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ENTROPY OF SELF-HOMEOMORPHISMS OF
STATISTICAL PSEUDO-METRIC SPACES

ALAN SALESKI

A pseudo-Menger space is a set X together with a func-
tion ^ : I x I - » S , the set of distribution functions, satisfying
certain natural axioms similar to those of a pseudo-metric
space. Let T: J-> J be a bijection and let θτ denote the
topology generated by {TWip, e, λ): i e Z, p6 X, ε > 0, λ > 0}
where U(p, ε, λ) = {q: θ(p, q)(ε) > 1 — λ}. Assume that θτ is com-
pact. Let h(T,θ) denote the topological entropy of T with
respect to the θτ topology. The purpose of this note is to
show that if one is given a sequence {#„} of pseudo-Menger
structures on X satisfying θn(p, q) Ξ> θ(p, q) and θn(p, q) -» θ(p, q)
in distribution for all p,qeX then h(T,θn)->h(T9θ). A
counterexample is then given to show that, in general, the
condition θn(p, q) i> θ{p, q) cannot be removed.

l The investigation of statistical metric spaces was undertaken
by Karl Menger [5] in 1942. Essentially these are spaces in which
the "distance" between any two points is given by a probability
distribution function. Our purpose is to investigate the behavior of
the topological entropy of a self-homeomorphism of a compact Menger
space under perturbations of these distribution functions. We pro-
ceed to give precise definitions.

2* Preliminaries* Let / denote the closed unit interval, Q+ the
positive rationale, Z+ the positive integers, and & the set of all left-
continuous monotone increasing functions F: R—> I satisfying .F(O) = 0
and sup F(x) = 1. Let H be the function defined by: H(t) = 0 for
t ^ 0 and H(t) = 1 for t > 0.

Throughout our discussion, X will be a fixed set. Let <&~ denote
the collection of all functions θ: X x X—>£^. For convenience we
shall often write θpq in place of θ(p, q). A statistical pseudo-metric
space is an ordered pair (X, θ) where θ e ^" satisfies

(a) θpq = θqv for all p,qeX.
(b) θpq(a + 6) = 1 whenever θpr(a) = θrq{b) = 1.
(c) θpp = H for all p e l .

If, in addition, θ satisfies
(d) θpq = H only if p = q

then (X, θ) is a statistical metric space.
Let Sf denote the collection of all θ for which (X, θ) is a sta-

tistical pseudo-metric space.
A triangular norm is a function Δ\ I x /—• I which is associative,
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commutative, nondecreasing in each variable and satisfies Δ(y, 1) = y
for each ye I. A continuous Menger space [psendo-Menger space] is
a statistical metric space [statistical pseudo-metric space] (X, θ) for
which there exists a continuous triangular norm Δ satisfying:

(e) θvr(a + b) ^ Δ{θvq(a), θqr{b)) for all p, q, r e X and all a,beR.
Let ^// denote the set of all θ for which (X, θ) is a continuous

pseudo-Menger space.
If θ e ^~ then one defines a topology on X, r(0), in the following

manner: If p e l , ε, λ > 0, let U(p, ε, λ, θ) = {g e X: 0M(ε) > 1 - λ}.
These sets are a subbasis for τ(#). It was proven in [9] that if
(X, θ) is a continuous Menger space then τ(θ) is metrizable.

We shall be concerned with studying a bijective map T: X—>X.
If τ is a topology on X then τΓ will denote the topology generated
by {TιA: Aeτ, ίe Z}. We will say that a map θ e άF is T-admissible
if τ(θ)T is compact and 0(T\B, Ty) = H (ieZ) whenever θxy = ίZ".

Let ^o, <£f, ^ ^ denote the T-admissible maps belonging to ^ ,
^f ^ ^ respectively. Of course ^/^ a,9*Q(Z J?Q. We define a partial
order on ^ 0 as follows: If θ, Ψ e ^ 0 then 0 g f if and only if
θpq(t) ^ ?ΓM(ί) for all teR and p, qe X. If {#%: %e Z+} and f belong

to j r then 0% ̂  ?Γ will mean that for every (p, q) e X x X, 0̂ (2/) ~>
p̂ffίl/) ί ° r e a c k 2/ e -3Γ at which F?,g is continuous.

For definitions and properties of measure theoretic entropy the
reader is referred to [2] or [6]. If I7 is a σ-algebra of subsets of X,
μ an invariant measure on Σ, TΣ = Σ (mod 0) and Γ a sub-tf-algebra
of Σ then hμ(T, Γ) will denote the measure theoretic entropy of
(X, V-co T*Γ, μ, T).

For definitions and properties of topological entropy we refer the
reader to [1] and [3]. If τ is a compact topology on X for which
T~\τ) c τ then h(T, τ) will denote the topological entropy of (X, r, Γ).
In case ^ e ^ w e shall write /z,(T, 0) in place of h(T,τ{θ)T).

