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ENTROPY OF SELF-HOMEOMORPHISMS OF
STATISTICAL PSEUDO-METRIC SPACES

ALAN SALESKI

A pseudo-Menger space is a set X together with a func-
tion 6: X X X— Z, the set of distribution functions, satisfying
certain natural axioms similar to those of a pseudo-metric
space. Let T: X— X be a bijection and let 6, denote the
topology generated by {7T:U(p,e¢, A):1€Z,peX,e>0,2> 0}
where U(p, ¢, 2) = {g: 0(p, ¢)(¢) > 1 — 2}. Assume that 6, is com-
pact. Let (T, 0) denote the topological entropy of T with
respect to the 6, topology. The purpose of this note is to
show that if one is given a sequence {f,} of pseudo-Menger
structures on X satisfying 6,(p, q) = 8(p, q) and 6,(p, q¢) = 0(p, q)
in distribution for all p,qe X then A(T,0,) — h(T,0). A
counterexample is then given to show that, in general, the
condition @,(p, 9) = 6(p, ) cannot be removed.

1. The investigation of statistical metric spaces was undertaken
by Karl Menger [5] in 1942. Essentially these are spaces in which
the “distance” between any two points is given by a probability
distribution funetion. Our purpose is to investigate the behavior of
the topological entropy of a self-homeomorphism of a compact Menger
space under perturbations of these distribution functions. We pro-
ceed to give precise definitions.

2. Preliminaries. Let I denote the closed unit interval, @+ the
positive rationals, Z* the positive integers, and < the set of all left-
continuous monotone increasing functions F': R — I satisfying F(0) = 0
and sup F'(x) = 1. Let H be the function defined by: H(t) = 0 for
t <0 and H(t) =1 for ¢t > 0.

Throughout our discussion, X will be a fixed set. Let & denote
the collection of all functions 6: X x X — =, For convenience we
shall often write 6,, in place of 6(p, q). A statistical pseudo-metric
space is an ordered pair (X, §) where 6 & satisfies

(@) 0,, =0, for all p,gec X.

(b) 0,,a + b) =1 whenever 0,,.(a) = 6,,(b) = 1.

(¢) 0,,= H for all pe X.

If, in addition, 6 satisfies

(d) 6,,=Honlyif p=gq
then (X, 0) is a statistical metric space.

Let & denote the collection of all ¢ for which (X, 6) is a sta-
tistical pseudo-metric space.

A triangular norm is a function 4: I x I— I which is associative,
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commutative, nondecreasing in each variable and satisfies 4(y, 1) = y
for each ye I. A continuous Menger space [pseudo-Menger space] is
a statistical metric space [statistical pseudo-metric space] (X, ¢) for
which there exists a continuous triangular norm 4 satisfying:

(€) 0,.(a + b) = 4(0,,a), 0,,(b)) for all p, ¢, rc X and all a, be R.

Let _# denote the set of all § for which (X, 6) is a continuous
pseudo-Menger space.

If 6¢ & then one defines a topology on X, z(6), in the following
manner: If peX, ¢ x>0, let Ulp, e, N, 0) = {ge X:0,,(6) > 1 — A},
These sets are a subbasis for 7(6). It was proven in [9] that if
(X, 0) is a continuous Menger space then 7(f) is metrizable.

We shall be concerned with studying a bijective map T: X — X.
If ¢ is a topology on X then 7”7 will denote the topology generated
by {T'A: Aecz,ie Z}. We will say that a map §e & is T-admissible
if 7(6)" is compact and 6(T'z, T'y) = H (¢ € Z) whenever 0,, = H.

Let .#,, .&, #, denote the T-admissible maps belonging to &,
&~ # respectively. Of course #, C.95c. %, We define a partial
order on &%, as follows: If 6, ¥ e &, then 6 < ¥ if and only if
0,,(t) < U,,(t) for all te R and p,ge X. If {§":ne Z"} and ¥ belong

to .# then 0" D ¥ will mean that for every (p, 9)e X x X, 07,(y) —
¥,(y) for each ye X at which ¥,, is continuous.

For definitions and properties of measure theoretic entropy the
reader is referred to [2] or [6]. If X is a o-algebra of subsets of X,
2 an invariant measure on 3, T3 = 3 (mod 0) and I" a sub-o-algebra
of ¥ then A, (T, I") will denote the measure theoretic entropy of
X, V. T, 1, T).

For definitions and properties of topological entropy we refer the
reader to [1] and [3]. If 7 is a compact topology on X for which
Tz) c 7 then A(T, 7) will denote the topological entropy of (X, 7, T).
In case e _ we shall write i(T, 6) in place of (T, z(6)").

