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AN ELEMENTARY PROOF OF THE
LIFTING THEOREM

Tim TRAYNOR

An elementary proof is given of the lifting theorem for
a complete totally finite measure space, which does not use
the martingale theorem or Vitali differentiation.

Introduction. In this paper we give a proof of the lifting
theorem for a complete totally finite measure space, which involves
only elementary properties of measure. The complicated isomorphism
theorem of Maharam’s original proof [4] is avoided. On the other
hand, we do not use the concepts of martingale or of Vitali differ-
entiation ([1]1[2][3][5]). In fact, the entire construction takes place
in the o-field of measurable sets, without passing to the algebra of
essentially bounded measurable functions. We feel this makes it
easier to see what is involved.

Throughout what follows:

(S, #; 1t) is a complete measure space with #(S) < o;

N={Ae 7 A) = 0};

N is the set of nonnegative integers;

For subsets A4, B of S,

AB=ANB;
A\B = {se A:s¢ B} ;
A= 8\4;

AAB = AB° U BA°;
A=Biff A, Be _# and ((A4B) =0 .

For a family 2% of subsets of S,
Uz= UFE.

Ee

1. DEeFINITIONS. For any field ~7c_~;

(1) d is a (lower) density on .o~ iff d is a mapping on .7 to
7 such that, for 4, B in .o

(i) d(4) = 4;

(ii) A = B implies d(4) = d(B);

(iii) d(@) = @, d(S) = S;

(iv) d(AB) = d(A)d(B).

(2) 1is a lifting on .o~ iff | is a density on . such that

(v) (A% =1(4), for A in o~

For a detailed study of liftings and their applications, we refer
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to A. and C. Ionescu Tulcea [3].

2. REMARKS. Let ! be a lifting on the o-field .o c_# and
F =1[.57]. Then:

(1) & is a field in S.

(2) F Cc{Ee 7:0< UE) < (S} U{w, S}

(3) If, for each nin N, E,e &, and A = U.%,, then I(4)D A.
(Indeed, for each =, E,\l(4A) c A\l(4A) = O, so E,\l(4) = @, by (2).)

3. THEOREM. Ifd isa density on a field &7 with 4T C_#,
then there exists a lifting 1 on .7, with

(*) a(A) cl(4) cd(4), for A in 7.

Proof. For each filterbase <z c .7 let 7 denote an ultrafilter
containing <# We recall that for subsets A, B of S,

(a) AecF iff A°¢ &7, and
(b) AnBeZ iff Ac <& and Be .
For each s in S, let

F(s)={Aec :sed(A)}.
Since d is a density, .&# (s) is a filterbase. Put
I(A) = {seS:Ae F(s)}, for Ain .o7.

By the properties (a), (b) of an ultrafilter, for A, B in .&/ we have
(v) i{A°) = I(A)° and (iv) {AB) = l(A)I(B). Moreover, if se d(A), then
Ae 7(s)c.F(s), so that sel(A). Hence, d(4)cl(4). Similarly
d(A°) cl(A°). Using (v) we find that (*) holds. Since d(4) = A =d(A°),
we have (i) [(4) = A. If N= ¢, then d(N) = d(2) = @ and d(N°) =
d(S) = S, so that, by (*), (N) = ©. Hence, (iil) (@)= @, I(S)=S
and (ii) if 4 = B, then [(A)4l(B) = l(A4B) = @, so that I(4) = U(B).
This completes the proof.

The proof of the following theorem usually uses martingales or
Vitali differentiation. We use neither. However, the reader familiar
with Sion [5] will recognize the connection with his method. (See
Remark 7 below.)

4. THEOREM. Suppose that, for each n in N, 7, is a o-field
with N~ C 7, C A, C A and l, 1s a lifting on o7, withl, =1,.,| ..
Pyt 7= o-field (U, .8%). Then there is a lifting 1 on & with
l, =17, for each n in N.
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Proof. The result will follow immediately from Theorem 3 if
we can construct a density d on .o with d(4) = 1,(4) for A in ..
To this end, for each k in N, let ., denote 1,[.%%]. For each A in
<7 k in N, and r <1, put

(A k, r) = {(Ee F;: M(AF) = ru(F'), whenever ED Fe 7},
dAsk,ry=U 2Ak, r), and
dA) =N U Nd4 k).

r<imneN kzn
We will show that d is a suitable density function on .o .