If τ is a topology on X then <j(τ) will denote the Borel σ-algebra
generated by τ. If A and ΰ are subsets of X let A + S represent
(A U B) ~ (A n B).

3* A convergence theorem* If θ e ^ ^ one can define the fol-
lowing relation on X: x ~ y if and only if θxy = H. This is an
equivalence relation on X due to condition (b) of Sf above. Note that
θ induces the structure of a continuous Menger space on X. Let
π:X—>X/~ be the projection map. Since X/~ is metrizable, the
topology on X is induced by a pseudo-metric. Consequently π is a
continuous open and closed surjection. Let f be the self-homeo-
morphism of X/~ defined by Tπ = πT.



ENTROPY OF SELF-HOMEOMORPHISMS 539

LEMMA 1. If θe^fΌ then
h(T) = h{T) and
h(T) = sup {hμ(T): μ is a T-invariant regular probability measure

on the Borel sets of X).

Proof, π induces a Boolean isomorphism π between the Borel
σ-algebra of X and that of X/~ satisfying Tπ — πT. Since X/~ is
compact Hausdorff, we can apply the theorem of Goodwyn-Dinaburg-
Goodman [3].

LEMMA 2. Let T be a bijective map of a set X onto itself and
let θe^0. Suppose {τ,}Γ is a sequence of sub-topologies of τ = τ(θ).
Denote σ(τT) by Σ and o{τ^) by Σt. In addition, assume that:

(*) Given any regular T-invariant probability measure μ on Σ,
Aeτ and ξ > 0 then there is a positive integer N such that for each
i >̂ N there exists a set A+ e Σt satisfying μ(A + At) < f.

Then h(T,τl)-*h(T,τT).

Proof. We shall begin by assuming h(T, rT) < oo. Let ε>0 be
given. Lemma 1 allows us to choose a regular T-invariant probability
measure μ on Σ such that hμ(T, Σ) ̂  h(T, ττ) - s/3. Let P =
{P1, > ,P8}c:Σ be a finite partition of X such that hμ{T,P)^
hμ(T, Σ) - s/3. Choose δ > 0 such that if QaΣ is a finite partition of
Zinto s sets then | hμ(T> P) - hμ(T, Q) |<ε/3 provided Σ ί i " ^ * +
Since μ is regular, there exist sets A* e ττ (1 ^ i ^ s) satisfying
AO < δ/3β. Choose K > 0 and B\ ., β s e V-* ϊ 7 ^ such that μ(A{ +
Bι) < δ/3s. This can be achieved since finite intersections of {TιA: Aeτ,
ie Z) constitute a basis for τT. Applying condition (*) of the hy-
pothesis, there exists an integer N > 0 such that for each j ^ N one
can find sets C\ . , Cs e \ff=^κ T^d satisfying μ(B* + Cι) < d/Zs
(1 <; ί ^ s). Applying the triangle inequality one obtains μ(Pί + C() <
3/β. Now since ΣμiC*) ^ Σ(μ(P*) + 5/β) = 1 + δ one can construct a
partition C= {C1, , Cs} c VίL-JSΓ Γ % of X satisfying Σl=i MP* + C*) ̂
β(δ/s) + 23 = 33. Therefore, | ^(T, C) ~ ^(Γ, P)|_<s/3. Consequently,
for all i ^ JV, A(Γ, rj) S hμ(T, σ(τ3)) ^ ^(T, C) ̂  ^(Γ, P) - s/3 ^
^(Γ, I7) - 2/3 ε :> fe(T, I7) - ε. It remains only to note that since

In case h(T, ττ) = oo a similar argument may be used.

LEMMA 3. // 0e ̂ f0 and pe X then {U(p, ε, λ, θ): ε > 0, λ > 0}
is α iocαi δαsis /or τ{θ) at p.

Proof. Since π is an isomorphism of the Borel σ-algebra of X
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with that of X such that π( U(p, ε, λ)) = U(π(p), ε, λ), it suffices to
prove the lemma under the additional hypothesis that (X, θ) is a
Menger space.

It was proven in Theorem 7.2 of [8] that {U(p, e, λ):peX, ε > 0,
λ > 0} is a basis for τ(θ). Let ze U(p, ε, λ) be given. We must show
that there exist έ > 0, λ > 0 such that U(z, έ, λ) c U(p9 ε, λ). Suppose
that for each positive integer j there exists yά e U(p, 1/j, 1/j) ~
U(pf ε, λ). By compactness there exists aye X a n d a subsequence {y3j
such that yjn —> y. Now Theorem 8.1 of [8] yields lim inf^oo θ(yίn, z) =
θ(y, z). But θ(ydn, z)(l/m) > 1 - 1/m for j n ^ m. Hence % , z) = £Γ
which implies y = z contradicting the fact that yeX~ U(p, ε, λ).

LEMMA 4. // 0 e ̂ C, ΓeS^9 and θ ̂  Γ then τ{θ) c τ(Γ).

Proof. This follows at once from Lemma 3 together with the
observation that U(p, ε, λ, θ) =) U(p, ε, λ, Γ1).

