), we conclude that |U,: C,(Z)| =2, and
so p = 3, while U, is a four-group.

Choose Uell, — C,(Z), so that U, = CU) x ([U, Z]). We assume
that we have chosen Z in 3 — 9 such that (Z)™ is of minimal order.
By what we have just shown, we have {Z) ¢ I.

Now 11 S 0,8) = T = M, and U centralizes a hyperplane 9 of 3.
By our choice of Z, we conclude that (Z)™ is a four-group. Now
D =P, Z) acts faithfully on &, and since [P, &] = U,, it follows that
|B| =3, and that &, =1, x &, where & = C, (P).

We now use our element U. Since U, is a normal four-subgroup
of T, it follows that U inverts a subgroup Q of M of order 3, and
that if § = 0,(IM), then [H, Q] = (Z) x{[Z, U]), whence = [, Q] X D,
where §, = C4(Q). Let & = TQ, H = 0,¥). First, suppose that &
contains a four-group. In this case, S,-subgroups of ® are cyclic, and
since Cy(Q) = 1, C; () +# 1 and since T = N(T), we conclude that & = §.
This is false, since 8 <{32Q, 8 4 TP. So K is either cyclic or gener-
alized quaternion. So ¥ is the direct product of a D, and a group
which is either cyclic or generalized quaternion. Thus | N(¥) |, < 3 for
every non identity subgroup of ¥ of €. This violates §18, and com-
pletes the proof.

LEMMA 20.5. Suppose | 3| = 8 and & = TP 1s a solvadle subgroup
of &, where P is a p-group. Then one of the following holds:

(a) Z®) 8.

(b) WK, where W = V(cely(B); <).

Proof. Set & = 0,8), L = 2,(Z(2)%), 0, = [, P]. Suppose (a) and
(b) fail. Then M, =1, and WZ K,. So there is G in © such that
B3*=58'<g 8*ZK,. Let 3 = 3*N &, so that 3} is a hyperplane
of 8*. Since 1, & C(8)), and U, £ C(3*), we conclude that C,(8*) is
a hyperplane of 11,, whence p = 3, and 11, is a four-group. Set I* = ME,
Thus, 0, € M*, U, = (U) x {Z), where {Z) = [ll, 3*] c B*. Also,
{Z™ is a four-group, since {(Z) = [8* 1].

Case 1. C(Z) € M*. In this case, since {Z) <] %, we find that
T S M*. Since £ = N(T), this forces M* = M, which violates Lemma
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20.4, as 3* £ &,.

Case 2. C(Z) £ M*. Since {Z™) is a four-group, it follows that
Cp(Z) is of index 3 in IN*, whence |IM*| = 3|<Z]|.

Since Z(T) < M, it follows from the construction of IM that Z(J(T))
and Z(J(T)) are normal subgroups of M. From §18, there is a
solvable subgroup ¥, of & which contains T properly and such that
¥ = TP, where B, is a p-group of order larger than 3. If p =5,
then Lemmas 5.583, 5.54 imply that &, = I, against | M| =3|Z|. So
p=3, and || = 3. By Lemma 5.54, we get J'(,) & M, whence
M = TT(P,). This is absurd, since Me _#(T), and M c &, while &,
is solvable. The proof is complete.

LEMMA 20.6. Omne of the following holds:
(a) 13l=4.
(b) - Z(Z) = {C(Z(T)), N(BW)}, where T = V(cely(3); 2).

Proof. Since T = N(¥), it follows that N(Z(T)) = C(Z(T)). Since
| #Z(2)] = 2, this lemma is an immediate consequence of Lemma 20.5.

LEMMA 20.7. Suppose | 3| = 8. Then the following hold:
(a) [3]=16.

(b) Z/OL(I) is cyclic.

(c) €| =38,5 or 15, where & 1s a S,-subgroup of .
(d) 3€ is a Frobenius group.

Proof. Suppose 1§, & €. Let 3= Cy(&). Thus, 3° <.
Suppose 3’ 1, and Z is an involution of 3°N Z(¥). Hence, C(Z) 2
C(Z(R)), and so C(Z) = C(Z(X)), since C(Z(Z)) e .#Z(T). Since C(Z(Z)) N
M 2T, we conclude that M = C(Z(X)), and so B = 2.(Z(T)).

Since W 4 M, there is G in G such that 3° =S L, B® & 0,(I).
Hence, & has a subgroup ¥ of prime order such that 3¢ does not
centralize O,(IM)F/0,(M). Let Y = 89N C(F), where F = O,(D)F/0,(M),
and let € = (F')>. Thus, TF = (T, 8%), and so if we set N = N(W),
then NN 3% = P*.

Since | 3] =8, we have |9"| = 4. Let U be a minimal normal
subgroup of N. Since M = C(Z(R)), it follows that C() = O,N). If
Y ¢ 9% centralizes U, then since C(Y) = C(3°), we get 37 < C(U) <N,
which is false. Hence, 9" acts faithfully on 1, and C,(Y?) = C(Y)
for all Ye 2™, This is impossible since N is solvable. We conclude
that 3¢ is a Frobenius group.

Since 3E is a Frobenius group, it follows that if ¥ is any subgroup
of M/C(B) of order 2, then 8 is a free F,X-module. In particular,
| 8] = 2* for some integer z = 2.
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Suppose z = 3. Let 3'be a subgroup of 3 of index 4. We will
show that C(8") = C(3). In any case, Cy(8') is a 2-group, since 3E is
a Frobenius group. Furthermore, by the preceding paragraph, we
conclude that Cy(B") = C(B) = 0,(IN). Since N(X) = M for every non
identity characteristic subgroup X of 0,(M), it follows that O,(IM) is
a S,-subgroup of C(8Y), and then Lemmas 5.53 and 5.54 imply that
[C(B):0,(M)] =1 or 3. Set € = C(8"), €, = 0,C), and suppose that
€>50,(M). In this case, €, has index 2 in O,(M), and €, is not normal
in M. Choose M in M with M¢ N(€,). Then (€, €¥) < C(3' N 3'%),
and since 8'N 3% %= 1, (€, €¥) is solvable. Let % be a S,-subgroup
of €, so that €, e N(¥; 2), € ¢ N(9*; 2). Since S,-subgroups of (€, €}
are cyclic, we conclude that (€, €¥> = 0,({€, €*)), which is false,
since € is not 2-closed. So C(3) = C(8') for every subgroup 3' of 3
of index 4, provided z = 3.

Let B, = (V(cely(D); 2) |1 8: Y| = 2), and continue to suppose that
2 = 3. By the preceding argument, we conclude that L, & C(3), and
so, if Ge®, and | 3% 83°N M| < 2, then 3¢ = M.

Set N = C(Z(T)). Since W 4 N, we can choose G in & such that
3= %, 8% Z 0,M), and then we can choose N in N such that T N 3%
is of index 2 in 8. By the above argument, we get 3°° = M, and
80 <Z, B> = M NN = &, the desired contradiction. So z = 2. Since
WM/0,(M) acts faithfully on 3, it follows that T/0,(M) is cyclic. The
proof is complete.

LEMMA 20.8. Suppose | 3| = 8. Then the following hold:
(a) For some Gin &, |B°N M| =8, and | 8°N 0M)| = 4.
(b) 3 contains a four-group 3 with C(8) L M.

(c) || =38|Z|, where N = C(Z(X)).

Proof. Since Cy(Z(%)) = <, the construction of M implies that
NZJ(X) = M, N(Z(J,())) = M. By Lemmas 5.53 and 5.54, it follows
that (c) holds.

Since W <] I, it follows that there is X in & such that 3* = g,
3% £O,(R). By (c), it follows that P = 0,(M) N B* is a hyperplane of
8% so of order 8. Let P be an element of M of order 3, and set
G = XP. Thus, S 0,(N) =T, and N =T, 3°. Hence, M N 37 = Y~.

Since T/0,(IN) is cyclic, we get that |PYT N O,(M)]| = 4. Suppose
PP S 04(IM). But CF) = M¢ and we find that 3 < M° whence
[8, 8°]1 = 1, against 3° L M. So (a) holds. Let U = P* N 0,(I). The
argument just given shows that C(l) £ ¢ and so (b) holds. The
proof is complete.

LEMMA 20.9. Omne of the following holds:
(a) [8]=4.
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(b) |M[=5[Z]

Proof. Suppose |B|=8. Since |N|=3|%], it follows that
|M| =1]ZT|d, where d =5 or 15. Suppose d = 15.

