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TOPOLOGIES ON THE TORSION-THEORETIC SPECTRUM
OF A NONCOMMUTATIVE RING

JONATHAN S. GOLAN

Let R-sp be the collection of all prime torsion theories
on the category of left R-modules over an associative ring R.
Three topologies — the order topology, the finitary order to-
pology, and the reverse order topology (in the case that R is
left noetherian) — are defined on R-sp and each is shown to
exhibit some properties of the Zariski topology on the spec-
trum of a commutative ring. A fourth topology — the Gillman
topology — is defined on R-sp when R is left noetherian and
is used to characterize the separation of the reverse order
topology.

1. Background and notation. Throughout the following R will
always denote an associative ring with unit element 1. Unless the
contrary is specifically stated, all modules and morphisms will be taken
from the category R-mod of unitary left R-modules. Homomorphisms
will be written as acting on the side opposite scalar multiplication,
i.e., on the right. The injective hull of a module M will be denoted
by E(M).

The term “torsion theory” will always be used to mean hereditary
torsion theory in the sense of [2]. In this section we summarize the
information about torsion theories which we will need. The reader
is referred to [2, 4, 6, 10] for further elucidation and for proofs.

A torsion theory 7 can be completely characterized by any of the
following data, each of which uniquely determines all of the others:

(i) The class .7 of torsion modules. This class is closed under
taking submodules, factor modules, direct sums, and extensions (i.e., if
0—-M—>M—M"—0 is an exact sequence with M’, M" e 7, then
Me 7).

(ii) The class &, of torsion-free modules. This class is closed
under taking submodules, injective hulls, direct products, and extensions.

(iii) The set &~ of left ideals I of R satisfying R/Ie . 7.. This
set is an idempotent filter, i.e., if Ie &2 then so does every left ideal
of R properly containing I and so does (I:7) = {' e R|r're I} for
every r€ R. Furthermore, &7 is closed under taking finite intersec-
tions and, if Ie &2 and (H:r)e & for every re I then He .

(iv) The class &, of absolutely pure modules. These are elements
N of &, satisfying the condition that if N is a submodule of Me &,
then M/Ne .. The full subcategory of R-mod defined by &, is
abelian.
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(v) The functor T.(_): R-mod — R-mod which assigns to each
module M the (unique) submodule T.(M) of M satisfying T.(M)e 7.
and M/T.(M)e ..

(vi) The functor Q.(__): R-mod — &, which is the left adjoint of
the inclusion functor.

For any module M, the module Q.(M) is called the localization of
M with respect to the torsion theory z. The endomorphism ring of
Q.(R) is called the quotient ring of R with respect to 7 and will be
denoted by R.. As left R-modules, Q.(R) and R, are isomorphic.
Furthermore, every module Q.(M) is canonically a left R.-module.
For each left R-module M we have a canonical R-homomorphism
fM: M— Qr(M )

The class of all hereditary torsion theories on R-mod will be
denoted by R-tors. This class can be partially ordered by setting
<7 if and only if 7. < 7. If {r;|ie R} is a family of torsion
theories then we denote the largest torsion theory less than or equal
to all of them by Ai..7:;. Such a theory always exists and is defined
by

Tr=NI5, .

v

Similarly we denote by V,.,7; the smallest torsion theory greater
than or equal to all of the z,. This theory always exists and is
defined by

%ri:n%i‘

The class R-tors has a minimal element &, defined by .7 = {0},
and a maximal element ¥, defined by #, = {0}. A torsion theory
which is not equal to y is called proper; a torsion theory = which is
not equal to & is called nontrivial. The collection of all proper torsion
theories on R-mod will be denoted by R-prop.

If .oz is any family of modules then we denote by &(.o7) the
smallest torsion theory in which every Me .o is torsion and by y(.)
the largest torsion theory in which every Me .o is torsion free.
Then &, = {N|Hom, (M, E(N)) = 0 for all Me .o/} and 9., =
{M|Homj, (M, E(N)) = 0 for all Ne.o}. Furthermore, for any ce
R-tors, we have 7 = VY {&(R/I)|Ie &~}

LEMMA 1.1. Let I, I' be left tdeals of R. Then
SR/ V &R/IT) = &R/[INT]) .

