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AN ELEMENTARY PROOF OF THE
LIFTING THEOREM

TIM TRAYNOR

An elementary proof is given of the lifting theorem for
a complete totally finite measure space, which does not use
the martingale theorem or Yitali differentiation.

Introduction* In this paper we give a proof of the lifting
theorem for a complete totally finite measure space, which involves
only elementary properties of measure. The complicated isomorphism
theorem of Maharam's original proof [4] is avoided. On the other
hand, we do not use the concepts of martingale or of Vitali differ-
entiation ([1] [2] [3] [5]). In fact, the entire construction takes place
in the σ-ίield of measurable sets, without passing to the algebra of
essentially bounded measurable functions. We feel this makes it
easier to see what is involved.

Throughout what follows:
(S, ̂ /f, μ) is a complete measure space with μ(S) < °o;
^T= {Ae^:μ(A) = 0};
N is the set of nonnegative integers;
For subsets A, B of S,

AB = Af] B

A\B = {seA seB};

Ac = S\A

AΔB = ABC U BAC

A = B iff A, Be Λ and μ(AΔB) = 0 .

For a family 3ίΓ of subsets of S,

U J2T= U E .

l DEFINITIONS. For any field
(1) d is a (lower) density on S>f iff d is a mapping on S^f to
such that, for A, B in Sf,
(1) d(A) = A;
(ii) A = B implies d(A) = d(B);
(iii) d(0) - 0 , d(S) - S;
(iv) d(AB) = d(A)d(B).
(2) I is a lifting on j y iff I is a density on J ^ such that
(v) l(Ac) = Z(A)C, for A in j ^ :
For a detailed study of liftings and their applications, we refer
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to A. and C. Ionescu Tulcea [3].

2. REMARKS. Let I be a lifting on the σ-field J ^ c ^ C and
jr= l\sf\. Then:

(1) Ĵ ~ is a field in S.
(2) ^cz{Eej*ΊO<μ(E)<μ(S)}Ό{0,S}.
( 3 ) If, for each n in N, En e J^7 and A = (J J^> t h e n £(4) => 4 .

(Indeed, for each n, En\l(A) aA\l(A) = 0 , so #nV(ii) - 0 , by (2).)

3* THEOREM. If d is a density on a field J^f with
then there exists a lifting I on Jϊf, with

( * ) d(A) c l(A) c d(Ac)c , for A in

Proof. For each filterbase . ^ C J K let & denote an ultrafilter
containing .^. We recall that for subsets Ay B of S,

(a ) A e & iff Ac <£ S, and

(b) A π δ e J iff A e . ^ and ^

For each s in S, let

Since d is a density, ^{s) is a filterbase. Put

l(A) = {se S: Ae J^{s)} , for A in

By the properties (a), (b) of an ultrafilter, for A, B in JK we have
(v) l(Ac) = Z(A)β and (iv) Ϊ(AS) = Ϊ(A)Z(S). Moreover, if sed(A), then
i e , / ( δ ) c / ( s ) , so that sel(A). Hence, d(A)al(A). Similarly
d(Ac) c l(Ac). Using (v) we find that (*) holds. Since d(A) = A~ d(Ac)%
we have (i) l(A) = A. If N = 0 , then d(JSΓ) - d(0) - 0 and d(Nc) =
d(S) - S, so that, by (*), Z(iV) = 0 . Hence, (iii) Z(0) - 0 , Z(S) = S
and (ii) if A = 5, then i(A)Ji(S) = ί(AJβ) - 0, so that i(A) - ϊ(β).
This completes the proof.

The proof of the following theorem usually uses martingales or
Vitali differentiation. We use neither. However, the reader familiar
with Sion [5] will recognize the connection with his method. (See
Remark 7 below.)

