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THE SEPTIC CHARACTER OF 2, 3, 5 AND 7

PHILIP A. LEONARD AND KENNETH S. WILLIAMS

Necessary and sufficient conditions for 2, 3,5, and 7 to be
seventh powers (mod p) (p a prime s 1 (mod 7)) are determined.

1* Introduction. Let p be a prime = 1 (mod 3). Gauss [5]
proved that there are integers x and y such that

(1.1) 4p = x2 + 27y2, x == 1 (mod 3) .

Indeed there are just two solutions (x, ±y) of (1.1). Jacobi [6] (see
also [2], [9], [16]) gave necessary and sufficient conditions for all
primes q ^ 37 to be cubes (mod p) in terms of congruence conditions
involving a solution of (1.1), which are independent of the particular
solution chosen. For example he showed that 3 is a cube (modp) if
and only if y ~ 0(mod 3). For p a prime = I(mod5), Dickson [3]
proved that the pair of diophantine equations

fl6p = x2 + 50%2 + 50i;2 + 125w2,
(l / Ί

( xw = v2 — iuv — u2, x ΞΞΞ 1 (mod 5),
has exactly four solutions. If one of these is (x, u, vy w) the other
three are (xt —u, —v, w), (x, v, —u, —w) and (x, — v, u, —w). Lehmer
[7], [8], [10], [11], Muskat [14], [15], and Pepin [17] have given necessary
and sufficient conditions for 2, 3, 5, and 7 to be fifth powers (mod p)
in terms of congruence conditions on the solutions of (1.2) which do
not depend upon the particular solution chosen. For example Lehmer
[8] proved that 3 is a fifth power (modp) if and only if u= v =
0 (mod 3).

In this note, making use of results of Dickson [4], Muskat [14],
[15] and Pepin [17], and the authors [12], [13] we obtain the analo-
gous conditions for 2, 3, 5, and 7 to be seventh powers modulo a
prime p = 1 (mod 7). The appropriate system to consider is the triple
of diophantine equations

(1.3)

considered by the authors in [12] (see also [20]). It was shown there
that (1.3) has six nontrivial solutions in addition to the two trivial

143

72p = 2x1 + 42(a2 + xl + x\)

12#2

2 - 12a;2 + 147#5

2 - 441a;2

+ 48α 3 £ 4 + 98£5a;6 - 0 ,

12x2 - 12x\ + 4&xl - UΊxl +

, + 2ix3x4 + 49(te5a;6 = 0, x, = 1 (mod 7),
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solutions (~6t, ±2u, ±2u, +2u, 0, 0), where t and u are given by

(1.4) p = f + Ίu\ t = 1 (mod 7) .

If (xl9 x2, x3f χ49 χδy χ6) is one of the six nontrivial solutions of (1.3)
the other five nontrivial solutions are

ixl9 x3f x4, x2, ~τr(̂ δ •+• 3θ/β), —fe ~~
v Δ Δ

(Xlf X4f X2, X3f Tjv^δ — dXβ/j — ~o~v
Δ Δ

(1.5) {(xl9 - x 2 , - x 3 , - x 4 , x69 x6)

\xl9 x3f x4, x2, ~^\Xδ H~ 3a?6), —

iXu 0/4, — 0?.2, X3, o " ^ 5 ~~ ^ β ) , ~ —

We prove

THEOREM, (a) 2 is a seventh power (modp) if and only if xγ =
0(mod2).

(b) 3 is a seventh power (mod p) if and only ifx5 = x6 = 0 (mod 3).

(c) 5 is a seventh power (mod p) if and only if either

x2 = χ3 = — χA (mod 5) cmώ xδ = xQ = 0 (mod 5)

or

&! Ξ 0 (mod 5) α u d # 2 + x3 — α;4 = 0 (mod 5) .

(d) 7 is a seventh power (mod p) if and only ifx2 — 19#3 — 18#4 =
0 (mod 49).

In view of (1.5) it is clear that none of the conditions given in
the theorem depends upon the particular nontrivial solution of (1.3)
chosen. Moreover, in connection with (d) we remark that any solution
of (1.3) satisfies x2 + 2xz + 3a;4 = 0 (mod 7) (see [12]) so that x2 - 19cc3 -

E4 = 0 (mod 7).

We remark that since this paper was written a paper has appeared
by Helen Popova Alderson [1] giving necessary and sufficient condi-
tions for 2 and 3 to be seventh powers (mod p). Her conditions are
not as simple as (a) and (b) above.

2Φ Proof of (a). Let g be a primitive root (modp), where p is
an odd prime. Let e > 1 be an odd divisor of p — 1 and set p —
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1 = ef. The cyclotomic number (h, k)e is defined to be the number
of solutions s, t of the trinomial congruence

ges+h + l = get+k ( m ( ) ( J ^ 0 ^ S, ί ^ / ~ 1 .