Since IM/0,(M) acts faithfully on 3, and | 3| = 16, while /M is
a 2-group, it follows that /0, (IN) is cyclic of order 4. Let E=AX B,
where € is a S,-subgroup of M, and |N| =5, |B| =38. Let N =ITQ,
where |Q| = 8, and let & = 0,(M), &, = 0,(TB). Thus, & and &, are
of index 2 in ¥, and are maximal elements of U(Q; 2), U(B; 2), respec-
tively. Since N = C(Z(T)), we have Cy(Q) == 1, and since T/0,(M) is
of order 4, we have C,(B) = 1. Since & and &, are not G-conjugate,
it follows that S,-subgroups of & are non cyclic. Hence, C(l) is a
3'-group for every 4-subgroup 1l of &. On the other hand, there is
a four-subgroup 1 of 3 such that C(11) £ M. Set € = CA), €, = Cx(N).
Then €, is a 2-group, since 3€ is a Frobenius group. If €, = 0,(M),
then since € is a 3'-group, our factorizations imply that € = 9. Hence,
€,20,M), and so €, is of index 2 in a S,-subgroup of M, and so €,
is the unique subgroup of ¥ of index 2 which contains 0,(R) (assuming
as we may that €, = ). But then TB = N(€,), and so N(X) & M for
every non identity characteristic subgroup X of €,. Once again, since
€ is a 3-group, our factorizations complete the proof.

THEOREM 20.1. | 3| < 4.

Proof. Suppose false, so that the preceding results may be applied.
Thus, M/0,(IN) is a Frobenius group of order 10 or 20. It follows that

(*) | M: Cu(Z)] =225, a<1, forall Ze 3.

We will show that Cy(Z) is a S,-subgroup of C(Z) for all Ze 3.
We may assume that Cy(Z) = %, is of index 2in £. This implies that
Z/0,(I) is of order 4, since Cy(Z) properly contains O,(IM) for every Z
in 8. Since O,(M)c T, T, it follows that Z(T) is cyclic, and that
if 2(Z(%)) = {Z,), then {Z, Z,) = 2.(Z(%,)). Let %, be a S,-subgroup
of C(Z) which contains ¥, and suppose by way of contradiction that
%, Z,. Thus, <8, 2% )= NKZ, Z,y) and T, £ M, whence (T, T =N,
against N = C(Z(T)). So

(**) Cu(Z) is a S,-subgroup of C(Z) for all Ze 3.

Since Z(T) <4 M, and since T is a maximal subgroup of M, the
construction of I implies that M = N(Z(J(T))) = N(Z(J(X))). Since 3¢
is a Frobenius group, we even get I = N(J(X)) = N(J(T)). Hence,
JE®) = J&T), J(T) = J(Z,). By (**), we conclude that

**) |C(Z): Cx(Z)| =1 or 3 for all Ze 3F.
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Choose G in & such that 3°N M = Y is of order 8, and such that
Ds = P N O,(M) has order 4, as in Lemma 20.8. Choose Ye ;. Thus,
8 < C(Y), and 0,(C(Y)) normalizes 8% by (**). Since 3-0,(C(Y)) is
a 2-group, it follows that 8 N 0,(C(Y)) is of index at most 2 in 3, by
(***). Now choose Xe9 — 9,. Then [X, 3N 0,C(Y))] # 1, and so
we may assume that our element Y has been chosen in 3N 9,. Hence,
0,(C(Y)) N 0,(M) is of index at most 2 in O,(IN).

We may assume that X inverts €. Set T° = 0,(C(Y)) N OIN), so
that |0,(M): T°| < 2,and [T°, X]<9D,. This implies that 3 = [0,(M), €],
and since 8 2 2,(Z(%)), it follows that 0,(M) = 8. This in turn implies
that 8 < 0,(M), whence 3 <| N, the desired contradiction. The proof
is complete.

LemmaA 20.10. 3 & Z(IN).

Proof. If | 8| = 2, the lemma is obvious. Suppose | 3| =4, and
that 8 & Z(M). In this case, M/C(B) = ¥, and M is transitive on 3.
We argue that

(20.1) C(Z)= M for all Ze 3.

This is clear if || =~ 3|Z|, so suppose |M| = 3|T|. In this case,
Nn(Z(%)) = %, and so J(T) M, J(T) <{ M. Since _#Z(T) contains an
element N with |N| > 3|<L|, the usual factorizations yield a contra-
diction. So (20.1) holds.

Let P be a subgroup of odd prime power order permutable with
¥ and not contained in M. Since PN M =1, and since J(T) <] M,
Ji(Z) <M, it follows that |B| = 3. Hence, if N is a minimal normal
subgroup of TP, then U is a four-group. Let W = V(ccly(3); T). It
is a straightforward consequence of (20.1) that < C(); W < C(3).
Since IM/C(B) = ¥, it follows that N,(TW) DL, and so N(W) =M. Since
TP/0,(TP) = ¥, we conclude that W <| TV, whence P = M, the desired
contradiction. The proof is complete.

LeMMA 20.11.  If X is a normal four-subgroup of I, then C(X) = M
for all Xe %,

Proof. We may assume that X¢ Z(). Hence, if 2N 3 =1,
then X =1 x <(X), and Cyp(X) is of index 2 in M. Let T, = C(X),
so that |2:%,| = 2, and M = ;- Ny(€), where € is a S,-subgroup of
M. Set € = C(Z). Then € = T;- Ny(€), and so ¥, is permutable with
the solvable group (IVy(€), Ny(&)> = R. By a standard argument,
T8 is solvable, and so M = T R 2 €. The proof is complete.

Set
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Z, = {X|% is an elementary abelian normal 2-subgroup of
M of order = 8} .

By Lemma 20.11 and §13, it follows that F,= . Let &, =
(Xc Z,| 3 S %}. Since B & Z(0,(M)), it follows that #, = @. Next,
set

Z = {Fe .7, there is a normal subgroup € of I such that
B8 &£ Ec P, and such that || < 4, while /€ is a chief
factor of IN}.

Thus, ¥ = @.
Choose Fe . #. We subject & to the same examination which was
built up in §13.

LEMMA 20.12. C(F,) S M for every hyperplane F, of .

Proof. If |@| =4, then $, NE = 1, so we are done by Lemma
20.11. We may assume that |[€| =2, and that & £ F,. Hence,
Cu(Bo) = C(B). Let & = Cp(F/€) D= C(F). Thus, &8 and F/3(3 =E!)
are paired into 3, and so are in duality. Hence, & permutes transi-
tively the hyperplanes of § which do not contain B, so that

M = R'Nsm(%o) ’ ‘EIR Nm(%o){ = !%- 31 .

Let €=C®) 2Cu(F) = C®) =& and let T, =T NEL so that
%, is a S,ysubgroup of . Since ¥/8 is a chief factor of M of order
>2, it follows that Ng(T,) DT, and so Nu(T)e #*. Hence, %, is a
S,-subgroup of €, and N(®) = M for every non identity characteristic
subgroup ® of I,.

Let O be a S,-subgroup of £ and let R be a S,-subgroup of €
which contains Q. We may assume that R o Q. By Lemmas 5.53 and
5.54, we get that |€: 8| = 8. Let & be a S;-subgroup of € permutable
with ¥, and let €* = &. Set T, = 0,(€%), so that T, 4 L. Choose
TeZ Te NE). Let €** = (€* €*">, Thus, €** normalizes §,NF = 1,
and so €** is solvable. Since S,-subgroups of €** are cyeclic, it follows
that <%, T) < 0,(€**). This is false, since (T,, T7) = T,, and T, ¢ C*,
The proof is complete.

LemMA 20.13. If J is an involution of M and Cy(J) =G, is a
hyperplane of , then one of the following holds:

(a) [BJ]l<€.

(b) |3/€| = 4.

This lemma follows from a standard argument, and is in fact an
immediate consequence of the following lemma.
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LEMMA 20.14. If J is an involution of M and [§, J] £ €, then
B/€ is a free F,{J)-module.

Proof. Let D = Cyu(B/€), and for every subset & of I, let
S = &D/D. Thus, J = 1. Since F/E is a chief factor of M, it follows
that 0,(IM) = 1, and so F(IN) is a cyclic group of odd order. Thus, J
inverts a normal subgroup ¥ of M of odd prime order. Since F/E is
a chief factor of M, it follows that P has no fixed point on F/E, and
the lemma follows.