LEMMA 5. Given θe^f0 and a countable dense subset {y^? of
(X, τ{θ)) then {U(yif ε, λ): ie Z+, ε, λ e Q+} is α countable basis for τ(θ).

Proof. This follows from an argument similar to the one given
in the proof of Lemma 3.

LEMMA 6. Suppose Fn,Fe& and Fn :> F for all n. Let Fn(x + )

denote the right limit of Fn at x. If Fn—>F then F%(x +)—*F(x + )
for all x.

Proof. Let x e R and ε > 0. Choose y to be a continuity point of
F such that y > x and F(y) - F(x + ) < ε. Since F(x +) ̂  Fn(x + ) ^
JPH(2/) we have F(x + ) ̂  lim inf%_ FΛ(α? + ) ̂  lim sup%_F.(α; +) g F(y).
The desired conclusion now easily follows.

THEOREM. Given {θιe ̂ \ie ZΛ) and F e ^ satisfying Θ^Ψ

for each i and 0ι^Ψ then h(T, θι) -> h(T, Ψ).

Proof. Let A e τ(Ψ) and ε > 0 be given and let μ be a T-invari-
ant probability measure on σ(τ(Ψ)T). Since (X, τ(Ψ)) is separable,
Lemma 5 implies the existence of sequences {pt e A), {εt > 0} and
{λ, > 0} satisfying UΓ=i U(pi9 εi9 Xi9 Ψ) = A. Since μ is finite, there
exists a positive integer JVX such that μ(A ~ U & ^(^o e*> λ<> ̂ )) < ε/^.
Using the fact that UΓ=i u ^ e*» ̂ ί 1 ~ 2 " 0 , ^) = ί/(ί><, «i, λt, Ψ) we can
select 0 < λ, < λ, for 1 ^ i g iV, such that μ(A - U f i U(pit ειf Xi9 ¥)) <
ε/3. Furthermore, since Ψvq is left continuous we may choose 0 <
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e, < e, for 1 ^ i ^ i ^ such that μ(A ~ Uf^i ^(Po e<, \ , ?F)) < e/2. Ap-
plying Lemma 6 and Egoroff 's theorem, there exists a set G c A such
that μ(A ~ <?)< s/2 and 0;.ff(e, +) -> ί 1 , ^ +) uniformly in qe G as

n __> oo for 1 <̂  i ^ JVΊ As a consequence of the uniform convergence
of the functions θliq(εt +) on G there exists a positive integer iV2

such that:

U{p» eif λ,, f ) n G c {q: 0;ίff(e< +) > 1 - λj n G

c {g: ^ ( ε , +) > 1 - λ j n G c U(pίf eiy \i9 Ψ)cA

for l ^ i ^N, and all n ^ iV2 Then for n ^ ΛΓ2, μ(A + USi C/(Pt»
fit, ?W> ^%)) < ε Lemma 4 implies that the {r(#0} are subtopologies of
τ(Ψ). An application of Lemma 2 completes the proof.

As a consequence of the theorem we obtain:

COROLLARY. Let {d, dn: n e Z+} be pseudo-metrics on the space X
and T:X—+X be a bisection satisfying

(a) dn(x, y) ^ d(x, y) for all x,yeX.
(b) dn(x, y) ~-> d(x, y) as n -> oo.
(c) T is a self-homeomorphism of (X, d) and of {X, dn) for each n.
(d) (X, d) is compact.

Let Tn denote the self-homeomorphism T of the topological space

(X, d%).
Then h(Tn)~*h(T).

Proof The proof follows from Theorem 5.1 of [8] where it is
shown that every metric space is a continuous Menger space. Since
Tn is a homeomorphism it is easy to see that dn{Tιx, Tιy) — 0 when-
ever dn(x, y) = 0. Now the theorem may be applied.

We present two examples to illustrate the use of the theorem
and to show that the theorem is no longer valid if one removes the
condition that θn ^ θ.

EXAMPLE A. Let Y = {0,1/n: n e Z+} be endowed with the in-
duced topology of I,X= Yz and T:X->X be the shift defined by
T({y%}) = {Vi+i} The space X is metrized by:

Subtopologies of (X, d) are determined by pseudo-metrics dn defined by:

= Jl. iv
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where ωn is the characteristic function of [1/π, 1]. Let Tn denote
the self-homeomorphism T of (Xfdn). Then dn <̂  d, dn—>d, h(Tn) =
In n and

EXAMPLE B. Let T be the shift on X as above. For n ^ 1 let
un be the pseudo-metric on X given by:

where

*.(*) - 71

s otherwise .

Then un—>u as n —> oo, where %(#, 2/) — 0 for all x,yeX. Now
Λ(Γ, %n) = 00 but h(T, u) = 0.

We conclude with the following speculation:

Conjecture. Given ^ e . ^ iG ^+} and 3P"e ΛZ* satisfying Θί-~>Ψ
then

liminf h(T, θ*) ^h(T,Ψ) .
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