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A STUDY OF CONVEX SETS OF STOCHASTIC
MATRICES INDUCED BY PROBABILITY

VECTORS

D. J. HARTFIEL

This paper contains a study of convex sets of stochastic
matrices induced by probability vectors. The vertices and
dimension of each such convex set is found. Some topological
properties of these sets are also given. Finally, the relationship
between these sets and Markov chain theory is considered.

The primary motivation for this work is derived from studies
generalizing the classical results concerning final transition proba-
bilities in the theory of Markov chains. References dealing with such
generalizations may be found in [3]. As an example of one such
result, we provide the following.

THEOREM A. [Theorem 1,3] Suppose Al9 A2, ••-, Akf ••• is a
sequence of stochastic matrices so that

( 1 ) YkAk = Yk for probability vectors Yl9 Y2, ,
( 2 ) l i m ^ Yk = YQ > 0 and
( 3 ) given any ε > 0, there is an integer N > 0 so that

p(Ak+1Ak+2 - Ak+N) < ε for all k sufficiently large, where ρ(A) =
maxh>i2j \ahj - ai23-\.
Then l i m ^ AλA2 Ak = Y* Yo.

This result generalizes the classical Markov chain problem con-
cerning lim*-^ Ak where A is primitive and stochastic [2, p. 94], the
generality being that one need not have the same transition matrix
from step to step but may choose matrices in

S[Y] — {A I A is stochastic, YA = Fwith Y a probability vector}
which meet the criteria specified in the above theorem.

This paper then concerns a study of S[Y]. The objectives of
the work are as follows.

(1) We hope to indicate how much freedom one has in selecting
the sequence Alf A2, if final transition probabilities are desired.

(2) In terms of S[Y], we hope to illuminate the truth of
Theorem A.

( 3) Although no explicit problems are stated, we also hope to
provide some feeling as to what future generalizations can be ex-
pected.

Finally we state that all matrices herein derive their entries from
the real number field.
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Results. It is easily verified that S[Y] is a compact convex set
with the property that if AeS[Y] and BeS[Y] then ABeS[Y].
Of course if Y = (1/n, 1/n, •••, 1/ri) then S[Y] denotes the set of
doubly stochastic matrices which, along with the stochastic matrices,
have been studied extensively.

1* The vertices of S[F]* In this section we give a procedure
for finding the vertices of S[Y]. The inductive procedure of Jurkat
and Ryser [4] for finding the vertices of U(R, S) — {mxn matrices
A ^ 0 with ith row sum r< and ith column sum c3- where R — (ru r2,
• , τm) and S = (clf c2, , cn)} is utilized for finding vertices in S[Y],
for Y > 0. This is done by establishing an isomorphism between
S[Y] and U(Yf Y).

LEMMA 1.1. For Y> 0, S[Y] is isomorphic to U(Y, Y).

Proof. Let D = diag. (yu y2, , yn). Then, if AeS[Y], DAe
U(Y, Y). Further, if Ae U{Y, Y\ D~ιAe S[Y]. Finally, it is easily
seen that this one-to-one correspondence is in fact an isomorphism
between S[Y] and U(Y, Y).

Thus to find the vertices of S[Y] we can find the vertices of
U( Y, Y) by the Jurkat-Ryser procedure and then map these vertices
by D~ι back to the vertices of S[F]. For the sake of completeness,
we shall include a summary of the Jurkat-Ryser procedure for finding
the vertices in U(R, S) for R > 0, S > 0, and

n + + rm = c, + + cn .

To construct a vertex A e U(R, S), pick a position (i, j) in an
mxn array. Compute atj = min {rif Cj}. If ai3 — ri9 then complete
the ith row with 0's and delete the ith row obtaining a smaller size
matrix which must be a vertex of U[(ru , rt-lf ri+1, , rm),
(cl9 , cy. l f cy - r<f ci+1, , cn)]. If atJ = c, , then complete the ith
column with 0's and delete the jth column obtaining a smaller size
matrix which must be a vertex of U[(rl9 , rt^lf rt — cif ri+ί, , rm),
(Cί9 , Cy^i, Cy+1, , Cn)\.

This procedure is then reproduced on the smaller sized array
unitil a vertex is found. Further, all vertices may be found by
applying this inductive procedure.

For example, by applying the procedure to find the vertices of
S[(l/2, 1/3, 1/6)], we obtain

/I 0 0\ / i f 0\

0 1 0) and 11 0 01 for i = 3, j = 3 .