LeMMA 20.15. If |€| =4, then #Z(I) = {M, N}, where N, = N(B)),
B, = V(ccly(€); T).

Proof. Let P be a p-group permutable with £, and set & = TP.
Suppose 8 L MM, so that LNIM =Z. Let U be a minimal normal
subgroup of &, and let &° = ¢* be a conjugate of & which is contained
in . Let Gf = GF = €E* N 0,%). Since T/0,(Y) is cyclic, we have
EF £ 1. Since P & M, it follows that [B, N] = 1. Hence, 1 & C(€}) &
M. Suppose GFc &*. In this case, [II, E*] = 1, and so [U, E*] =
€ = Z(). This implies that [0,(¥), €] = €, and so U is a four-
group, |[PB| =3, and 0,) = U x (0,() N C(P)). Since P L M, it
follows that Z(Z) N C(P) = 1, and so 1l = 04¥), against 2ex,. So
B, & 0,(?), whence & & N(B,). The proof is complete.

LEMMA 20.16. If |G| = 4, then || = 8, 16 or 64.
Proof. Suppose |F| > 8.

Since _Z(%) = {IM, N}, it follows that Ny(L)) = <.

Let € = C(), D/€ = 0,(M/C), and let B be a S,-subgroup of IN.
Then DP < I, since P is cyclic. Since |F| > 8, it follows that P £ €.
Let £, =3ND. Thus, M =D-Np(T,), and so Ny(T,) O2. Hence,
B, £ I,

Choose G in @ such that * =@ = g, ¢* £ F,. Let

G =6F =6¢*Ng,.
Case 1. G*NF = 1.

If Ec@* then Cy(E)<= M and so [Cy(E) =G NF =1.
Hence, Cy(E) = C3(€*) for all Ec &**, Since M is solvable, we con-
clude that | €| = 2. Thus, G stabilizes the chain FDOED1, and so
|§: C5(€F)| < 4. Choose J € *—E. Then F/C is a free F,{J )-module,
and so |F: €| =2¥, fF< 2.

Case 2. E*NF = 1.
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In this case, we get E*NF = &, and F = CG;) = M°. Hence,
[B, €] = €, and |F: €| = 4.
The proof is complete.

The next lemma is very important, and is a repetition of an earlier
argument, with slight alterations.

LEMMA 20.17. If 5 is a subgroup of M of odd prime order then
[IPe 7.
Proof. Suppose false. Let
A= IFPSC=6,S LM, S is solvable} .

Thus, &% # @. For each & in .7, let ¢(&) = SN M|, and let
t = max t(&), where & ranges over .&5. Set
= (B . tB) =t} .

Choose & in .&¥ of minimal order. Let $, be a S,-subgroup of &N Ik,
and let ¥, be a S,-subgroup of & which contains ¥,. Since S,-subgroups
of & are cyclic, it follows that T ¥ = &, is a group.

Case 1. & = I Y.

In this case, T, £ M, so T, CT. We assume without loss of
generality that T,C . Let € = TP, T = 0,(¥). If I°Z T, then set
TN 0,06) =2, We find that N(Z,) £ M, and | N(Z,) N D}, > ¢,
against the definition of ¢. So T = %,. Since TP & N(T), we have
NE@) S M. Since T"=TT, N 0,8), we conclude that & = M, which
is false.

Case 2. & = T .

By minimality of &, we have T, & Ik.
Let Q be a S,-subgroup of & which contains .

Case 2(a). & = I Q.

By maximality of ¢, we have 0,(3)c Mi($%; 2), and so N(0,(®)) = M,
which gives & & M, a contradiction.

Case 2(b). & = T Q.

By minimality of &, we have T & M. Thus, © = T,ON, where
R is a cyclic r-group centralizing Q, and » is an odd prime = p.
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Let 8 = 0,(3), and let & =8N T, so that & = KR. First,
suppose r = 3. In this case, there is X char &, X = 1, with X <| &,
whence ¥ <]|&. By maximality of ¢, we have &,¢eU;(P;2), and so
Ny(¥) 2 TP, whence & < IN. This is false, and so r = 3.

Let £ = 0,(8), & = €N I, so that & = LY. Since r = 3 we have
» > 3, and so there is 9 char &, 9 = 1, with ¥ <] &, whence 9 < &.
Let &* = N(®). Thus, ©* ¢ .9/ so by what we have already shown,
it follows that &* N M contains a S,-subgroup of &* whence T, is a
S,-subgroup of M, and so & = M. The proof is complete.

LEMMA 20.18. If |€| = 4, then T/0,N) is cyclic.

Proof. /0N acts faithfully on L = 0,(N)Q/0,NR,), where QO
is a S,-subgroup of ;. Thus, the lemma holds if |Q] =3 or 5.
Suppose |Q ] = 15.

Let 1l be a minimal normal subgroup of :M,. Thus, C() = O,(N).
Since either N(Z(J(R)) & M or N(ZJ,()) < M, it follows that
J(T) L 0,(N). Thisin turn forces |1 |=2*. Since elements of GL(4, 2)
of order 15 are non real, it follows that no element to £/0,(N,) inverts
L, whence T/0,(N) is cyclic (of order 4). The proof is complete.

LEMMA 20.19. If |G| =4 and |F| = 64, then B, N, where
B, = V(cely(d); D).

Proof. Let & = 0,(N), and let 11 be a minimal normal subgroup
of M, so that & = CA).

Suppose Ge ® and ¥ = F* = T. We will show that F* &S &. Let
B =B = F* N K, and suppose that FFc F*. By Lemma 20.18, we
have |§*: | = 2. Hence, U = C(F) < M and so [U, F*] S F*. Since
I = C(FF), Lemma 20.13 implies that 1 [U, F*] < €. Hence, N
Z(Z) + 1. Since Eis a T.I. set in @, and since € 2 2,(Z(T)) = 3, we
have € = @°, so that § = F°.

Let &, = N K, so that F = F, x (F), and F inverts a subgroup
B of N, of odd prime order p. Let & = [P, &), so that & = [}, F] x
[8, F]7, where P = (P>, and [, F] & H,. Let &, = Co(P). A standard
argument shows that ¥, =T N &, x T N &, that FNK, = [&, F],
and that §, S C(R). Since each element of [, F'|* centralizes the
hyperplane @, of &, Lemma 20.13 implies that [&, F] S €. Since
2em, we conclude that [®, F]=C || =2‘ Since 1CF NK, =
Ce,(R,) <JEP, it follows that C(P) N Z(T) = 1, the desired contradiction.
The proof is complete.

LEMMA 20.20. If |G| =4 and |F| = 64, then the following hold:
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(a) & is not a T.I. set in ©.
(b) [M], =5.
(e) ||y =5 or 15.

Proof. Let G = C(F), D/E = 0,(M/C), T,L=TND. Since Ny(T,)) OF,
it follows from Lemma 20.19 that B, £ ¥,. Choose G in & such that
F=ST F°LI,. If (a) is false, then since F = T we conclude that
[CxX), Bl S B NG =1 for all XeF%*. Since |F| = |T%|, this forces
F < C(F°), against F* £ D. So (a) holds.

Let P be a S,-subgroup of IN, and let B, = Cx(F) = Cx(B/6).
If B, # 1, then Lemma 20.17 implies that & is a T.I. set in @, against
(). So B, = 1. Since PF/E is a Frobenius group, and F/E is a chief
factor of M, we have |P| =5 or 15. If |PB| = 15, then T/0,(M) is
cyclic of order 4. In this case, let ¥° be the unique subgroup of <
of index 2 which contains O,(N). Then ¥ 2 2,(%), and so B, & T°.
Hence, Ny(%B,) D, against Lemma 20.19. So (b) holds.

To prove (c¢), it suffices to show that a S,-subgroup Q of %, is not
of order 3. Suppose by way of contradiction that |Q| = 3.

Let I be minimal normal subgroup of N, so that |11| = 4, and
BNZE =1, is of order 2. Let W=U"=1U* Let $ = 0,(M),
& = 0,(MN), so that M/ is a Frobenius group of order 10 or 20 and
N/® = 2,

We argue that ' = 1. Namely, 1 <] 9, and so if P = {P), then
' < § for all 4. Suppose [U, U5l = 1. Then U =1, x <UD, and
[u, U] =1,. Hence, T =& U), and [U, RN Y] = [U, U] = U,. Since
&K N H is cyclic, it follows that [&', U] & U,. We assume without
loss of generality that U inverts Q.