Proof. Let 7 = &R/I)V &R/I'). Then Ne.7, if and
only if Hom,(R/I, E(N)) = Hom, (R/I, E(N)) =0. Clearly this
holds if Ne Fimuarp. Conversely, assume that Ne #, and ac
Homg (R/[IN I'l, E(N)). Then we have a canonical monomorphism
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0: R/[INTIl— R/I R/I'. Since E(N) is injective, there then exists a
homomorphism g: R/I@ R/I' — E(N) with a = 8. Since Ne .7, we
must have @ = 0 whence a = 0, proving N€ .Z;mrnry-

For any module M, we define the wide support of M by wsupp (M) =
{ce R-prop| M ¢ 7.} = {re R-prop|Q.(M) = 0}. The following lemma
follows directly from this definition.

LEMMA 1.2. For a module M,
(1) M= XM, implies that wsupp (M) = U wsupp (M,).
(2) N & M implies that wsupp (M) = wsupp (N) U wsupp (M/N).

2. The order topologies on R-prop. We define functions

d
R-tors <, subsets of R-prop

as follows
¢: T +——{t’e R-prop|7 < 7'}
d: U—— A U.

Then we clearly have de(7) = ¢ for all e R-tors (making the con-
vention that A @ = ).

LEMMA 2.1. If {7;|te€ Q} & R-tors then
(1) 7 = 7y, tmplies that c(z;) 2 c(cy,)-
(2) co(zs, A T3,) 2 e(z3) U e(Tsy)-

(3) eV )= Ne(T).

Proof. (1) follows directly from the definition. By (1), we have
e(z;;) S e(t;, A T,) for j = 1,2 which implies (2). As for (3), if ze
Nec(z;) then 7 = z; for all i€ 2 and so, by definition, z = V z,, which
is to say that tee(V 7;). The reverse inclusion is trivial.

The proof of the following proposition is based on [1].

ProrosiTION 2.2. If R is left noetherian and if e R-prop then
¢(7) contains a maximal element of R-prop.

Proof. Let .o~ be the class of all proper ideals I of R satisfying
the conditions

(1) I= T.(R) for some 7’ ¢ R-prop;

(2) R/Ie &,

Then .7 is nonempty since T.(R)e .o, Since R is left noetherian,
. has a maximal element [,. Let 7z, = x(R/L). Then 7 < 7, since
R/I,e #.. On the other hand, if 7, < 7’ ¢ R-prop then I, & T.(R) and
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Fo & F., S F, so that R/T.(R)e .. But this implies that T'.(R) e
%7 and so T.(R) & I, proving equality. Therefore 7, = 7’.

LEmMMA 2.3. If U, and U, are subsets of R-prop then
(1) U, & U, implies that d(U) = d(U,).

(2) AU UT)=dU) A dT,).

Proof. (1) follows directly from the definition. As for (2),

T awyuvy = (M| wsupp (M) N (U, U T,) = @}
= {M| [wsupp (M) N U] U [wsupp (M) N Uy] = @}
= {M|wsupp (M) N U, = @} N {M|wsupp (M) N U, = &}
= %(Ul) n j:i(l/z) = j;(Ul)Ad(Uz) .

From Lemma 2.1(3) it is clear that the family {¢(z)|r e R-tors} of
subsets of R-prop is the base of a topology on R-prop, which we will
call the order topology.

PROPOSITION 2.4. For any ©e R-prop, ¢(7) is quasicompact in the
order topology. In particular, R-prop = ¢(§) is quasicompact.

Proof. If {c(z;)|ie £} is an open cover of ¢(z), then zec¢(z,) for
some ke 2 whence ¢(7) = ¢(r,) by Lemma 2.1(1).

PROPOSITION 2.5. For any te€ R-prop, the closure of {t} in the
order topology on R-prop is {t'e€ R-prop|7’ < 7}.

Proof. By definition, 7’ belongs to the closure of {z} if and only
if every open neighborhood of 7’ intersects {r}. This clearly happens
when o' < 7. Conversely, if ' £ ¢ then there exists an Me 7.\ 7.
Then 7’e c¢(8(M)), = ¢ c(5§(M)), which shows that c¢(é(M)) is an open
neighborhood of 7z’ not containing <.

By Lemma 1.1, the family {¢(&(R/I))|I a left ideal of R} of subsets
of R-prop also forms the base of a topology on R-prop. This topology
is coarser than the order topology; we call it the finitary order topology
on R-prop.

3. Prime torsion theories. The notion of a prime element of
R-tors was first defined by Goldman [4] and has since been considered
by several authors [7, 8, 11]. Of the equivalent definitions available
in the literature, we will use the one from [7].