\0 0 1/ \0 0 1/
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(1 0 Ov /f 0 i\

0 i i j a n d i i 0 1 for i = 3, i = 2 .

\θ 1 0 / \0 1 0/

it o i\ ji § ov /t i o\

0 1 0 , U 0 I and 0 £ £ | for i = 3, i = 1 .

\1 0 0/ \l 0 0/ \l 0 0/

This then specifies the entire list of vertices of S[(l/2, 1/3, 1/6)].
To extend our work to finding the vertices of S[Y] where Y^ 0

we proceed as follows. As YA = Y if and only if YPP'AP = YP
i.e., P*S[ Y]P = S[ FP], for any permutation matrix P we may assume
without loss of generality that Y = (yl9 y2, , yr, 0, , 0) where

yk > 0 for k = 1, 2, . -, r. Now ΓA = Γ implies that A = (^ ^)

where A1 is of order r. Hence (ylf •••, T/̂ Ai — (y^ •••, τ/r) and so

Λ 6 S[d/lf , yr)\. Further, if A, G S[(y19 , yr)] then A = ( ^ J j j G

S[F] if and only if (A21 A2) ^ 0 has row sums equal to one. Thus

the vertices of S[Y] may be found as follows.
4 e S [ 7 ] is a vertex of S[Y] if and only if Ax is a vertex of

S[(Vι, "'yVr)] and (A2i A2) has precisely one 1 in each row. For
example the vertices of S[(l, 0, 0)] are as follows.

2* Moving in £[F]* This section considers the kind of changes
that can be made among the entries of a matrix Ae S[Y] to obtain
another matrix ΰ e S [ 7 ] . In light of Theorem A, our curiosity is
over the various choices for each At in constructing the sequence
Al9 A2, . The first result related to this question requires the
following definition. An n x n matrix iVis called a loop matrix if N
has a collection of nonzero entries say nhh, nhh, nHh, , nla__1J8, nis3 s =
nit9 i9 with

— if (i, j) = (ikf jk+1)
y^

— if (i, j) - (iΛ, 3k)

0 otherwise
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for ε Φ 0 and Y = (ylf y2, , yn) > 0 some probability vector. For
example,

r s t

' i - 0 — f '

k

— e 0
Vi V:

0 — —
1

THEOREM 2.1. Suppose A and B are in S[Y] with Y>0. Then
there is a sequence of loop matrices Nίf N2, ••, Nt so that A — Alf

Aί + Nι = A2, •-., At + Nt = At+1 = B where AkeS[Y].

Proof. The proof is a matter of translating [Theorem 3.1,1], by
using Lemma 1.1, into the current result.

For the extension of this theorem to the case where Y ^ 0 we
introduce the following definition. A matrix S is called a shift matrix
if S has row sums zero and precisely two nonzero entries in some
one of its row, say ai5ι = ε and aijz = — ε. For example,

( 0 0 0 0 0

0 ε 0 - ε 0

0 0 0 0 0,

THEOREM 2.2. Suppose A and B are in S[Y] with Y^0. Then
there is a sequence of loop matrices Nu N2, , Nt and shift matri-
ces Sίf S2, •••,£, so that A = Alf A, + Nt = A2, , At + Nt = A ί+1,
-̂ •ί+i + >̂>i — Λ ( + 2 , , At+ι + &ι = At+ι+1 = ^ .

o,
Proof. Without loss of generality we assume Y - (yh •• ,Vr,

• , 0) has precisely r nonzero components. Then

A =
0

B =
Bn 0

J521

with An and JBU of order r. Now as An, BneS[(yu •••, ]/r)] we see
from Theorem 2.1 that there are loop matrices Nl9 N2, , Nt so that
A = Λ, Λ + JVΊ = Ag, , At + JVt = A t + 1 where each Afc 6 S[ Γ] with
5 and At+1 agreeing in each entry in the first r rows. Now we may
add a sequence of suitable shift matrices to At+1 yielding At+2 whose
(r + 1, 1) entry is precisely that of B. Similarly without altering
this entry we may again add a sequence of shift matrices to At+2
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whose (r + 1, 2) entry is precisely that of B. Continuing in this
manner it follows that there is a sequence of shift matrices say
Slf S2, - , St so that At+ι + S, = At+2, , At+ι + St = At+ι+1 = B with
each At+ke S[Y]. This then is the result of the theorem.