Case 1. & =1.

Since J,(T) £ &, and since Z(T) N C(Q) = 1, it follows that & is
generated by 4 elements. Hence every abelian subgroup of T is
generated by 5 elements, against |§| = 64.

Case 2. & = 1.

Since [&', U] € 1,, it follows that & = 11 x C,(Q), and U central-
izes Co(Q). Since Z(T)N C(PB) = 1, Co.(Q) contains no non identity
characteristic subgroup of &', and so & is elementary abelian.

Let & = Cy(Q), & = KU = & x U. Since & 2 &', and K° admits
U, we have & <]/ 2. Since &, contains no non identity characteristic
subgroup of &, it follows that &, is elementary abelian.

Let & = &/&, R = (9 N K)K/K'. Thus, &R is cyclic of order at
most 4, and [R, U] = 1. Since C3(Q) = 1, it follows that one of the
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following holds:

(a) & is a four-group.

(b) & is the direct product of 2 cyclic groups of order 4.

Since & = & U, it follows that [&, &] = U. Hence, if Ke &, then
C(K) is of index at most 4 in &. Since & = (&, K,, K,) for suitable
K, K, it follows that |&°| < 64, whence |R| < 64.4*=2". So [T| < 2".
If |T:<£2% then || <2° and since |F| = 2% it follows that
[9, ] = I, ¥l <] M, against | 3| = 4. So |T| = 2", and this forces
|R,| = 2. Since & N Z(R) = 1, we may identify &, with a subgroup
of Hom (®, ). Since Hom (], ) = Hom ({/D(R), ) is of order 2, we
get & = Hom (], ). This is false, since Q centralizes & and does not
centralize Hom (%, 11). We conclude that & = 1.

Since [T, 1] = 1, we have [9, W] = U,. Since [3| =4, and since
WS N, we have [9, W] = U,. Thus, W, = [W, P| is of order 2, and
W* = WU, = W, x U, <M, | W*| = 2%,

Since N, = N(V)), we can choose G in O such that €% = C* = T,
E*Z 9. Thus, & N H = G = G is of order 2, and since [T*, €] < U,
we have | W*: Cyu ()| < 2. Let W = Cy.(€F). Choose Eec E* — €,
so that "/, is a free F,(E)-module. Hence, [T}, E]-1. Since
W = M7 we conclude that [T, F] = €F. Hence, Wi = W*, and so
[W*, E] = E. This is false, since TW*/U, is a free F,(E)-module of
order 2*. The proof is complete.

We now complete the analysis of the case |€| =4 and |F]| = 64.
Let © = 0,{M), & = 0,(N), and let U be a minimal normal subgroup
of N,. Let P be a S,-subgroup of M, Q a S,-subgroup of N,. Choose
TeT — & T*ec &, so that U, = C(T) is a four-group, and || = 2%
It is important to show that

(20.2) g, P y).

Suppose (20.2) is false. In this case, U, £ Z(T), and so /K is cyclic
of order 4, and I, = 11, N Z(¥) is of order 2. Let T, =T, &). Then
N, S Z%), and T, 2 2,(T). Since U, | T, we have U, <9, and so
W=U" =UF M. Since U, & Z(2,(T)), we see that T = 1.

Let B, = [W, P], so that |W, | = 2* and W* = WU, = T, x U, <N,
|W* | = 2°. The argument of Lemma 20.20 can be applied to yield a
contradiction. So (20.2) holds.

Let U, cW'c U, with W' <] &, so that |1I'| = 2°. We argue that
£ = CW). In any case, & = C, ('), and since N(R) = N, it follows
that & is a S,-subgroup of C(11"). Since W'D, and U, <M, we have
Ccl) € M. Thus, if CU) DK, then C(W) 2 P, so that CU') = KP.
Since |P| = 5, there is X ¢ {Z(®), J(R)} with X <] &P. Thus, PS N(X) =
N, which is false, since M NN, =IT. So [P, U] = 1, and CA) = K.

Let ¥ = W™ = U*. Since W <] », we have W' = (U) x 1, and
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X=<U, U0 =i<4). Also, U, & Z(Z), since £ 2(F). We argue
that ¥’ = 1. Suppose false. Then [I!, U] = 1 for some 7. Set V= U"".
Thus, Ve & and [§9N R, V]S [, V]S U,. Since U, < M, it follows
that |Q] = 5. We may assume that V inverts Q. Since &8N H is
cyclic, it follows that QO centralizes £/11, and since Z(Z) N C(Q) =1,
we get & = . This violates |§| = 64. So X is abelian.

Let M, = C() so that [ M: M| < 2. Let 9, = 0,(M) = M, N D.
Thus, 9, stabilizes the chain WD, D1, and so 9, stabilizes the chain
WO U DL, whence D(H,) & C(W). Since H, N & centralizes W, and
since £./9, N & is cyclic, it follows that | 9H,: C5, (W) | = 2. Let (1) =
[, &), so that | (1) | = 2, WA) <, = C(P). Since W = U, it follows
that [T, 9] = 1(1).

Now choose G in & such that G =, 6% £ §; G exists since
N, = N(E). Since T/H is eyclie, G N O = 1. Since € is a T.L. set
in G we have = M, and so G°NH=E6"NYH, = <E,y. Thus,
[E, B] S U(1), and so | W: Cx(F,) | < 2. Choose Fec @ — (E). We
may assume that E inverts . Since W' £ C(YP), and T is elementary
of order at most 27, it follows that [, ] = L, is of order 2* and is
a free F.(EY-module. Hence, E does not centralize T, N W* where
W* = Cy(E), and so [W, N W*, E] = (E,>. Since E,cW, we have
W* = L, and so [W, K] = (H,». This is false, since LY, is a free F (E)-
module of order 2¢. This completes a proof that if || = 4, then
|| = 6.

LEMMA 20.21. Suppese (€ =4 and |F | =16. Then the following
hold:

(a) ¥ s not a T.1. set in G.

(b) M. = 3.

(C ) 3%1 oy = 5.

Proof. Suppose (a) is false. In this case, if Ge® — M and
F¢ = T, then [C,(F), F1 ST NG =1, forall FeF¥ and so [F, F°] = 1.
Set B, = V(cely(®); T). Thus, M = C(F)- Np(B,) and so N,(B,)DOT,
whence N(B,) = M.

Let 1 be a minimal normal subgroup of N, and let & = 0,(N).
Since N, (B.) = T, there is G in © such that F*=F* ST, F* £ K.

Since Fis a T.I. set in @, and |F| > 2, if follows that F* N W= 1.
Hence, & = C(F* N 1N) & N(F*) = M. This implies that F* N K = F
is of index 2 in F*.

Let Q be a subgroup of M, of odd prime order such that F* =
B x (Fy, where F inverts Q. Let & = [ Q]. Thus, & = [®F] x
[&, F1% where {<Q> = Q. By a standard argument, F* = F* N K, x
F* N !, where &, = C,(Q). Since O & N(F*), we have F*N K, =1,
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and so |F*| = [®, F]is of order 2%, |R®,|=2°. Hence, |Q|=3. Since
C(L)N Z(T) =1, &, acts faithfully on 8. Since |N,|, = 3 or 15, and
since C(Q,) N Z(T) = 1 for every non identity odd order subgroup Q,
of M, it follows that |N, |, = 3. Since J,(T) £ &, it follows that &, = 1.
Thus, e N*(Q;2) and C(Q) == 1. On the other hand, 3| ||, and
if & is a S,-subgroup of M, then & = C(&). This implies that & is
a S;-subgroup of ®. Let ¥ = IP, where P = 2,(8). Then 0,(¥ e
N*(%3; 2) and 0,(%) N C(P) = 1. By the transitivity theorem, we get
that & and 0,(®) are ®-conjugate, hence are equal. This is false,
since N(0,2) = M, N(®) =N, £ M. So (a) holds.

Lemma 20.17 and (a) imply (b).