A left ideal I of a ring R is critical if and only if, for every left
ideal H of R properly containing I, R/He 7 zn. It is easily shown
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that if I is eritical, it is meet-irreducible. Furthermore, if R is
commutative then I is critical if and only if it is prime. We therefore
define a torsion theory 7€ R-tors to be prime if and only if z = y(R/I)
for some critical left ideal I of R. The family of all prime elements
of R-tors is called the left spectrum of R and will be denoted by
R-sp. If ve R-sp then the family of all critical left ideals I of R
with 7 = x(R/I) will be denoted by crit(z).

ExaAMPLE 3.1. Maximal left ideals of R are trivially critical.
Therefore, if M is a simple left R-module, y(M)e R-sp.

LEMMA 3.2. Let e R-sp and 7, 7,€ R-tors. Then
(1) 7 =1, AT, implies that T = 7, or T = T,.
(2) =7, A7, implies that T =7, or T = T,.

Proof. (1) Assume that 7 = 7, A 7, where 7, > 7 and 7, > 7. If
I crit () then R/I belongs to neither &, nor #., and so we have
nonzero modules W,/I = T. (R/I), j =1, 2. On the other hand, (W,/I) N
(W,/I) = TR/I) = 0. This contradicts the fact that I is meet irre-
ducible.

(2) Forj=1,2 lettj=cVr7. Ifr=zt, AT, thent=17 A7
and so, by (1), =7} for j =1 or 7 =2. This implies that 7 = 7;
for that j.

For each ordinal ¢, define [R-sp], by

(1) [R-sp], = {r € R-sp|7 is maximal}.

(2) [R-sp); ={re R-sp|t <7’ € R-sp=17"€ U,<: [R-sp].}. If there
exists an ordinal ¢ with [R-sp], = E-sp then we say that ¢ is the
Krull-Krause dimension of R-sp and that R-sp has Krull-Krause
dimension. A proof analogous to that of [5, Proposition 1.2] then
establishes

ProprosITION 3.3. The following conditions are equivalent for a
ring R:

(1) R-sp has Krull-Krause dimension.

(2) R-sp satisfies the maximum condition.

Alternatively, for each ordinal ¢ define the torsion theory 7, as
follows:

(1) Ty = E
(2) If ¢t is not a limit ordinal, 7, = §{M|Q.,_ (M) is of finite
length}).

(8) If ¢t is a limit ordinal, 7, = V {z.|s < t}. If there exists an
ordinal ¢ with ¥ = 7, then we say that ¢ is the Krull-Gabriel dimension
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of R-tors and that R-tors has Krull-Gabriel dimension. It is then easy
to establish the following result [9, Corollaire 2.4]:

ProrosiTION 3.4. If R-tors has Krull-Gabriel dimension thenm
R-sp satisfies the minimum condition.

In particular we have

COROLLARY 3.5. If R 1is left noetherian then R-sp satisfies the
mintmum condition.

For a left R-module M we define the assassin ass (M) of M to
be the family of all ze R-sp for which there exists an me M with
(0: m) € crit (7).

PRrROPOSITION 3.6.

(1) If M= M, then ass (M) = U ass (M)).

(2) If Iecrit(c) then for all 0 = N < R/I, ass (N) = {z}.
(38) If NS M then ass(N) < ass (M) < ass (N) U ass (M/N).
(4) If M= @ M, then ass (M) = | ass (M).

(5) If N is a large submodule of M then ass(N) = ass (M).

Proof. Parts (1)-(4) follow from [11, Proposition 3.1]. As for
part (5), ass (N) & ass (M) by (3). Conversely, assume that 7 ¢ ass (M).
Then there exists an re¢ R with 0 = rme N, where (0: m)e€ crit (7).
Furthermore, (0:rm) = ((0: m): r). Since (0: m) € crit (r), we have
(0: rm) € crit () by [6, Proposition 2.8] and so 7€ ass (N).

PROPOSITION 3.7. The following conditions are equivalent:

(1) M 0 implies that ass (M) + .

(2) If I is a proper left ideal of R them there exists an re R
with (I:r) critical.

Proof. (1)=(2): Let I be a proper left ideal of E. Then by
(1) there exists a 7€ ass (R/I) and so there exists an re€ R with (I: r) =
©0: 7 + I)e crit (v).

(2)=(1): Let M+ 0 and pick 0= me M. Then by (2) there
exists an re R with (0: »m) = ((0: m): r) critical. If 7 = y(Em) then
reass (M).

This condition is satisfied if R is left noetherian. In fact, we
have the slightly stronger result.