3* The size of S[F]* This section discusses the size of the set
S[Y], In particular, we find the size of the largest simplex contained
in S[Y]. The work may be considered an extension of a result of
Marcus and Mine which provides that dim S[(l/n, 1/n, , 1/n)] =
(* - I)2.

Let <Λ^(m, ri) — {m x n matrices A so that A has its ΐth row
sum and ith column sum being zero}. <yl^{m, ri), of course, is a vector
space.

LEMMA 3.1. = (m — l)(n — 1).

Proof. Let et be the (0, l)-row vector with m coordinates having
precisely one 1, in its ith position. Let e be a row vector with m
coordinates having a one in each position. Let A{i) be the ith column
of A and

/ e 0

0 e

X =

m

Set M =

0

0

0 0

an (n + m) x mπ matrix. Then A 6 ^K(m, n) if and only if JίX = 0.
Thus, as rank M ~ m Λ- n — ly dim <yf^(m, ri) — m% — [m + n — 1] =
(m - l)(n - 1).

, cn) > 0
, S) =

L E M M A 3.2. If R = (rl9 r2, rm) > 0 α^ώ AS = (cx, c2f

T = ^ _|_ ^ _|_ . . . + γ^ = ^ + U2 + . . . _|_ C%> ^ g ^ (JJm

(m - 1 ) ( Λ - 1).

Proo/. First note that A - r " 1 ^ ^ ) > 0 and A e U(R, S). Let
Eu E2, •••, #(„_!)(*_!, be a basis of <yΓ{m,n). Then A, A + $E19

A + SJK2, •••, A + sE^v^v provide the vertices of an (m — ϊ)(n—l)
dimensional simplex of U(R, S) for ε sufficiently small. To see that
this is a largest simplex in U{R, S), suppose Bo, Blf —*,Br are the



410 D. J. HARTFIEL

vertices of any simplex of U(R, S). Then {B, - Bo, B2 - Bo, ,
Br — Bo} is linearly independent. But each Bk — Boe ̂ V{m, n) and
so r ^ (m - l)(n — 1).

These two lemmas provide the initial result.

THEOREM 3.1. For Y > 0, dim S[Y] = (n - If.

Proof. An application of Lemma 1.1 and Lemma 3.2.
For the dimSfF] when Y^> 0, we proceed as follows.
Let Λ^(m, ) = {m x n matrices A with ith row sum zero}. Let

U(R, ) = {m x n matrices A ^ 0 with ith row sum r j .

LEMMA 3.3. d i m ^ ( m , ) = m(n — 1).

Proof. As in Lemma 3.1.

LEMMA 3.4. If B = (rt, r2, , rw) > 0 £/̂ w dim ?7(Λ, ) = m(n-l).

Proof. As in Lemma 3.2.

The major result of this section may now be stated as follows.

THEOREM 3.2. dim S[ Y] = (r- I)2 + (n - r){n -1) for Y having
precisely r nonzero values.

Proof. Without loss of generality, we assume that Y =
{Vu y* , Vr, 0, , 0). Recall A - ( ^ ° J 6 S[Y] if and only if
Aj_e S[(ylf y2, , yr)] and (A2ί A2) ̂  0 has row sums one. Let BQ, Blf

• , Blr-D* be the vertices of simplex in S[(yu y2, , yr)\. Applying
Lemma 3.4, let Co, Clt , Cw ( w_υ be (^ — r) x ^ matrices which are
the vertices of a simplex in U(R, ) where R = (1, 1, , 1). Let

/ft 0\ /ft 0\ /ft 0

^ , . 0

It is easily verified that these matrices form the vertices of an (r — I)2 +
(n — r)(n — 1) dimensional simplex of S[Y]. Finally, by an arguement
similar to that in Theorem 3.1, S[Y] can have no larger simplex.

4* Some intersection properties of S[Y]* This section considers
the question of how well S[Y] can be used to determine particular
stochastic matrices. In [3], criteria (3) of Theorem A is used to show
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that the product AγA2 Ak gets closer to the set of rank one
stochastic matrices as k increases. Criteria (2) is added to show that
the product also gets closer to S[ Yo]. These two bits of information
thus provide the desired result, as there is only one rank one matrix
in >S[F0]. Our results are intended to expand on this area.

THEOREM 4.1. Ae SlY,] n S[Y2] Π Π S[Yh] for some linearly
independent set {Yu Y2, •••, Yh} if and only if A is reducible into
at least h isolated submatrices.