Since some element of _Z(%) has order > 3-|Z|, it follows that
[N, ], =5 or 15. Suppose |N, |, = 15. Since J(T) £ 0,N), it follows
that every minimal normal subgroup of 0, has order 2¢ and so T/0,(N))
is eyclic of order 4. Let T2 I, D 0,(N), and let O be a S,-subgroup
of N,. Then Q =Q, x Q;, where |Q,| = p. Also, Q, centralizes
Z,/0,(N), and T, e N*(Q,;2). Let B be a S;-subgroup of M. Then
0,(IMN) e N*(B; 2), and C(B) N 0,(IN) contains a four-group. So P is a
S:-subgroup of &, and T, O0,(IM) are G-conjugate, hence are equal.
This is false, and so (c) holds.

Let 11 be a minimal normal subgroup of %,. Thus, 1| = 2¢
C() = & = 0,(N), and N,/K is a Frobenius group of order 10 or 20.
Let $,/® be the subgroup of T/& of order 2. Then U, = Cy\(T,) is a
four-group. Let Q be a S,-subgroup of !, so that Q = (@) is of
order 5. Then set U, = UY, so that

4

Suppose Ie U, Set € = C(I). We argue that €N RN, is a S,-subgroup
of €& Wemayassumethat L, S CNN =T, If €NN, =2, we are
done, so suppose that €N N, = T, . Since J®) |, we have
JE) =JE&) =JR® <N, and so NE)=N.. So €NN, is a S,-sub-
group of €.

Let €, = 0,€), 2 = CNN,. Weargue that T°/€, is cyclic. This
is obvious if 2° is a S,-subgroup of ©, since T/0,(M) and T/0,(N,) are
cyclic. So suppose ' =3, T and € = T°-R, where |R|is odd. Thus,
[R| divides 15. If |R| = 15, then T°/0,€) is certainly cyclic. So
suppose |R| =15 R =R, x R,, where |R,| = ». Let D= 0,(C), so
that ® = O,NR,, where D, = DN I°. We can then choose X e {Z(D,),
J(®,)} such that X <]®, whence X <]€. Let = N®). If ¢=¢,
then D,e U*(R;; 2), and C,,(R,) = 1. This forces D, and 0,(M) to be
®-conjugate, whence D, = I°. This is false, since NI & N, and
31N |. So€c& whence |€: €| =2. Thus, &contains a S,-subgroup
of & and so ¥ is conjugate to a subgroup of M or of N,. This is
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false, since 15| |8, 16 4| M|, 15} |RN,|. So TY/E, is cyclic. Since IT°
is a S;-subgroup of €, it follows that if ¥ is any 2-subgroup of C(I),
then YN NU) <9, and /Y N NA) is cyclic.

Suppose U, is a hyperplane of 1. Then C; (1) = & We argue
that C(1,)) = &. Suppose false. We may assume that Z(Z) N1, =1,
so that C(1) < M. Since N, = N(R), it follows that & is a S,-subgroup
of C(1,). Hence, C(1)) = &A, where |A| =3. Now LB, & R, since
B, <|N.. Let & = 0,&N). If B, = K, then B, <] KY, whence A =N,
against 3/ |M,|. So B, L &, and KA/K, = ¥,. Since U = Z(R), it
follows that U< Z(%). Since A L N, A does not centralize Z(K,).
Let X = [,(Z(R))), A] < &A]. Choose G in G such that E° = &, C° £ &,.
Set &* = @ GF = €N &,. Then X = C(E}) 2 M, and so [%, E*] = EF,
whence |X| = 4 and €* <{&. This implies that & = X x ), where § =
C,, ) & Co (€*). Thus, <%, €*) = D, and & = Y x <&, €.

Since J(T) £ &, and since N, = TQ, where Z(&) N CR) =1, it
follows that 1 = 2,(Z(8)). Since C(1,) £ N,, it follows that Y contains
no non identity characteristic subgroup of 8 So 9 =9, X 9. X Ds
where each 9); is either a dihedral group of order 8, or it is of order 2.
Since I = [, Q], and |Q | = 5, we have the desired contradiction. So
C(1) = & for every hyperplane U, of 1.

We can now copy the final argument of §19 and conclude that
if |&| =4, then |¥| = 16.

LEMMA 20.22. Suppose |G| =4 and |F| =8. Then the following
hold:

(a) ¥ is a T.I. set in ©.

(b) A S,-subgroup of M centralizes 5.

() [M]y>3.

(d) B, N, where B, = {V(cely(Bo); T) | [F: Bl = 2.

Proof. Since 8 & Z(M), it follows that a S,-subgroup of M
centralizes &, and so (b) holds, as |%: €| = 2. Lemma 20.17 and (b)
imply (a).

Let I be a minimal normal subgroup of %, and let & = 0,N),
so that & = C(1). Suppose B, 4 N,. Then B, £ &, so there is G in
® such that |F°NT| =4, F°NT LK. By Lemma 20.18, we have
FN/=1. Thus, LS CHENK) S M and so 1cC[U,FNE S
TN K.

Let 3NT=F°NK X F). Then U is a free F,(F )-module.
This implies that [11, $¢ C T] = C(F° N £), and so [T, F° N T] 2 2,(Z(T)).
Since 2,(Z(%)) = B, it follows that F° N F 2 2,(Z(T)), whence F = F°.

Let Q =<{Q) be a subgroup of N, of odd prime order inverted
by F. Let & = [&® Q]. Thus, & = [®, F] x [®, F]% and [&], F] =
FNK =3, Since |F| <4, we have |®,| = 2%, wherel <k < 2. If
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k=1, then & = & x Ci(Q), and so C,(Q)NF = 1, whence Q = .
This is false, since M NN, =Z. So k = 2.

Let &, = C,(Q). Then since Z(T) N C(Q) = 1, it follows that R,
acts faithfully on £,. Since [&, F]S & NE =1, it follows that &,
acts faithfully on %, = [&, F], and so | &, < 2.

Suppose &, = 1. In this case, |T| < 2. Since a S,-subgroup of
M acts faithfully on O,(M) and centralizes ¥, we get that | 0,(M) | = 2°,
[M|, =38, |T! =2°% Hence, IT/R is of order 4. This implies that T
has just one normal elementary subgroup of order 8, and so § & 8.
Hence, C.(F) = &, whence & & 0,(M), and so K, = J(0,(M)) <M,
against N, £ M. So |[K,]| = 2.

Since |&,| = 2, it follows that &, is not a minimal normal subgroup
of N, whence N, | =3 |ZT|,and so |T| = 2° But this forces |M| =
3|, against §18. So (d) holds.

Suppose by way of contradiction that |9 |, =3. Thus, [N |, =5
or 15. Let & = 0,(MN), and let T,/R be the subgroup of T/ of order 2.
Let I = Q,(Z(R)) so that || = 2'. Suppose U, is a hyperplane of 11.
Then C, (1) = &. We argue that C(1,) = & We may assume that
U, N Z(ZT)+1. Thus, CU) S IM. We may assume that C(11)) = &,
where |9 = 3. Since I = 2,(Z(R)), we have Ul S Z(R,), where &, =
0,(RA). By (a), it follows that BV, = &, and so A = N(B)) = N,, which
is false. So C() = K.

It follows as in an earlier argument that if I is an involution of
U, and C(I) = €, then for each 2-subgroup T, of € T, N NW) ],
and T,/T, N NW) is cyclic. The argument of § 19 then yields a contra-
diction. So (c) holds. The proof is complete.

Let » be an odd prime divisor of |9 |, and let B be a S,-subgroup
of M. Set & = TP, B = V(cely(B); T). Since B = B,, we have BL <IN,
and so Ny(¥) = . Choose G in & such that FES T, T L H = 0,2).
Let §¢ = F9N O, so that F¢ = Fy x (F'), and F inverts a S,-subgroup
of & which we may assume is 3. Let X be the normal closure of
Sy in & and let 9 = Cy(X). Thus, XY= H, and Y2 U, where
= 2(Z(&)). Thus, P acts faithfully on ¥, as C(W) N P = 1. Since
DS CE) = CF5) =M we have [P, F]=FE. Let 9, =19, B, so
that 9. = [9,, F] x [9,, F]°, where P = (P)>. Since [J, F]| < 4, we
get that |B| = 3 or 5. Hence, by (c) of the preceding lemma, we see
that {9 ], =5 or 15.