If 7 is a topology on X then o(z) will denote the Borel g-algebra
generated by z. If A and B are subsets of X let A + B represent

(AU B) ~ (AN B).

3. A convergence theorem. If ¢ _# one can define the fol-
lowing relation on X:x ~y if and only if 6,, = H. This is an
equivalence relation on X due to condition (b) of .&# above. Note that
6 induces the structure of a continuous Menger space on X. Let
w: X — X/~ be the projection map. Since X/~ is metrizable, the
topology on X is induced by a pseudo-metric. Consequently 7 is a
continuous open and closed surjection. Let 7 be the self-homeo-
morphism of X/~ defined by Tx = =T.
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LemMMA 1. If Oe _# then

WMT) = KT) and

W(T) = sup {hu(T): ¢ is a T-invariant regular probability measure
on the Borel sets of X]}.

Proof. w induces a Boolean isomorphism 7 between the Borel
o-algebra of X and that of X/~ satisfying T# = #T. Since X/~ is
compact Hausdorff, we can apply the theorem of Goodwyn-Dinaburg-
Goodman [3].

LEMMA 2. Let T be a bijective map of a set X onto itself and
let e #;. Suppose {7 is a sequence of sub-topologies of T = 7(6).
Denote o(t") by ¥ and o(z;) by 2,. In addition, assume that:

(*) Given any regular T-invariant probability measure tton X,
Actand § > 0 then there s a positive integer N such that for each
1 = N there exists a set A, 23, satisfying (A + A;) < &.

Then W(T, z7)— W(T, 7).

Proof. We shall begin by assuming A(T, 7)< . Let ¢>0 be
given. Lemma 1 allows us to choose a regular T-invariant probability
measure ¢ on 3 such that 2T, 3) = WT, ") —¢/3. Let P=
{P, ..., P’YcX be a finite partition of X such that &r.T, P)=
h (T, 2)—¢/3. Choose 0 >0 such that if Q 2 is a finite partition of
Xinto s sets then | (T, P) — h(T, Q) |<¢e/3 provided >\; ¢(P* + Q) <30.
Since # is regular, there exist sets A'e 77 (1 < ¢ < s) satisfying p(P°® +
A% < 4/8s. Choose K > 0 and B, ---, B'e VX, Tt such that p(A4*+
B?) < §/3s. This can be achieved since finite intersections of {T°A: Ae,
1e Z} constitute a basis for z”. Applying condition (*) of the hy-
pothesis, there exists an integer N > 0 such that for each j = N one
can find sets C! ..., C°e VE_ T'Y; satisfying p(B’+ C%) <0/3s
(1 <4 <s). Applying the triangle inequality one obtains p(P* + C%) <
d/s. Now since Ju(C?) < Z((P) + d/s) =1 + 0 one can construct a
partition C={C", --., C}cVE_x T'3; of X satisfying 332, (P + C) <
s(d/s) + 20 = 36. Therefore, | (T, C) — hT, P)| <¢/3. Consequently,
for all j = N, MT,75) = huT, 0(z;)) = hu(T, C) = h(T, P) — &3 =
hT,3) —2/8e = KT, 3) —e. It remains only to note that since
i, MT, 7]) < MT, 7).

In case h(T, z%) = o« a similar argument may be used.

LEMMA 3. If 0e # and pe X then {Up, & N, 0):e> 0, N> 0}
18 a local bastis for ©(6) at p.

Proof. Since # is an isomorphism of the Borel oc-algebra of X
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with that of X such that Z(U(p, ¢, V) = U(r(p), ¢, M), it suffices to
prove the lemma under the additional hypothesis that (X, 8) is a
Menger space.

It was proven in Theorem 7.2 of [8] that {U(p, ¢, \): pe X, e > 0,
X > 0} is a basis for z(d). Let ze U(p, ¢, \) be given. We must show
that there exist € > 0, X > 0 such that U(z, ¢, X) c U(p, ¢, \). Suppose
that for each positive integer j there exists y;e Ulp, 1/4, 1/7) ~
U(p, &, \). By compactness there exists a y € X and a subsequence {y;, }
such that y; —y. Now Theorem 8.1 of [8] yields liminf,...0(y;,, 2) =
0(y, z). But 6(y;,, »1/m) > 1~ 1/m for j, = m. Hence 6(y,2) = H
which implies ¥ = 2 contradicting the fact that ye X ~ U(p, ¢, \).

LEMMA 4. If e #, I'e %, and 6 = I" then t(9) C ().

Proof. This follows at once from Lemma 3 together with the
observation that U(p, ¢, A, 8) D U(p, ¢, N, I).