Proof. Suppose {Yu Y2, •••, Yh} is linearly independent and
Ae S [ Γ J Π S[Y2] Π n S [ 7 J . Without loss of generality we may
assume that

A =

0

A2

0

0

0

0
o \
0

0

is in normal form [2, p. 75] with g isolated irreducible submatrices.
Now dim {X\ XA = X} = g. As {Yίf Y2, - - >, Yh) c {X\ XA = X) it
follows that h ^g.

The converse argument is elementary.

a o\ ft * °\
As an application note that (-, π ) and i i 0 are in precisely one

u υ / li * o/
/I 0 0\

S[Y] while 0 1 0 is in infinitely many S[Y]. However, it does
\-h i 0/

/I 0 0\
follow that if 0 1 0 e S[ΓJ n S[ΓJ Π Π S[Yh] then dim span

\i i 0/
{Yi, F2, , Yft} ^ 2. Also as a consequence, if R = {rank one
stochastic matrices} we have the following.

COROLLARY 4.1.

Rf)S[Y] =«( Y =

2/i Vz

Vl 2/2

i.e., the only rank one matrix in S[Y] is Ϋ.

Vn

Vn )
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From this corollary we see that rank one stochastic matrices are
completely determined by the particular S[Y] they are in. To
generalize this result to idempotents of higher rank we have the
following. One should recall that idempotents play an important
role in the study of final transition probabilities.

THEOREM 4.2. Suppose [Yu Y2, , Yh} is a linearly independent
set of probability vectors and Y1 + Y2 + + Yh> 0. Then there
is at most one idempotent of rank h in <S[FJ Ω S[Y2] Ω Ω S[Yh],

Proof. Suppose A and B are idempotents of rank h in S [ FJ Ω
S[Y2] Ω Ω S[Yh]. Without loss of generality by Theorem 4.1 we
may assume that

A1 0 0

0 A2 0

1,0 0 ••• A

where each Ak (k = 1, 2, , h) is rank one. Thus there is a linearly
independent set {Zh •••, Zh} of probability vectors so that

/0 0

0 0

0 0

0 0

0

= Zk for k = 1, 2, •••, h

0/

and span {Zl9 , Zh} = span {Ylf , Yh). Therefore, ZkB = Zk and
hence by partitioning B as is A, say

B2

B12

B2

>*/

, h) iswe have that Bίό = 0 for i Φ j . Hence each Bk (k — 1, 2,
rank one and again as ZkB — Zk it follows that A = B.

It should be noted here that Theorem 4.2 does not imply that
there is an indempotent of rank h in S[ΓJ Ω S[Y2] Ω Ω S[Yh], In
fact S[Yi] Ω S[Y2] Ω ••• Ω S[Yh] may contain only I. Further we
should mention that the condition Yx + Y2 + + Yh > 0 may not
in general be relaxed, for if the normal form of A is
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/ A

0

B

0

'A

0

0

0

then A is idempotent if and only if each Ak (k = 1, 2, , g) is idem-
potent and rank A = rank Ax + + rank Ag. Thus if g > 1 and 1?
appears then there are infinitely many choices for B and hence
infinitely many idempotents. Concerning the count of the idempotents
in S[Y] we do have the following.

THEOREM 4.3. IfY= (ylf y2, , yn)
only finitely many idempotents.

^,2, then S[Y] has

THEOREM 4.4. If Y - (ylf y2, , yn) with n^2 and Y> 0 then
S[Y] has infinitely many idempotents.

Proof. Without loss of generality, assume Y= (ylf y2f , yn_lf 0).
I 0Now A — ( E> π ] where B > 0 SL n — 1 dimensional row vector with

Σΐ^ϊbι ~ 1 yields infinitely many idempotents in S[Y] corresponding
to infinitely many choices of B.

THEOREM 4.5. If Y>0 then S[Y] has only finitely many
idempotents.

Proof. A is an idempotent of S[Y] if and only if there is a
permutation matrix P so that

B = PιAP =

(A, 0

0 A2

0 0

0 \

0

with each Ak of order nk> rank one for k = 1, 2, , g and Be S[YP].
F u r t h e r , i f Y P = Ϋ a n d σk = y n i + . . . + n j c _ 1 + ί + ••• + y n i + . . . + n ] c _ _ ι + n k t h e n

Ak = (W) where

This then implies that there are only finitely many idempotents in
S[Y].