ProprosiTION 3.8. If M is a monzero moetherian module then
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ass (M) is a momempty finite set.
Proof. By [11, Proposition 3.3] and [4, Theorem 6.14].

COROLLARY 3.9. If R 1s left moetherian then R-sp is a dense
subset of R-prop im the order topology.

Proof. Let te€ R-prop and let M be an injective cogenerator of
.. If 0= me M then Rm is noetherian. Let 7' ¢ ass (Bm) < ass (M).
Then #. = . and so 7' €c¢(z) N R-sp.

ProrosITION 3.10. If R is left noetherian then the homomorphism
i M— IH{Q(M)|ccass (M)} defined by mi— < mT, > 1is a mono-
morphism.

Proof. 1f 0+ K = ker (yv) then by Propositions 3.8 and 3.6(3)
there exists a teass(K) S ass(M). If ke K with (0: k) € crit () then
Rke 7, so kT, # 0, contradicting the fact that K = M {ker (Z,)|re
ass (M)}.

For a module M we define the support of M by supp (M) =
wsupp (M) N R-sp. We then have the following result analogous to
Lemma 1.2, again directly from the definition.

LEmMA 3.11. For a module M,
(1) M= 2M; implies that supp (M) = U supp (M,).
(2) NZ M tmplies that supp (M) = supp (N) U supp (M/N).

It is clear that, for any module M, ass (M) < supp (M). Therefore,
as a corollary to Proposition 3.8 we have

ProprosITION 3.12. If R is left noetherian then M = 0 if and only
of supp (M) = &.

4. The order topologies induced on R-sp. The [finitary] order
topology defined in §2 induces a topology on R-sp, a basis for which
is the family of sets ¢'(7) = ¢(7) N R-sp, for each e R-tors [resp.7 =
§(R/I)].

LEMMA 4.1. If 7, 7,€ R-sp then c¢'(t, A T,) = ¢/(t)) U ¢'(Ty).

Proof. That ¢'(z)) U ¢'(7,) S ¢'(z, A 7,) follows from Lemma 2.1(2).
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Conversely, if e c'(t, A 7,) then Tec'(7,) U ¢'(z,) by Lemma 3.2(2).
LEMMA 4.2. If te R-tors and Mec Z, then ass (M) < /(7).

Proof. If v’ cass (M) then there exists an 0 = me M with ¢’ =
A(Rm). Since Me &, Rme &, and so © < 7.

If UZ R-sp, then in general d(U) ¢ R-sp.

PRrOPOSITION 4.3. Let 7e R-tors satisfy
(*) Every 0 = Mec #, has a nonzero noetherian submodule.
Then dc'(t) = .

Proof. Clearly de¢'(z) = z. Conversely assume that M e 77,..,\.7~.
Then 0 M/T.(M) and so there exists a 7’ e ass (M/T.(M)) by (*) and
Proposition 3.8. Furthermore, M ¢ 7. since otherwise we would have
M|/T.(M)e .7, which contradicts the definition of z’. Therefore 7’¢
supp (M). On the other hand, &, & &, by construction and so z'e
¢'(r) whence 7’ ¢ supp (M) by the choice of M. From this contradiction
we deduce that de'(t) < 7 and so we have equality.

We have thus seen that, particularly for the case of a left noetherian
ring R, the order topology on R-sp exhibits various “nice” features
of the Zariski topology on the spectrum spec(R) of a commutative
ring R. It is the finitary order topology, however, which reduces to
the Zariski topology in the case that R is commutative.

PrOPOSITION 4.4. If R 1is commutative them R-sp with the
finitary order topology is homeomorphic to spec (R) with the Zariski
topology.

Proof. Define the function #k: spec(R)— R-sp by P~ x(R/P).
Since the critical left ideals of a commutative ring R are precisely
the prime ideals of R [7] the function % is clearly a surjection.
Furthermore, by [4, Proposition 5.2],

Tyzip(M) = {me M|r"m = 0 for some r<c R\P and some integer n}

which shows that & is a bijection.

If I'is an ideal of R and V(I) = {Pespec(R)|I < P} is a subset
of spec (R) closed in the Zariski topology, then A(V(I)) = {x(R/P)e
R-sp|y(R/P) < y(R/I)} which is closed in the finitary order topology
on R-sp by Proposition 2.5. Conversely, inverse images under % of
subsets of R-sp closed in the finitary order topology are clearly closed
in spec (R). Therefore, h is a homeomorphism.
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5. The reverse order topology on E-sp.