4. THEOREM. Suppose that, for each n in N, JK is a σ-field
with ^Kcz S^n c J/w + 1 c ̂ € and ln is a lifting on JK with l% — ln+1 J JK-
Put S<sf~ σ-field (\Jn JK) Then there is a lifting I on J^f with
ln = l\ JKy for each n in N.
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Proof. The result will follow immediately from Theorem 3 if
we can construct a density d on Sf with d(A) = ln(A) for A in JK
To this end, for each ft in N, let ^l denote lk\S^k\. For each A in

in iV, and r < 1, put

; ft, r) = {.Se j ^ : μ(AF) ^ rμ(F), whenever Ez)Fe

<Z(A; ft, r) = U &r(A; ft, r) , and

d(A) - Π U Π d(A; k, r) .
r<l neN k^n

We will show that d is a suitable density function on
For fixed A, r, and ft, let 3ίΓ be a maximal disjoint subfamily

of &{A\ ft, r). Then JT" is countable. Put B = Zfc(UJ%"). Clearly,
5 e ^ ( A ; fc, r). Moreover, if Ee Sf{A\ k, r), E\B = 0 , by Remark
2(3) and the maximality of J%^ This shows that d(A; k, r) = B is the
largest element of 3ί(A\ k, r). In particular, d(A; k, r) e ^l c Szf.
If r < 8 < 1, we have (Z(A; k, r) Z) d(A; Λ, s), so we need only consider
rational r. Since J ^ is a σ-field, we conclude that d(A) e J^i

There is no difficulty in showing that A == B e s^ implies d(A) =
d(jβ), or that d(A) = ^(A), for A in J^ς. In particular, d(0) = 0 and
d(S) = S. We have left to check conditions (i) and (iv) of the defi-
nition of a density.

To check condition (iv), let A, Be Stf, ke N, r < 1. For each F
in ^l contained in d(A; k, (r + l)/2) Π d(B; k, (r + l)/2), we have

- μ((A U B)F)

> ((r + l)/2)/.(F) + ((r

Hence, d(A; k, (r + l)/2) n d(5; Λ, (r + l)/2) c d(AB; ft, r). By direct
computation, this yields d(A)d(B) ad(AB). On the other hand, for
each k and r, d(AB; ft, r) c d(A; ft, r) Π d(5; ft, r), so that ώ(i4B) c
d(A)d(B), establishing (iv).

To verify condition (i), let A e Ssf and put

d\A) = U n U d(A; ft, r) .

We will show that
(a) d'(A)A°±0,
(b) ^d'(Ac) = 0 , and
(c) d'(Ac)^d(AY, d'(A)z>d(A),

from which we get

d{A)ΔA = d{A)Ac U Ad(A)° <zd'(A)A° U Ad'(Ac) = 0 ,

as required.
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Fix r in (0, 1) and write Dk = d(A; k, r), for k in N. Since
Dk e 3ί{A\ k, r), we have for each B in

μ(ABDk) = μ(Alk(B)Dk) ^ rμ{lk{B)Dk) = rμ(BDk) .

Suppose Be\Jn JK Then there exists an n in N such that Be
For m ^ ^ , ^ D j*ς, and putting Cm = BJD«\U»S;A<» A* we have

^ Σ rμ(Cm)

= τμ{B\JDk).
k^n

Taking intersections over n we have

μ(AB Π U Dk) ^ rμ(B fl U A) .

By considering monotone sequences of such B we see that this holds
for all B in J ^ the σ-field generated by the field U* *SK I n P a r -

ticular, putting B = Ac we have 0 ^ rμ(Ac f}n \Jk^n Dk). But r > 0,
so μ(Ac Πu Ufĉ ^ ̂ fc) — 0. Taking the union over rational r in (0, 1)
we have Acd\A) == 0 . This proves (a). Replacing A by Ac we have
(b).

To prove (c) we let k e N, 0 < r < 1 and show

ί;,l - r) .

To this end suppose 0 ^ Ee^l and E(zd(A;k,r)c. Then
^(^4; fc, r), so there exists i^in ^ contained in E with /̂ (Aî ) < rμ(F).
Let Jϊ^ be a maximal disjoint collection of such F. By Remark 2(3)
and maximally of 5tT we have E\lk(\J 3T) = 0, so jδ; = W U ^ O .
Moreover, ^(Aί7) - Σ^ejr A«(AF) ^ Σ ^ ^ r/^(F) = rμ{E). In other
words, ^(A^) ^ (1 - r)μ(E). This shows that d(A; k, τ)c e

c; k, 1 - r), so d(A; fc, r)c c d(Ac; k, 1 - r). Hence,

c - U Π U
re (0,1) n k^n

c U Π U d(A°; k,l-r)
re(0,l) n k^n

= d\A<) .