It is easily established that if Y> 0 then A e S [ 7 ] implies that
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A is reducible. Further, if Y> 0 then AeS[Y] implies that A is
irreducible or completely reducible [2, p. 78]. The remainder of this
section then contains results concerning the 0 pattern of matrices in
more than one

THEOREM 4.6. Suppose Y has precisely r nonzero entries. If
P is any permutation matrix so that YP = (0, , 0, yt+l9 , yt+r,
0, , 0) then Ae S[Y] implies that PιAP — B is such that bi3- = 0
for t+l^i^t+r and j < t + 1 or j > t + r, i.e., B has an iso-
lated submatrix in rows t + 1 to t + r.

Proof. By direct calculation.

COROLLARY 4.2. If {Yl9 , Yr) is a linearly independent set of
probability vectors so that YiYj = 0 for i Φ j with Y1 + Y2 + +
Yr > 0 then A e S[ΓJ Π S[Y2] Π Γ) S[Yr] implies that there is a
permutation matrix P so that B = PιAP is completely reducible into
r isolated submatrices.

THEOREM 4.7. If Ae S[X] n S[Y] then either
(1) XY* = 0 or
(2) there is a probability vector Z so that zi > 0 if and only

if Xi>0 and yt>0 with AeS[Z], i.e., the isolated submatrices
corresponding to X and Y intersect in an isolated submatrix corre-
sponding to Z.

Proof. As a consequence of [2, p. 96] there is a positive integer

m and a permutation matrix P so that AQ = lim^^P*AmkP = (π

where

IA1 0 0

0 0 A.

is of order t, each At > 0 of order ί4 and rank one. Now of course
Ao e S(XP) Π S( YP). Note that XY* - 0 if and only if (XP)( YP)* = 0.
Thus suppose XΓ' # 0. Let XP = X, YP = f. As Ao e S [ l ] n S[ Ϋ]
it follows that xt = y, = 0 for ΐ > ί. Thus J e S[(«1( , xt)] n

O n e now sees (2) by direct calculation.

5. Topological properties of S[F]. In this section we consider
how close and how far apart matrices in S[X] can be from matrices
in S[Y] in terms of the components of X and Y. Our first result
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extends Lemma 2 in [3] concerning the closeness of matrices in S[X]
to those in S[Y].

THEOREM 5.1. // 4 e S [ I ] there is a BeS[Y] so that

max I aiS — bι3 | <Ξ ^ ^ —* max | χ% — yi \ where δ — min yt .
ij 0 Vi>^

Proof. We may assume without loss of generality that Y =

(Vi, ' , 2/,, 0, - , 0) with Vl > 0, , yr > 0. Partition A = (j^ £ 2 )

with A, of order r. Compute YA = Z. Set Ϋ = (yl9 •• ,2/r) and
A = (Ai A12). Then ΫA = ̂ . Again without loss of generality, assume
Vi ^ «i, 1/2 ̂  s* , 1/. ^ «., 2/.+1 ̂  «.+i, , Vr ̂  Sr Let eft ̂  0 so that
(1 ~ εk)zk = yk for k = l,2, ---,8. Thus as Σί=i 2/* = Σϊ=i ^ it follows
that Σϊ=.+i Vt = Σ U i ε*s4 + Σϊ=.+i «*• Pick 0 ̂  3} ̂  1 so that

zs+i + ^i+1^i + + δl+1zs + δ'rχizr+ί + - + δ;+1sΛ = 2/.+1

^ r + δlz, + + δr

szs + δ;+ 1^ r + 1 + + δr

nzn = yr ,

with

Sί"*1^ + + δΓ̂ i = ε^i

δ:+ 1^ s + + δ ^ s = εsz5

Now let A{k) denote the kth. column of A for k = 1, 2, , n and set

B - (A(1) - ε ^ 1 ^ , Ai8) - εsA
{s\ A(s+1) + δ{+1Aa)

+ + δs

s

+1A{s) + ds

rX\A{r+1) + - + <5:+1A(%), , i ( r )

+ δri { 1 ) + . . . + δ: i ( s ) + dr

r+1A
{r+i) + + δ;i ( % ), o,

Now B has row sums equal to one and ΫB — Ϋ. Therefore,

\A2ι A2/

Now note that δ? + + δk

s <^ n max ε* for fc = s + 1, , r and

that as Σϊ=i i/fĉ î = zt we have that akt ^ 2t/δ = (| zt — yt \)fδ for t > r
and k tί r. Hence
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I ati - bi3-1 ^ m a x \εlf , e., n ( m a x s, + — m a x \ z t - y t \ ) \

^ n(maxe, + — m a x \zt — y t | )

JL max | as, -
0 τ<t

^ ^ max \zi-yi\.