ProposSITION 5.1. If R is left moetherian then ¢’d is a closure
operator on R-sp.

Proof. Clearly ¢'d(2) = @. By definition, ¢'d(U) 2 U for every
subset U of R-sp. In particular, if U & R-sp then ¢'d(U) & ¢'de’d(U).
Conversely, if te c¢'de’d(U) then de’d(U) £ 7 and so by Proposition 4.3,
d(U) £ = which implies that re ¢’d(U). Therefore ¢'dc’'d(U) = ¢'d(U).
Finally, by Lemmas 2.3 and 4.1, ¢/d(U, U U,) = ¢'(d(U) A d(T)) =
cd(U,) U c¢'d(T).

Proposition 5.1 shows that, for a left noetherian ring R, we have
another topology on R-sp which is opposite to the order topology in
the sense that the open sets are precisely the sets of the form

R-sp\¢(7) for some 7€ R-tors. We call this topology the reverse order
topology on R-tors.

LEMMA 5.2. Let R be a left moetherian vring. Then for any
module M, supp (M) is open inm the reverse order topology on R-sp.

Proof. Let t = A{c'|Me 7.}. Then Me 7. so t¢supp(M).
If v’ ¢ R-sp\¢/(r) then M ¢ .7~ so 7’ e supp (M). The converse is trivial.
Hence supp (M) = R-sp\¢'(7) is open.

We now develop another method for characterizing the reverse
order topology on R-sp. To this end define a function

subsets of R-sp %, R-tors
by e: U— x({N|ass (N) S U}). Then
LeMMA 5.3. If U, and U, are subsets of R-sp then
(1) U, €U, implies that e(U) = e(U,).
(2) U, U0) = e(U) A e(U).
Proof. (1) follows directly from the definition. As for (2),

(U, Ul = x({Nlass (N) € U, U Ui})
= 1({Nlass (N) S U}) A 1({N]ass (N) & Un})
=e(U) N e(U)

LEMMA 5.4. If U is a subset of R-sp then d(U) = e(U).

Proof. Let Me 7,y and let ze U. Then for any Ie crit(7),
ass (E(R/I)) = {z} by Proposition 3.6. Therefore, Hom, (M, E(R/I)) =0
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and so Me . 9,. Hence Me 7,y implies that Me N{J-|te U} =
T aw-

We now prove a result analogous to Proposition 4.3.

ProposITION 5.5. Let 7€ R-tors satisfy
(**) Ewery 0= Me .7, has a nonzero meetherian submodule.
Then ec'(t) = .

Proof. To prove that ec’(r) = 7 it suffices to show that Me &,
if and only if ass(M) S ¢'(r). Assume that ass(M) S c'(r) and
that M¢ #.. Then T.(M)=+0 and so by (**) and Proposition
3.8 there exists a 7’cass (T.(M)) < ass (M). Therefore, 7’ec¢'(t) by
assumption. But T.(M)e .7, implies that ass (T.(M)) N ¢'(c) = @ since
7T < de/(7) and ass (M) < supp (M). This yields a contradiction which
shows that we must have Me . &#.. The reverse implication follows
directly from Lemma 4.2.

PrOPOSITION 5.6. If R is left noetherian then
(1) d¢’ = ec’ = identity on R-tors.
(2) cd=_cle.

Proof. (1) follows directly from Propositions 5.5 and 4.3. As for
(2), by definition we have c¢’e(U) 2 U for any subset U of R-sp and
80, in particular, for any such U we have c¢’e(U) < c’ec’e(U). Conversely
if Tec’ec’e(U) then ec’e(U) < r. By part (1), ec’e(U) = ¢(U) and so
e(U) < ¢ which implies that zec’e(U). This proves that c¢e(U) =
cec’e(U).

Now let US R-sp. Then ¢'d(U) = ¢'de’d(U) = c'ec’d(U) by part
(1). Furthermore, c'ec’d(U) 2 ¢'e(U) since ¢'d(U) 2 U. On the other
hand, c¢’e(U) = c’ec’e(U) = c¢'de’e(U) 2 ¢’'d(U) by a similar argument
and so we have c¢’e(U) = ¢'d(U).

Thus we see that the reverse order topology also resembles the
Zariski topology although it “goes the other way”. In particular, the
construction of the reverse order topology is formally the same as the
classical “hull-kernel” construction of the Zariski topology.