For fixed A, r, and k, let %% be a maximal disjoint subfamily
of 27(A; k, r). Then ¢ is countable. Put B = [, (U .%"). Clearly,
Be 22(A; k, r). Moreover, if Ec =27(4;k, r), E\B= @, by Remark
2(8) and the maximality of .2¢7 This shows that d(4; %, r) = B is the
largest element of =2 (A4;k, r). In particular, d(4;k, r)e ¥, C X
If »r<s<1, wehave d(4;k, r)Dd(4;k, s), so we need only consider
rational r. Since &7 is a o-field, we conclude that d(A4)e o~

There is no difficulty in showing that 4 = Be &7 implies d(4) =
d(B), or that d(A) = l,(A), for A in .o7,. In particular, d(®) = @ and
d(S) = S. We have left to check conditions (i) and (iv) of the defi-
nition of a density.

To check condition (iv), let 4, Be .7 ke N, r <1. For each F
in &, contained in d(4; k, (» + 1)/2) N d(B; k, (r + 1)/2), we have

H(ABF) = ((AF) + ((BF) — ((A U B)F)
= ((r + 1)/2)UF) + (r + 1)/2)U(F) — ((F)
= ri(F) .
Hence, d(4; k, (r + 1)/2) N d(B; k, (r + 1)/2) cd(AB; k, r). By direct
computation, this yields d(4)d(B) cd(AB). On the other hand, for
each k and r», d(AB;k, r)cd(4; k, r)N d(B; k, ), so that d(AB)C
d(A)d(B), establishing (iv).
To verify condition (i), let Ae .o and put
da)y=U N U d4;k ).
0<r<1 neN k2n

We will show that
(a) d'(AHA* =g,
(b) Ad'(A°) = @, and
(e) d'(A°)Dd(A), d'(4)>Dd(4),

from which we get
d(A)4A = d(A)A° U Ad(A)y cd'(A)A° U Ad'(A°) = @,

as required.
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Fix » in (0,1) and write D, = d(A; %, r), for k in N. Since
D,e 2(A;s k, r), we have for each B in .97,

MABD,) = (Al(B)D,) = r(1.(B)D;) = r(BD,) .

Suppose Be U, .. Then there exists an n in N such that Be .o,
For m = n, 97, D .7, and putting C,, = BD,\U.<i<n Di» We have

HABY Dy) = 3 AC,)
z X rCn)
= rp(BkLan D,).
Taking intersections over n we have
MUAB Okg, D,) = run(B rn]kgb D,).

By considering monotone sequences of such B we see that this holds
for all B in .%7 the o-field generated by the field U, .%%. In par-
ticular, putting B = A° we have 0 = r#4(A° N, Usz. D). But » >0,
so #(A° N Urzw D) = 0. Taking the union over rational 7 in (0, 1)
we have A°d'(A) = ©@. This proves (a). Replacing A by A° we have
().

To prove (c) we let ke N, 0 < r <1 and show

d(A; k, r)cd(A% k1 —1r).

To this end suppose @ = Eec.&, and Ecd(4;k r)°. Then E¢
F(A; k, r), so there exists F'in ., contained in E with p(AF) < ru(F).
Let .2¢" be a maximal disjoint collection of such F. By Remark 2(3)
and maximality of .22 we have E\l,(U >¥") = @, so £ =, (U ).
Moreover, MAE) = Sipexr AF) < Sipc o ri(F) = ri(E). In other
words, MA°E)= (1 — r)u(E). This shows that d(4;k, r)e
(A% k, 1 — 1), so d(A; k, r)°cd(A% k, 1 — r). Hence,
dAy = U nkg d(A; k, r)°

re(0,1) n

cUNUdA5k 1—7)

r€(0,1) n k=n

= d'(4°) .