It is well-known [8], [18] that 2 is an eth power (mod p) if and only
if (0, 0)e ΞΞ 1 (mod 2). From [4], [13] we have 49(0, 0)7 = p - 20 -
12t 4- 3α?i, so that 2 is a seventh power (mod p) if and only if xx =
0(mod2).

Alternatively this result can be proved using a result of Pepin
[17] (see also [14]) or by using the representation of xt in terms
of a Jacobsthal sum (see [7] and [12]).

3, Proof of (b). The Dickson-Hurwitz sum Be(i, j) is defined by

BJLi, j) = Σ(Λ, i - jh\ .

In [13] it was shown that

84B7(0, 1) = 12*! + 12p - 24 ,

84B,(1, 1) = -2a?! + 42x2 + 49«5 + 147a?β + 12p - 24 ,

8457(2, 1) = -2x t + 42a;3 + 49x5 - 147«β + 12p - 24 ,

(3.1) -{848,(3, 1) = -2a;! + 42*4 - 98α;5 + 12p - 24 ,

84£7(4, 1) = -2xx- A2xt - 98«5 + 12p - 24 ,

845,(5, 1) = -2xι - A2x3 + 49^ - 147«β + 12p - 24 ,

, 1) = -2aι- 42x2 + 49a;5 + 147a;6 + 12p - 24 ,

for some nontrivial solution (xu x2, xs, xlt xB, xe) of (1.3). Muskat [14],
Pepin [17] have shown that 3 is a seventh power (mod p) if and only if

£7(3, 1) = Bτ(5, 1) = B7(β, l)(mod 3) .

This condition using (3.1) is easily shown to be equivalent to xδ =
XQ = 0(mod3). In verifying this it is necessary to observe that if
xδ ΞΞ #6 ΞΞ 0 (mod 3) then xι = xδ = xβ = 0 (mod 3), x2 = x3 = —x4 (mod 3)
follow from (1.3).

4* Proof of (c). Muskat [14] has shown that 5 is a seventh
power (mod^O if and only if either

J57(l, 1) EΞ B7(2, 1) = Bf(4, 1) (mod 5)

B A 1) = B7(5, 1) = 57(6, 1) (mod 5)

or
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B7(l, 1) + 2?7(2, 1) + B7(4, 1) ΞΞ £7(3, 1) + B7(5, 1)

+ B7(6, l) = 0 (mod 5),

which by (3.1) is equivalent to

x2 = χ3 = —χ4 (mod 5) and xδ = x6 = 0 (mod 5),

or

xt = 0 (mod 5) and x2 + xz — x4 = 0 (mod 5) .

5* Proof of (d). Muskat [15] has shown that 7 is a seventh
power (moάp) if and only if

) - JB,(6, 1) - 19(2?7(2, 1) - B7(5, 1))

- 18(5,(3, 1) - 5,(4, 1)) EE 0 (mod 49),

which by (3.1) is easily seen to be equivalent to

x2 - 19x3 - 18x4 = 0 (mod 49) .

6* Application of theorem to primes p = l (mod 7), p < 1000*
One of us (K.S.W.) has prepared a table of solutions [19] of (1.3)
for all primes p = 1 (mod 7), p < 1000. For these primes the table
shows that

(a) x1 ΞΞ 0 (mod 2) only for p = 631, 673, 693,
(b) xδ = x6 = 0 (mod 3) only for p = 757, 883,
(c) (i) x2 = #3 ΞΞ — #4 (mod 5) and #5 = xQ = 0 (mod 5) not satisfied,
(ii) a?! = 0 (mod 5) and x2 + x3 - x4 = 0 only for p = 71, 827, 883,
(d) x2 - 19α?3 - 18α;4 = 0 (mod 49) only for p = 43, 281,

so that by the theorem, for primes p = 1 (mod 7), p < 1000,

2 is a seventh power (mod p) only for p = 631, 673, 953 ,

3 is a seventh power (mod p) only for p = 757, 883 ,

5 is a seventh power (mod p) only for p = 71, 827, 883 ,

7 is a seventh power (mod p) only for p — 43, 281 .

Indeed we can show directly that

2 = 1967 (mod 631), 2 = 1287 (mod 673), 2 = 1207 (mod 953),

3 = 817 (mod 757), 3 ΞΞ 2077 (mod 883) ,

5 ΞΞ 587 (mod 71), 5 ΞΞ 5617 (mod 827), 5 ΞΞ 4327 (mod 883) ,

7 ΞΞ 287 (mod 43), 7 ΞΞ 2647 (mod 281) .
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