Since it is clear that d{A) c d\A), this proves (c) and completes the
proof of the theorem.

To prove the lifting theorem, we need one more lemma, due to
A. and C. Ionescu Tulcea [2]. For completeness, we include a proof
here.

LEMMA. Let J^ be a σ-field with ^VcLS/c^f, I a lifting
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on Ssf. If A e ̂ \szf and Szf' — field (Jϊf U {A}), then there exists a
lifting on S^fr extending I.

Proof. Let J ^ = l[J*\, gf = {Fe j ^ " : μ(EAc) = 0}. Let 3f be
a maximal disjoint subfamily of & and let Ax = l(\J J?Γ). Then
i ^ g 7 and, by maximality of JtΓ and Remark 2(3), E\At = 0, for
all E in if, so that A1 is the largest element of if. Similarly, let
A2 be the largest F in J ^ w i t h KEA) = 0. Put A = (A U
Then A = A. (Indeed, AAA c ΛA0 U A\A = 0.) Thus,
field (J^U {A}) (=J(CA U DAC:JJ, De_J*f}). For £7, F in ^

( a ) J&A = FA implies £Ά = FA, and
(b) E_AC = FAC implies #AC == FAC .

Indeed, EA = FA implies μ{{EΔF)A) = μ((EΔF)Ά) = 0, so that, by
definition of A2, F J F c A 2 c : A c . Thus, (EΔF)A = 0, so FA = FA.
The proof of (b) is similar.

Now define ϊ' on J ^ ' by

U DAC) = ί(C)A U Z(J5)AC, for Cf D in

Using (a) and (b) we see that V is well-defined and that for M19 M2

in s^\ Mγ^M% implies V(Mj) = i'(ikf2). The other properties of a lifting
are easily verified. Moreover, for C in J ^ ί'(C) = ί(C)A U Ϊ(C)AC = i(C),
so V extends I.

We can now prove the lifting theorem:

6. THEOREM. Let (S, ̂ ^ μ) be a complete measure space with
μ(S)<oom Then, there exists a lifting on ^ .

Proof. Let Sίf be the set of pairs ( j ^ V) where j y is a σ-field
with J ^ c J / c ^ / and ί is a lifting on J ^ with the ordering: (J< ί) ̂
{Sf\ V) iff J ^ c jy" and I = I' \ s^. We show that ^ ^ has a maximal
element. Indeed, suppose 3ίf' — {(J^, lt): ie 1} is a totally ordered
subfamily of £%f. We distinguish two cases:

(a) If £έff has no countable cofinal subfamily, put s^f— \JieI J^
and 1{A) = ̂ (A), for A in j^J, i in /. Then (J< ί) is an upper bound
for Sίff in Sίf.

(b) If Jg^; has a countable cofinal subfamily ^ " = {(J^, li%):
n G JV}, then by Theorem 4, ̂ " (and hence §ίfr) has an upper bound
in £%f. By Zorn's lemma, we conclude that Sίf has a maximal element,

By Lemma 3, and maximality, Sf = ̂ Jt, and the theorem is
proved.

7. REMARKS.

(1) To see the relationship of our method to that of Sion [5],
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for each k in N and s in S, let J?Z(s) = {Fe^l'.se F}, directed
downward by inclusion. Then,

d(A;k,r) = lk(\seS: lim

(One inclusion is obvious, the other follows from Sion's Theorem 2'.)
(2) As several authors have pointed out (see, for example,

Sion [5], and for more references, Sion [6]), liftings provide very
special Vitali differentiation system, even when no others are available.
(If I is a lifting on *̂C such a system is obtained by assigning to
each s in S, {F: s e Fe l[^€]}, directed downward by inclusion.) Apart
from our desire for an elementary proof, this was our main motiva-
tion in looking for a construction of a lifting without using differ-
entiation concepts.

(3) Added in proof. S. Graf [On the existence of strong
liftings in second countable topological spaces, (to appear)] has noticed
that one may change the word "lifting" to "density" in the state-
ment of Theorem 4. The proof is essentially contained in our proof.
Graf has independently obtained a proof of this result (using Radon-
Nikodym derivatives).
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