AN ELEMENTARY PROOF OF THE LIFTING THEOREM

TIM TRAYNOR

An elementary proof is given of the lifting theorem for a complete totally finite measure space, which does not use the martingale theorem or Vitali differentiation.

Introduction. In this paper we give a proof of the lifting theorem for a complete totally finite measure space, which involves only elementary properties of measure. The complicated isomorphism theorem of Maharam's original proof [4] is avoided. On the other hand, we do not use the concepts of martingale or of Vitali differentiation ([1][2][3][5]). In fact, the entire construction takes place in the σ -field of measurable sets, without passing to the algebra of essentially bounded measurable functions. We feel this makes it easier to see what is involved.

Throughout what follows:

 (S, \mathcal{M}, μ) is a complete measure space with $\mu(S) < \infty$; $\mathcal{N} = \{A \in \mathcal{M} : \mu(A) = 0\};$ N is the set of nonnegative integers; For subsets A, B of S,

$$egin{aligned} AB&=A\cap B\ ;\ Aackslash B&=\{s\in A\colon s\in B\}\ ;\ A^{c}&=Sackslash A\ ;\ A\varDelta B&=AB^{c}\cup BA^{c}\ ;\ A&\doteq B\ ext{iff}\ A,\ B\in\mathscr{M}\ ext{ and }\ \mu(A\varDelta B)=0\ . \end{aligned}$$

For a family \mathcal{K} of subsets of S,

$$\bigcup \mathscr{K} = \bigcup_{E \in \mathscr{K}} E.$$

1. DEFINITIONS. For any field $\mathcal{A} \subset \mathcal{M}$,

(1) d is a (lower) density on \mathscr{A} iff d is a mapping on \mathscr{A} to \mathscr{A} such that, for A, B in \mathscr{A} ,

(i) $d(A) \doteq A$;

(ii) $A \doteq B$ implies d(A) = d(B);

(iii) $d(\emptyset) = \emptyset$, d(S) = S;

(iv) d(AB) = d(A)d(B).

(2) l is a lifting on \mathscr{A} iff l is a density on \mathscr{A} such that

(v) $l(A^{\epsilon}) = l(A)^{\epsilon}$, for A in \mathcal{A} .

For a detailed study of liftings and their applications, we refer

to A. and C. Ionescu Tulcea [3].

2. REMARKS. Let l be a lifting on the σ -field $\mathscr{A} \subset \mathscr{M}$ and $\mathscr{F} = l[\mathscr{A}]$. Then:

(1) \mathcal{F} is a field in S.

 $(2) \quad \mathscr{F} \subset \{E \in \mathscr{A} \colon 0 < \mu(E) < \mu(S)\} \cup \{\emptyset, S\}.$

(3) If, for each n in N, $E_n \in \mathscr{F}$, and $A = \bigcup_n E_n$, then $l(A) \supset A$. (Indeed, for each n, $E_n \setminus l(A) \subset A \setminus l(A) \doteq \emptyset$, so $E_n \setminus l(A) = \emptyset$, by (2).)

3. THEOREM. If d is a density on a field \mathscr{A} with $\mathscr{N} \subset \mathscr{A} \subset \mathscr{M}$, then there exists a lifting l on \mathscr{A} , with

$$(*)$$
 $d(A) \subset l(A) \subset d(A^c)^c$, for A in \mathscr{A} .

Proof. For each filterbase $\mathscr{B} \subset \mathscr{A}$, let $\widehat{\mathscr{B}}$ denote an ultrafilter containing \mathscr{B} . We recall that for subsets A, B of S,

(a) $A \in \hat{\mathscr{B}}$ iff $A^{\circ} \notin \hat{\mathscr{B}}$, and

(b) $A \cap B \in \widehat{\mathscr{B}}$ iff $A \in \widehat{\mathscr{B}}$ and $B \in \widehat{\mathscr{B}}$.

For each s in S, let

$$\mathscr{F}(s) = \{A \in \mathscr{M} : s \in d(A)\}.$$

Since d is a density, $\mathcal{F}(s)$ is a filterbase. Put

$$l(A) = \{s \in S: A \in \widehat{\mathscr{F}}(s)\}, \text{ for } A \text{ in } \mathscr{A}.$$

By the properties (a), (b) of an ultrafilter, for A, B in \mathcal{A} , we have (v) $l(A^c) = l(A)^c$ and (iv) l(AB) = l(A)l(B). Moreover, if $s \in d(A)$, then $A \in \mathscr{F}(s) \subset \mathscr{F}(s)$, so that $s \in l(A)$. Hence, $d(A) \subset l(A)$. Similarly $d(A^c) \subset l(A^c)$. Using (v) we find that (*) holds. Since $d(A) \doteq A \doteq d(A^c)^c$, we have (i) $l(A) \doteq A$. If $N \doteq \emptyset$, then $d(N) = d(\emptyset) = \emptyset$ and $d(N^c) = d(S) = S$, so that, by (*), $l(N) = \emptyset$. Hence, (iii) $l(\emptyset) = \emptyset$, l(S) = Sand (ii) if $A \doteq B$, then $l(A) \Delta l(B) = l(A \Delta B) = \emptyset$, so that l(A) = l(B). This completes the proof.