6. The Gillman topology on R-sp. If R is left noetherian we
can define another function

subsets of R-sp 2, Rtors

by : U~ Y {d(U)|U S U’ = R-sp and U’ is open in the reverse order
topology on R-sp}.
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LEMMA 6.1. If R is left noetherian then for U, U, & R-sp,
(1) U, U, implies that g(U,) = g(U,).
(2) U scdg(U).

Proof. (1) follows directly from the definition. As for (2), if U’
is a neighborhood of U, in the reverse order topology on R-sp then
d(U’) = A U is the largest torsion theory less than or equal to every
element of U’. In particular, if e U then 7 = d(U’). Since V d(U)
is the smallest torsion theory greater than or equal to all of the d(U"),
7= VAdU) =g(U). Thus tec'g(U,) for all e U, proving (2).

LEMMA 6.2. Let R be left noetherian and let € R-sp. Then for
any US R-sp, UN () = @ implies te c'g(U).

Proof. To show that zec¢’g(U) we have to show that for every
open neighborhood U’ of U, d(U’) < r. Let U’ be such an open neigh-
borhood and let V' = R-sp\U’. Then d(V’) A d(U") £ 7 so by Lemma
3.2 either d(V')=< 7 or d(U’) = 7. But d(V’) <t implies that ce
¢'d(V') = V' (since V" is closed in the reverse orde topology) whence
¢(7) & V', contradicting the hypothesis that UNe¢(z) # @. Therefore,
we must have d(U’) < .

ProPOSITION 6.3. If R is left moetherian then c'g is a closure
operator on R-sp.

Proof. For any subset U of R-sp, U< ¢’g(U) by Lemma 6.1.
Furthermore, it is clear that c¢g(@) = ©@. Also, by Lemma 6.1,
c'g(U) S ¢'gc’g(U). Conversely, ¢'ge’g(U) N U+ @ and so, by Lemma
6.2, gc’g(U)e c'g(U), i.e., g¢’g(U) = g(U). By Lemma 2.1 this implies
that ¢'g(U) 2 ¢’gc’g(U) and so we have equality.

Finally we have to show that ¢’g(U, U U,) = ¢’g(U,) U ¢’9(U,). For
1=12 U SUUU, and so g(U;) = g(U, U U,). Thus g(U) A 9(U,) =
9(U, U U,). By Lemma 2.1 this implies that ¢’¢g(U,) U ¢’g(U,) = ¢'(9(U) N
g(0y) S¢'g(U, U U,). Conversely suppose that tec’g(U,UUT,). To
show that ze¢'(g(U) A 9(U,)) it suffices to show that = = g(U,) or
7 = g(U,). Assume neither holds. Then 7¢c¢’g(U) N ¢’g(U,). In par-
ticular, there then exist open neighborhoods U} of U; (@ = 1, 2) with
v ¢ c'd(U;). Therefore, ¢ c'd(U)) U ¢'d(U;) =¢'d(U; U U;). But Ul U U;
is an open neighborhood of U, U U, and so ¢'d(U; U U;) contains 7 by
hypothesis. From this contradiction we have zec'(g(U) A 9(Uy)) =
dg(U) U dg(U,).

If R is left noetherian, the closure operator ¢’g thus defines a
topology on R-sp, which we will call the Gillman topology since the
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above construction is based on the construction in [3]. We now use
the Gillman topology to characterize the reverse order topology.

PRrROPOSITION 6.4. The following conditions are equivalent for a
left noetherian ring R:

(1) R-sp is a T,-space under the reverse order topology.

(2) R-sp is a T.-space under the Gillman topology.

Proof. (1) =(2). To show that R-sp is a T,-space under the
Gillman topology we have to show that for every te R-sp, {t} =
cg({r}). By Lemma 6.1 we know that {7} & ¢’g({z}). Conversely,
assume that = == 7' e ¢'g({r}). Then 7’ = g({z}) and so ¢’ = d(U’) for any
open neighborhood U’ of 7. This means that 7z’ e ¢’d(U’) for any open
neighborhood U’ of 7. Since ¢’d(U") is the closure of U’ in the reverse
order topology, this means that there is no neighborhood of ¢’ which
does not intersect a neighborhood of 7, contradicting the fact that R-sp
is a T,-space under the reverse order topology.

(2)=(): Let % 77¢ R-sp. Then 7’ ¢ ¢’g9({z}) by (2) and so there
exists some proper open neighborhood U’ of = with ' ¢ ¢'d(U"). Then
R\¢'d(U’) is an open neighborhoood of 7’ not intersecting U”. This
proves that R-sp is a T,-space under the reverse order topology.
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