Since it is clear that d(A) cd’(4), this proves (c) and completes the
proof of the theorem.

To prove the lifting theorem, we need one more lemma, due to
A. and C. Ionescu Tulcea [2]. For completeness, we include a proof
here.

5. LEMMA. Let & be a o-field with 4"C Y C . #, | a lifting
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on S If Ae #Z\&7 and 7" = field (7 U {4)}), then there exists a
lifting on &7 extending .

Proof. Let & =Il[], & ={Fec 5 : W(EA°) = 0}. Let 2 be
a maximal disjoint subfamily of & and let A, =U(J 2"). Then
A, e & and, by maximality of %" and Remark 2(3), E\4, = @, for
all E in &, so that A, is the largest element of 2. Similarly, let
A, be the largest E in & with p(EA) =0. Put A =(AUA4)\4,.
Then A= A. (Indeed, A4A c A,A°U AA = @.) Thus, ¥ =
field (&7 U {4)) (= (CAU DA*:C, De .}). For E, F in .&F,

(a) EA = FA implies EA = FA, and

(b) EA°= FA° implies EA° = FA° .
Indeed, EA = FA implies p(E4F)A) = p(E4F)A) = 0, so that, by
definition of A, EAFc A,c A°. Thus, (E4F)A = @, so EA = FA.
The proof of (b) is similar.

Now define I’ on &7’ by

V(CA U DAy = I(C)A U I(D)A*, for C, D in .or .

Using (a) and (b) we see that !’ is well-defined and that for M, M,
in 7', M,= M, implies I'(M,) =1'(M,). The other properties of a lifting
are easily verified. Moreover, for Cin .7 I'(C) = I(C)A U I(C)A° = I(C),
so [’ extends [.

We can now prove the lifting theorem:

6. THEOREM. Let (S, 4 tt) be a complete measure space with
US)<eo. Then, there exists a lifting on _#.

Proof. Let 57 be the set of pairs (.97 l) where .o is a o-field
with 4"c.&”c_# and | is a lifting on .&7 with the ordering: (%7 1) <
(', )iff wcw'and I =1'"| % We show that 5 has a maximal
element. Indeed, suppose 27’ = {(.%, l): 1€ I} is a totally ordered
subfamily of 572 We distinguish two cases:

(a) If 57’ has no countable cofinal subfamily, put &= U,e; &4
and I(4) = 1,(4), for A in .97, 4 in I. Then (%7 ) is an upper bound
for &7’ in 2Z

(b) If 57’ has a countable cofinal subfamily 52" ={(-*4, L. ):
ne N}, then by Theorem 4, 5#” (and hence 5#’) has an upper bound
in 52 By Zorn’s lemma, we conclude that 57 has a maximal element,
(4 1).

By Lemma 3, and maximality, & = _+, and the theorem is
proved.

7. REMARKS.
(1) To see the relationship of our method to that of Sion [5],
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for each k in N and s in S, let F3(s) = {Fe 7;:sc F}, directed
downward by inclusion. Then,

d(A; &, ¥) = lk<{se S:Feh’mﬂﬁ‘::(‘lﬁf;) }) :

(One inclusion is obvious, the other follows from Sion’s Theorem 2'.)

(2) As several authors have pointed out (see, for example,
Sion [5], and for more references, Sion [6]), liftings provide very
special Vitali differentiation system, even when no others are available.
(If 1 is a lifting on _#; such a system is obtained by assigning to
each sin S, {F:sec Fel[_#1]}, directed downward by inclusion.) Apart
from our desire for an elementary proof, this was our main motiva-
tion in looking for a construction of a lifting without using differ-
entiation concepts.

(8) Added in proof. S. Graf [On the existence of strong
liftings in second countable topological spaces, (to appear)] has noticed
that one may change the word “lifting” to “density” in the state-
ment of Theorem 4. The proof is essentially contained in our proof.
Graf has independently obtained a proof of this result (using Radon-
Nikodym derivatives).
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