LEMMA 5. Given ¢ _#, and a countable dense subset {y}: of
(X, z(6)) then {Uly:, e, N):1€ Z", ¢, n€ QT} is a countable basis for 7(6).

Proof. This follows from an argument similar to the one given
in the proof of Lemma 3.

LemMA 6. Suppose F,, Fe <& and F, = F for all n. Let F,(x +)

denote the right limit of F, at ©. If F, 2 F then Fs +)— F(z +)
for all x.

Proof. Let z€ R and ¢ > 0. Choose y to be a continuity point of
F such that y > x and F(y) — F(z +) <e. Since F(x +) = F,(x +) <
F,(y) we have F(x +) < liminf, ., Fl,(x +) < lim sup,-.. Fl.(z +) < F(y).
The desired conclusion now easily follows.

THEOREM. Given {0°c #Z; 1€ Z*} and Ve _# satisfying 6° =W
. D .
for each 1 and 0 — T then (T, 6°) — W(T, ¥).

Proof. Let Aez(¥) and ¢ > 0 be given and let ¢ be a T-invari-
ant probability measure on o(z(¥)"). Since (X, t(¥)) is separable,
Lemma 5 implies the existence of sequences {p,e A}, {&; > 0} and
{n, > 0} satisfying Uz, Upy, e, My ¥) = A, Since p is finite, there
exists a positive integer N, such that #(4 ~ U, U, &5 M, ¥)) < €/4.
Using the fact that Uz, Up,, &, M1 — 279, ) = U(p,;, &, My ¥) we can
select 0 <\, <, for 1 <7 < N, such that #(A ~ UL, U, e, 2, T)) <
¢/3. Furthermore, since ¥,, is left continuous we may choose 0 <
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§, <¢ forl <1 <N, such that (A ~ U¥, U®s, &y N, T)) < €/2. Ap-
plying Lemma 6 and Egoroff’s theorem, there exists a set G — A such
that (A ~ G) < ¢/2 and 0}, +) — ¥, +) uniformly in qeG as
n— oo for 1 <4 < N,. Asa consequence of the uniform convergence
of the functions 63, +) on G there exists a positive integer N,

such that:

Cl{g:¥,,E+)>1 - NG Up, e, T)C A

for 1<t < N, and all » = N,. Then for n = N,, (4 + U, Ulp,,
&, My 0") < &. Lemma 4 implies that the {r(¢%)} are subtopologies of
7(¥). An application of Lemma 2 completes the proof.

As a consequence of the theorem we obtain:

COROLLARY. Let {d,d,:ne Z*} be pseudo-metrics on the space X
ond T: X — X be a bijection satisfying

(a) d.(x,y) < dx,y) for all z,ye X.

b)) du(x, y) —d(x, y) as n— oo,

(¢) T isa self-homeomorphism of (X, d) and of (X, d,) for each n.

(d) (X, d) is compact.

Let T, denote the self-homeomorphism T of the topological space
(X, d,).

Thew h(T,)— W(T).

Proof. The proof follows from Theorem 5.1 of [8] where it is
shown that every metric space is a continuous Menger space. Since
T, is a homeomorphism it is easy to see that d.(Tz, T'y) = 0 when-
ever d.(®,y) = 0. Now the theorem may be applied.

We present two examples to illustrate the use of the theorem
and to show that the theorem is no longer valid if one removes the
condition that 6, = 6.

ExAMPLE A. Let Y ={0,1/n: ne Z*} be endowed with the in-
duced topology of I, X = Y? and T: X— X be the shift defined by
T({y.}) = {¥:+}. The space X is metrized by:

), () = SV 2L

Subtopologies of (X, d) are determined by pseudo-metrics d, defined by:

d. ({3, &) = ,-g‘m | ijn(yj)z—];l 2;0,(25) |
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where w, is the characteristic function of [1/n,1]. Let 7, denote
the self-homeomorphism 7T of (X,d,). Then d, <d, d,—d, W(T,) =
In n and W(T) = .

ExampLE B. Let T be the shift on X as above. For n =1 let
%, be the pseudo-metric on X given by:

vy}, {23}) = jgw I t”(y")zfﬂ ta(2) |

where

Lipsxd
tu(s) = {7 7
s otherwise .

Then u,—u as % — o, where u(z,y) =0 for all z,ye X. Now
r(T, u,) = o but (T, u) = 0.
We conclude with the following speculation:

Conjecture. Given {0'e. Z: 1€ Z*} and ¥ e _# satisfying ¢' =¥
then

lim inf A(T, ") = K(T, 7) .
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