Finally set xt — yt = 7* for i = 1, 2, , n. Then

— zt\ =

- Xi

<!/*

£ \ V i -

2-i aki\p^k
k

— Vi\ ^ (n + 1) max | xt —

and so

Thus

2n(n + 1)

d

max \xt

Our results concerning how far matrices in S[X] can be from
matrices in S[Y] rest on the following theorem.

THEOREM 5.2. Given any probability vector Y, there is an
AeS[Y\ so that au = 0 for some i.

Proof. If y > 0, pick P a permutation matrix so that YP = Yo =
(ft, 02, , 0r, 0, ., 0) with ft > 0, & > 0, . , # r > 0. Then

/ft ft ft o . . - o \
01 02 0r 0 0

01 02 0r 0 0
1 0 . . . 0 0 . . . 0

\ i o ... o o ... o/

eS[YP)

with 0 in the (n, n) position and hence PtY0PeS[Y] has the desired
property. If Y > 0 then let yiQ = min yfc. Now consider the loop
matrix
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N=L I-
Let Y =

Vi

2/1 Vz y*

Vl Vz-'-Vn

2/1 y2-" yn

eS[Y].

Then Y+ NeS[Y] and has the desired property.
As corollaries, we can see how far the matrices in S[Y] are

spread and also how far one can expect matrices in S[X] to be from
matrices in S[Y].

COROLLARY 5Λ. Given any probability vector Y there is an
Ae S[Y] and a Be S[Y] so that max^ | aίό — δ^ | = 1.

Proof. Take A with the property of Theorem 5.2 and B = /.

COROLLARY 5.2. Given any probability vectors X and Y there
is an A e S[Y] and a Be S[X] so that max^ | ai3 — bi5 \ — 1.

Proof. As in Corollary 5.1.

6* Conclusion* Concluding this paper, we cite §§ 1, 2, and 3 as
providing some answer to motivating point (1) in our introduction.
For motivating point (2) we cite § 4 and § 5 as being significant.
Concerning motivating point (3) we label the general areas of

(1) mean limiting transition probabilities [2, p. 96] and
(2) studies on sequences of transition matrices with some specified

zero pattern,
as possibly fruitful areas in which to further generalize the classical
work of Markov chains. Loosely speaking, as I see it, one can con-
sider the defining properties of the final transition matrix Ao, i.e.,
does it lie in S[Y] or several S[Y], is it idempotent, etc., and let
these properties determine possible sequences of stochastic matrices
Alf A2t so that limjfc..̂  AXA2 Ak = Ao, etc. Sections 4 and 5 may
then be useful in determining various types of such sequences.

ACKNOWLEDGMENT. The author acknowledges that the referee's
remarks were very useful in simplifying the material contained in
§§ 1, 2, and 3.

REFERENCES

1. R. A. Brualdi, Convex sets of nonnegative matrices, Canad. J. Math., 20 (1968),
144-157.
2. F. R. Gantmacher, The Theory of Matrices, Volume 2, Chelsea Publishing Company,
New, York, 1964.



418 D. J. HARTFIEL

3. D. J. Hartfiel, A result concerning strongly erogodic nonhomogeneous Markov chains,
to appear in the J. Linear Algebra and Appl.
4. W. B. Jurkat and H. J. Ryser, Term ranks and permanents of nonnegative matrices,
J. Algebra, 5 (1967), 342-357.
5. M. Marcus and H. Mine, A Survey of Matrix Theory and Matrix Inequalities, Allyn
and Bacon, Inc., Boston, 1964.
6. S. Schwarz, On the structure of the semigroup of stochastic matrices, Magyar Tud.
Akad. Mat. Kutots Int. Koze., 9 (1965), 297-311.
7. R. Sinkhorn, On the factor space of the complex doubly stochastic matrices, Abstract
62T-243, Notices Amer. Math. Soc, 9 (1962), 334-335.

Received July 17, 1973 and in revised form March 1, 1974. This research was sup-
ported by the College of Science Organized Research Funds of Texas A & M University.

TEXAS A & M University