Now we take B of order 5 in the preceding discussion. In this
case, we see that [9), F] =% is a four-group and so F& = 0,(M).
Let £ be the normal closure of F¢ in I, and let P = an(i), 9. =19, Bl
Suppose | M|, =15, and Q & Cp(P), | C | =3. Then L normalizes 9)..
We argue that Q centralizes §),. Suppose false. Then since elements
of GL(4,2) of order 15 are non real, it follows that F centralizes
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0,(I)L2/0,(M). This implies that I has a subgroup of order 3 which
normalizes but does not centralize [, F'] = §5. This is false, since
N()/CR) is a 2-group for every subgroup 2 of F. So QO centralizes
9., whence O = C(FS) < M. Thus, Q is a S;-subgroup of M and of
M. By Lemma 20.17, Qe #*, Qe . #*. Hence, M = M whence
& = 8% This is absurd, since F = 0,(M), F¢ L 0,(M). So |M|,, = 5.

If |:%, |, =5 or 15, then U = 2,(Z(R)) is of order 16, and the final
argument of §19 yields a contradiction. So (R, [, = 3, |1]| = 4.

Let I, = LN Z(R), so that |1L,| = 2, I, = Z(M). Let W = U™ = 1%,
where P is a S,-subgroup of I, |PB| = 5. Then | W| < 2% and WD U.
By a standard argument, & =1. Let L, = Cx(P). Since [0,(M), W] =
u, = B, it follows that L, <] M. If |W,| = 4, then we may let W
play the role of . We have already shown that this case does not
occur. So [T, = 2. Since Cyx(€) admits P, we get W = C(G), so we
may let BWE play the role of . This contradiction establishes the
important

THEOREM 20.2. |G| = 2.

LEMMA 20.23. (a) ||, > 3.
(b) &> 8.

Proof. Suppose | M|, = 3. Since |F| = 8 and F/E is a chief factor
of I, it follows that |F| = 8.

Choose Ne _#Z(T) with |N], > 3. Let U be a minimal normal
subgroup of N, and let Q be a S,-subgroup of K. Thus, WD E, and
Q acts faithfully on 0. Since J,() £ O,(N), it follows that || = 2¢,
[Q] =5 or 15.

Let Z,/0,(M) be the subgroup of /0,MN) of order 2. Suppose
Ic, € =C(), T = Cy(I). We will show that T is a S,-subgroup
of €. We may assume that 0,(N) =T, =< L. Thus, JX)=JE®) =
J(0,(N)), and so N(T) = N, whence IT° is a S,-subgroup of €. Since
| N* |, divides 15 for every N* e _#(), it follows that |N* |, divides
15 for every 2-local subgroup M* of ®, and so |€ |, divides 15. We
must show that T°/0,C€) is cyclic. Suppose false. Then TR = €,
where |[R| = 15. A standard argument shows that € c€*, where €*
contains a S,-subgroup of &. Since | M|, = 3, €* is not conjugate to
M. Since 5||€*], it follows that €* is conjugate to N. Since |€*: €|=2,
it follows that the normal closure of I in €* is a four-group central-
ized by R. This is false, since C(€) = M is a 5'-group. We conclude
that /0,€) is cyclic. It is straightforward to check that C(1) =
0,(N) for every hyperplane 11, of 11, and so the argument of § 19 yields
a contradiction. This establishes (a).

Suppose |F| = 8. Since | M [, > 3, Lemma 20.17 implies that F is
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a T.I. set in @. Hence, if T = V(cely(®); L), it follows that B = CB),
and so N,(B) DL, whence N(B) = .

Let P be a subgroup of & of odd prime order which is permutable
with € and such that PZ M. Set & = TP. Thus, N,(V) = T, so there
isGin Gsuch that S T, F° L H = 0,(8). Let Ff =F°N 9, so that
B¢ = B§ x (F)y. We assume without loss of generality that F inverts
B. Let U = 2,(Z(9)), so that U = [U, B]. Thus, U & CBy) < M¢, and
so 1c U, F] S B5, whence < M¢. Let 9, = [, Pl, so that &, =
[9:, F'] x [, F']?, where L3 = (P)>. Since |F| =8, and since C(P) N
B° =1, we see that [9, F] =5y is of order 4, |,| = 16. Since
Z(%) c C(P) = 1, it follows that 9, acts faithfully on ©,, where 9, =
Cy(P), and so | .| = 2. But |[M], > 3, and so |[0,(M)| =27, |T| = 2%
This is false, since |Z| = 9| |T: 9| = |H.]-2-22 < 2. So (b) holds.

LEMMA 20.24. _Z(%) = {M, N}, where N = N(B), B = V(ccly(B); 2).

Proof. Suppose p is an odd prime and P is a p-group permutable
with €, and PZ M. Set & =ITP. Thus, €N M =T. Let & = 0,9),
N = Q2(Z(R). Thus, U = [U, PB|, and P acts faithfully on 1.

Suppose Ge @ and F°= I, FCL K. Let T =F°N K, so that
B =B x (FY, and we may assume that F inverts . Thus, 1
centralizes the hyperplane $¢ of ¢ and so [11, F'] = 8% Thus, 1l = 4,
|B| =3, and 3% = 3, whence F = F% Let & = [, L], &, = C.(P).
Then & = [R, F] x [R, F]?, where $ = (P), and FN&=FN K, x
F N &,. Thus, [R, F]” centralizes the hyperplane F N & of F, and so
[[R, FI*, F] = 8, whence |&,| =4. Thus, & = & x &, and Z(®) is
non cyclic. This contradiction shows that T <] 8 The proof is
complete.

Let .7 = {X]|Xccel(®), XS T, XL 0,(M)}. Since Nu(¥) =3, it
follows that &, = @. Let .7 = {¥|% = §c.7, 3° S 0,M)}. It is
crucial to show that & = @. We must work for this.

LeEmma 20.25. If Z = @, then B has a subgroup F, of index 4
such that C(F,) < M.

Proof. Choose §¢c.7,. Let ¢ = F°n 0,(M), and suppose that
B*Z . Let U be a complement to FY in T which contains J°.
Let P be a S,-subgroup of M, and let = O0,(M), so that HP < M
and A acts faithfully on $B/H. Thus, there is a subgroup Q of 9P of
odd prime order inverted by Z¢ the generator of 8°. Let € = $QF°,
8, = 04%2). Thus, 9 = F°N & is a hyperplane of 3¢ and F* = Y x 3%

Let ¥ = &/3. Thus, we may view ¥ as a module for 2/9. Let
D = (Q, 3%, so that &/9 is the direct product of 9H/H and DH/H.
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By the P x Q-lemma, D acts faithfully on &, = /8 = C5(2). Since
C;(Q) =1, it follows that ¥, is a free F,8%module. Thus, there is
FePt such that [F, Z°] = 1. Thus, F ¢ M°. On the other hand,
[F, Y] S B, and so0 9, = Co(F') is of index at most 2 in 9, so of index
at most 4 in §° Since F e C(Y),), we have C(9,) £ M¢. The proof is
complete.

Set

F={BIBST (8B =4,CB) LM} .

Suppose that F+ @. Choose USF, || =4, U<]Z. As before, let
B be a S,-subgroup of M. Let F, = [F, Bl, so that F = F, x 8 and
%P is a Frobenius group. Since ¥ is not 2-reducible in M, it follows
that ©/9, and /3 are in duality, where $ = 0,(M), H, = C(F). Thus,
$ permutes transitively the set of hyperplanes of ¥ which do not
contain 8. Thus, if &## @, then <2, = @, where

Z, = {B|BeZ,BSJi}-

Let 1, = UNg, = (), and choose Be 2. Since B is a hyperplane
of ¥, and FP is a Frobenius group, there is P in P such that Ue B*.
Thus, <%, + @, where

Z, ={BeZ,| UecB}.
We have thus shown that
if Z+ @, then C(U) £ M, where (U, Z)e (), and UecF .

Let us continue with our assumption that <#+ @. Set € = C(U),
so that € £ M. Since F,P is a Frobenius group, it follows that
CNM=23, = Cy(U) is of index 2 in T. Since Z(T) is cyclic, it follows
that U = 2,(Z(%,)). We argue that <, is not a S,-subgroup of €.
Suppose false. In this case, € has a subgroup 2 of odd prime order
which is permutable with T,. Let @ =<, & = 0,9), 3, = 2,(Z(%)) 2 11.
Since A £ M, it follows that 3, = [8,, A] = 1. Let B, = V(ccly(); <p)-
We argue that B, < &,. Suppose this, too, is false. Choose G in &
such that F° =L, FZL L. Thus, B, S CBFN L), and F*NE is a
hyperplane of $¢ whence [3, §°] = 8% Thus, |3,| =4, |%| =3, and
FLL,. If = F, then T, = M N M. Thus, MF has a S,-subgroup
which normalizes %, and so normalizes 1l, whence Ay(1l) = Aut ().
This violates the assumption that <&, is a S,-subgroup of C(U). So
& = 5.

Let € = [¥, ¥]. Then A = (A), and & = (¥, &4), where & =
[€, F]l, and F=FN Y x (F). Hence L S HF and so A = C(T). We
argue that £ = U. Namely, $ N C(U) = $, has the property that
Cy(9) =1, and so if Le & — U, there is He §, such that [L, H] = Z,
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where 3 = (Z). Hence, we find that Ze & < C(2), against I £ IN.
So ¥ = U. Since A centralizes U and |, while % does not centralize
Z, it follows that £ S <U». It is now straightforward to check that
BNE =<FNEL, FNILY, and that FN &, centralizes &,. Here ¢, = C, ().
Suppose ¥ = 1. Choose Xe¢ &4 — Z(&). Thus, Cy(X) is of index at
most 4 in § and [F, X] £ 8. We conclude that || = 2°, as /3 is a
free F{X>-module. Hence, in this case, we have & = 3, x &, where
&, is the central product of two dihedral groups of order 8. Hence,
¢, contains a four-group L such that £, = (2, NF)L". Since [L, F] £ 3
for all L"e 8", it follows that /9 is not eyeclic. This is false, since
IB/8] =2t So & is abelian. Hence, & = & x 84, As usual, we get
that ¥, N E < C(8). Thus, elements of £ centralize the hyperplane
NG of F, and so [¥ F] < 3. Hence, || =4, & =& % &.

Let T= (%, T>. Thus, T, %) = N(& N ). Suppose &, N L7 =~ 1.
Then T is a group, and |celyy(U) | = 2, whence I < C) < M. This
is false, so &, N & =1, and so &, is isomorphic to a subgroup of £,/<..
Hence, |¥,| =< 2% |T| < 2. This is false, since | 9| = 2°. This contra-
diction shows that B, = &, so that L, <] L. Thus, TA is a solvable
group, whence 9 & C(l) & M. This is false, and so T, is contained
properly in a S,-subgroup T* of €. Hence, A4,11) = Aut (1), and
NOW) = TR, where [R| = 3. Also, of course N11) = .

Let W=<(F*| ReR) =F"™. Since C(N) is a 2-group, it follows
that WS L. Let B* = V(ccly(W); T). Since LT* =B, we have
NE®B*) =N, and so Nyu(B*) = T. Note that U= F N F*N F. Choose
G in G such that B S T, WF L H = O,(M).

Case 1. N°< 9. Now WF = (F*¢ ¢ =0, 1, 2), so there is 7 such
that §*¢ = T, ¢ £ . Hence, F°c .7, and so & = .

Case 2. 0N | = 2.
In this case ue N @ = 8111’0 for some 7 and so %R{GG j\: as 1% < %Hﬂig’
so that % & &.

Case 3. U*N o = 1.

In this case, the four-group 1¢ acts faithfully on 9L/, where
B is a S,-subgroup of M, and so there is a prime p = 5 such that ¢
does not centralize $Q/9, where | Q| = p. Let Cu(HQ/9H) = (XD.
Thus, (X> = 3%¢ for some i. Set G’ = R‘G. Thus, § normalizes
HQ/H, FY does not centralize $Q/H, and 3% centralizes $Q/H. Let
Y = C,o(92/9), and let § = F/3, §. = C,(D). We have 7 = 9 x (F),
and we may assume that Finverts Q. Thus, 3, is a free F,.(F )-module,
and since p =5, || =16. Let ¥, = C;(8%), so that [F:PB. = 2.
Choose F'ec¢E, — C(F'). Then F'c C(8%) = MY, and |Y: Co(F)| = 2.
Since 3% £ ¥, we have [F%, F'] £ 8. Since |F:CF)NF¥ | =4, it
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follows that || = 2°. But in this case, T/9 is cyclic, against the fact
that ¢ acts faithfully on 9$%3/$. Putting the pieces together, we see
that we have shown that

G £ D .
Choose G in ® such that §° = F*e.#. Let 8* = 8% =(Z",

Z*=17° Let § = Cy(Z*), so that |F:F[ =2 Let F=F n§.
We proceed to show that |F| = 2°.

Case 1. |F*: 8| = 4.

Since FP/B is a Frobenius group, it follows that F/B is a free
F%*/8&-module. On the other hand, [F, X, Y] =1 for all X, YeF*,
and so we get | §/8| = 2'. This is impossible, since in this case T/
is cyclic.

Case 2. |F*: B =2,and B*ZLF. LetF* =Fs x (F). Wecan
then choose F, ¢ 3%, such that [F, F,] = 1. Since ¥ N C(F)) is of index
at most 2 in §, we have

Feme, [ F]Z3%, [3%FnCF) =4.
This forces |F| = 2°, as F°/8% is a free F(F,)-module.

Case 3. |G| =2 and B* = F. Since F/3 is a free F(F)-
module of order = 16, there is F,e & such that [F, F\] ¢ 3° Hence,
[F% C(F) NB| < 4, and F,e M4 so once again, we have |F| = 2°

We thus have established the important equality:

& =2
LEMMA 20.26. If 3CXCF and |F: X| = 2, then NEX) < M.

Proof. Let 8 = NX), T, = &N M. Let P be a S,-subgroup of
M. Since PBF/B is a Frobenius group, it follows that I, is a 2-group.
Clearly, & = O,(M) = T, as [D, T] = 8. Since 8 = 2.,(Z(9)), it follows
that 8 = 2.(Z(%,)), and so N(Z,) < M. Thus, T, is a S,-subgroup of
€. Suppose by way of contradiction that T, &.

Let & = C(¥), so that & <]/ & and %, is a 2-group, since C(¥) =
MNL=g, Let 8 =g/Q. Since $ < &, it follows that H = HL/<,
is elementary abelian of order 8 and stabilizes the chain XD 3D 1.

Let 9 = B* so that 8cPY <= X. Since 83< Z(T,), 9 is 2-reducible
in 8 Let ® be a S,-subgroup of ¥ Thus, |D]|15 and D acts
faithfully on 9. If 5||9D|, then ¥ = ¥ is an irreducible F,%-module,
and so § acts faithfully on a cyclic group of order 5 or 15. This is
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false, since § is elementary of order 8. So |®D| =3, and |Y| = 4.
Let ® = (D) and let §, = C4(Y). Thus, . = $,8,/&, is a four-group
and §, stabilizes the chains 59 >1, ¥ 3D 1. Hence, H? stabilizes
the chaings ¥59Y>D1, XD 3°> 1. Since H7/H N HP contains a four-
group, it follows that S,-subgroups of M/ are non cyclic. This contra-
diction completes the proof.

We next note that ||, = 5. Namely |F/8| =24 andso ||, =5
or 15. If |M|, = 15, then | Nyp(2.(2))| = 3|T|, whence Ny(B)D T,
which is false. So

[ M, =5.

Again, choose G in ® such that §%c 7. Let §* =3 Fr =F*N H,
S = X §, where 9, = C(). Also, let 8* = 8%, Thus,

1T Bl =2, F*=FFxLEF,
F inverts a subgroup P of MM of order 5,
3 CFr.

Now |9/9,| = 2* and if $,/9, = Cy5(F), then ,/9, is a four-group.
Since §* is abelian, it follows that

TS 9, [FF: B =20
It is important to show that
8" B .
Suppose false.

Case 1. | Bi:Fx | = 4. Here §; = (B, 3%, X) for some Xe Fr.
Let § = Cy(X), §, = C5(8%). Then

% 381=8, I8 X1=38.
The second equality~ shows that ZeF°N T = B, and then the first
equality shows that § < N(F¥). This, however, violates Lemma 20.26.

Case 2. |Fr: 85| = 2.

Let §, = Cy(8*) = C5(F¥). Thus, [F: Bl =2, and so [F, F] = 1.
By Lemma 20.13, [, F'] < 8% against [T, F]SF, 3* £ F.

So 8* = ¥ = C)-

We now proceed to show that

sy, IFFI=2, BB .
Namely, if §* = ¥, then Lemma 20.13 gives [§, F] < 8% against
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[[B, F1] =2 So Fr>OFr. Since 8* = C(Y), we have F < M¢ and
since [¥F, ¥l = B, we get 3 F*, whence 83 = ¥r. Thus, [T, Tl <
Fn T and | [F, S]] = 2°. Hence, [F, T*] = &, and so 3*C F. Since
|F¥| = 24 it follows that [FF:FF | = 2.

Set D = (B, F'), a dihedral group of order 10. Now D acts on
9, = C(F). Since 8* =P, we have $, = M?.  Thus, [§, F] S H,NT* =
Fr . So F centralizes $,/F, whence P centralizes 9,/F, and so

@0 = @0 X %o ’
where
‘@O:CDO(%)’ %ozlg’;%]’ %Z%OX:S'

Let W = (¥, T*), so that W = FNF* < Z(W), | W| = 2. Thus,
F=@nF, UV, FE=E&nF, U, V'=F,
F=&NTS U, VY, FNOM) =<FnF* U,

and V inverts a subgroup B* of M® of order 5.

Since
[BFnO0M)N=BnB* =1,
we have
[U, U] =1.
Thus,

[U* Vl=Z, [U,V*=2zZ*, and [V, V*] =T,
where
NG =<K%, Z* T).

So the isomorphism class of T is determined.
Set

£ =CW) = C@F) N CB) .

Since $/9, is an irreducible module for M, and since Fi < F, it
follows that

@ = '@o * ‘Ql(’@) .
Thus, there is an involution I of § such that
[Zz* I = Z.

Thus, I normalizes {3, 8*>, since I normalizes every subgroup of &
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which contains 8. By symmetry, there is an involution J in $¢ such
that

1Z,J] = Z* .

Thus, <K>=8NT*NCUI)N CJ) is of order 2. It follows that
N(@E N F*) contains an element S of order 3 such that

KS=K, Zs=272*, Z*=7Z-7Z*.

With this information, we can show that /9 is a Frobenius group
of order 20. Namely, $ contains an element H such that He C({3, 3*)),
K" = KZ. Let H= H*. Then He C({3, 3*)), K% = KZ*. Thus,
{9, F) does not map onto A.(F N F*), and so {9, F) is not a S,-sub-
group of M. So

IMN/$ is a Frobenius group of order 20,
NI L.

The fact that N F* is normal in T follows from the fact that
FINF* <P, F>, and T is the only S,-subgroup of M which contains
(9, Fy. Since Se C(K), it follows that

Z and K are not &-conjugate .

 Let Ny(P) =Z. Thus, £ ¢, and T/%° is cyclic of order 4. Since
H centralizes {Z, Z*), it follows that ¥ = C(8*) = M?. Let = C,(3%),
so that

1228 =2, £.8=0C189,
=TI

=R

Next, we show that
N=NZ-9, [N =3[T.

In any case, [<(T, S)|=8|T,and (T, SY)=N. If |N|=15-|T|, then
I N,(2,(%)) | = 3]Z|. This is false, since Ie Q,(¥), and I inverts an
element of (¥, S) of order 3.
Let € = C(E N F*), so that €N, € = (€N H)F), NE = X,.
We next show that

9 has no normal subgroup of order 4.

Suppose false, and & <] M, || =4. By Theorem 20.2, € =(E) is cyclic.
It is then straightforward to check that V(cely(®); T) < (M, N), which
is false. In particular, we have

B =2Z() = Z(9) .
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We now tackle §°. We will show that |9°| < 4. Suppose false.
Now 9, = §° x F, I M, and so D(H”) | M. If | D(Y")| = 4, then I has
a normal subgroup of order 4. This is false, so D(9°) = 3. Since
9° = C(8*), it follows that

[9,BIST NG =F"NIE&TF.

Since P acts irreducibly on 9H/9. it follows that [H°, O] & F. Set
9=98,F=2/8, &= 9/9.. If Ye9, He §,sothat Y=Y,8, H= $,H,

set
Pr(H) = [Y,, H]3 .

So @, € Hom (D, F), and ¢, commutes with B. If ¢, =1, then [9, Y] < 3,
and so (Y, B> <] 9, whence Y,e¢ 3, Y=1. Since F normalizes &°
we have [, F]= 9°NF* =8, and so ®, commutes with F. So
{2y | YD) =9, and Y may be identified with a subgroup of Hom (9, F)
which commutes with the action of (P, F'), a dihedral group of order
10. Hence, |9| =4, |9°| = 8.

Since |T|=|T:9|- 19| =419 =2°]9H,]| =2"-|9°], we find that
|T| = 2% Consider T = (", Ty, where Fe(®°, T¢). Since TN $°2
(B, F), and /T N 9°is eyclic of order at most 4, while £/(3, F) is
a dihedral group of order 8, it follows that & N $¢ is of index at most
2 in £. This implies that € N $¢ contains an element T such that
[T Sr1=1, [T F] = 8*. Since Cx(F¥) =<§', F>, we have Te (¢, F).
Since Fe C(F*), we may choose T'e §°. But then C,(T)> &, and since
P acts irreducibly on $/9,, it follows that § = £, - C;(T). As we have
already shown this forces Te 3, against [T, F] = Z*. So

| 9| = 2%, h=1or 2,
T = 200

Suppose ~ = 1. In this case, = [, L] is of order 2°. (It is
precisely at this point that I made my mistake. I thought I could
show that £ was extra special.) We argue that © is not extra special.
Suppose indeed that § is extra special. In this case, $ N M? is of
index 2 in M4 and H N H¢ is of index at most 8 in H¥ whence
©n 9% =8 =73* the desired contradiction. So § is not extra
special. This implies that § = . Since § = (F, Fr*), and since T
is of type (2,4) (the type of T is uniquely determined since F'e i), it
is straightforward to show that the isomorphism class of I is uniquely
determined, and so G = *F,(2)’, by a result of Parrott [A characteri-
zation of the Tits’ simple group, to appear].

Suppose h = 2, so that | §°| =4, |T| = 2=

We argue that $° is cyclic. Suppose false. Then §° =<7, Y)
for some involution .
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There are 15 cosets of §, in § — ,. Of these, the 5 cosets
$,- FZ* contain involutions, where P = (P>, 0 < i < 4, and F, e Fr — Fr.
As Ny(%P) is transitive on the remaining 10 cosets, either all of them
or none of them contain involutions. If all contain involutions, then
9/ is elementary of order 2°, so §, = [D, P] is of order 2°. If every
coset of ¥ in , contains involutions, then §, is forced to be extra
special. This is false, and so precisely 5 cosets of ¥ in §, contain
involutions, (note that F, ¢ §,) and if {FR;|1 < j < 10} are the remaining
cosets, then none of them contain involutions, while §R;Y contains
involutions for all j. We may assume that (R;Y)*=1. Since Y is
an involution, it follows that R, has order 4 and is inverted by Y.
This implies that Y inverts £,/8, a homocyclic group of exponent 4
and order 2°. This is false, since F,c §,, and so the only cosets of §,
in § — §, which contain involutions are the $ F7°.

Now [F,, Y] = Z*, and so $YF, contains no involutions. Thus,
all involutions of 9. F, are contained in FF,, and there are thus 16
involutions in §,F,, namely, $F,, where § = C;(F,). Now & = (FNF*> x
(F'y, and so every involution of §,F, is either conjugate to an element
of § or is in (F N FHEF..

Let §' = Cy(Z*), and choose He § — &'. If Ffe(FN F*)F, then
He N@¥) = N@*). This is false, and so F7e (§ N F)EF, whence
(&N FHZF)* = (F N F*)F,. Thus, all involutions of $ — §, are fused
to elements of $.

Since M has 3 orbits on F¥, with representatives {Z, 2%, K}, it
follows that every involution of  — &, is fused to precisely one of
Z, K.

Now YeC(Z*), and [F,, Y] = Z*, whence |Cy(Y)| = 2% So
Ye 9% — 9§, and so Y is fused to either Z or K. Since §° is a four-
group, P is a S;-subgroup of ®, and N(P) & M. Thus, ¥ and Z are
not fused in ®. So Y and K are fused, whence 15||C(Y)|. This is
false, since N(P) = M, and P is a S;-subgroup of &. This contradiction
shows that §° is cyclic of order 4.

The exact determination of the isomorphism type of I is now
straightforward, if somewhat detailed. Thus, G = *F,(2), by a result
of Hearn.

The proof of the (augmented) Main Theorem is complete.
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