The proof of the following theorem usually uses martingales or Vitali differentiation. We use neither. However, the reader familiar with Sion [5] will recognize the connection with his method. (See Remark 7 below.)

4. THEOREM. Suppose that, for each n in N, \mathscr{A}_n is a σ -field with $\mathscr{N} \subset \mathscr{A}_n \subset \mathscr{A}_{n+1} \subset \mathscr{M}$ and l_n is a lifting on \mathscr{A}_n with $l_n = l_{n+1} | \mathscr{A}_n$. Put $\mathscr{A} = \sigma$ -field $(\bigcup_n \mathscr{A}_n)$. Then there is a lifting l on \mathscr{A} with $l_n = l | \mathscr{A}_n$, for each n in N.

268

Proof. The result will follow immediately from Theorem 3 if we can construct a density d on \mathscr{A} with $d(A) = l_n(A)$ for A in \mathscr{M}_n . To this end, for each k in N, let \mathscr{F}_k denote $l_k[\mathscr{M}_k]$. For each A in \mathscr{M} , k in N, and r < 1, put

$$\begin{split} \mathscr{D}(A;\,k,\,r) &= \{E \in \mathscr{F}_k \colon \mu(AF) \geqq r\mu(F), ext{ whenever } E \supset F \in \mathscr{F}_k\}, \ d(A;\,k,\,r) &= igcup \mathscr{D}(A;\,k,\,r) ext{, and} \ d(A) &= igcup_{r < 1} igcup_{N} igcup_{A} d(A;\,k,\,r) ext{.} \end{split}$$

We will show that d is a suitable density function on \mathscr{A} .

For fixed A, r, and k, let \mathscr{K} be a maximal disjoint subfamily of $\mathscr{D}(A; k, r)$. Then \mathscr{K} is countable. Put $B = l_k(\bigcup \mathscr{K})$. Clearly, $B \in \mathscr{D}(A; k, r)$. Moreover, if $E \in \mathscr{D}(A; k, r)$, $E \setminus B = \emptyset$, by Remark 2(3) and the maximality of \mathscr{K} . This shows that d(A; k, r) = B is the largest element of $\mathscr{D}(A; k, r)$. In particular, $d(A; k, r) \in \mathscr{F}_k \subset \mathscr{K}$. If r < s < 1, we have $d(A; k, r) \supset d(A; k, s)$, so we need only consider rational r. Since \mathscr{K} is a σ -field, we conclude that $d(A) \in \mathscr{K}$.

There is no difficulty in showing that $A \doteq B \in \mathscr{A}$ implies d(A) = d(B), or that $d(A) = l_n(A)$, for A in \mathscr{A}_n . In particular, $d(\emptyset) = \emptyset$ and d(S) = S. We have left to check conditions (i) and (iv) of the definition of a density.

To check condition (iv), let A, $B \in \mathcal{M}$, $k \in N$, r < 1. For each F in \mathcal{F}_k contained in $d(A; k, (r+1)/2) \cap d(B; k, (r+1)/2)$, we have

$$\mu(ABF) = \mu(AF) + \mu(BF) - \mu((A \cup B)F)$$

 $\geq ((r+1)/2)\mu(F) + ((r+1)/2)\mu(F) - \mu(F)$
 $= r\mu(F)$.

Hence, $d(A; k, (r + 1)/2) \cap d(B; k, (r + 1)/2) \subset d(AB; k, r)$. By direct computation, this yields $d(A)d(B) \subset d(AB)$. On the other hand, for each k and r, $d(AB; k, r) \subset d(A; k, r) \cap d(B; k, r)$, so that $d(AB) \subset d(A)d(B)$, establishing (iv).

To verify condition (i), let $A \in \mathscr{M}$ and put

$$d'(A) = \bigcup_{0 < r < 1} \bigcap_{n \in N} \bigcup_{k \ge n} d(A; k, r) .$$

We will show that

- (a) $d'(A)A^{\circ} \doteq \emptyset$,
- (b) $Ad'(A^{\circ}) \doteq \emptyset$, and
- (c) $d'(A^{\circ}) \supset d(A)^{\circ}, d'(A) \supset d(A),$

from which we get

$$d(A) arDet A = d(A) A^{\mathfrak{c}} \cup A d(A)^{\mathfrak{c}} \subset d'(A) A^{\mathfrak{c}} \cup A d'(A^{\mathfrak{c}}) \doteq arnothing \ ,$$

as required.

Fix r in (0, 1) and write $D_k = d(A; k, r)$, for k in N. Since $D_k \in \mathscr{D}(A; k, r)$, we have for each B in \mathscr{M}_k ,

$$\mu(ABD_k)=\mu(Al_k(B)D_k)\geq r\mu(l_k(B)D_k)=r\mu(BD_k)\;.$$

Suppose $B \in \bigcup_n \mathscr{M}_n$. Then there exists an n in N such that $B \in \mathscr{M}_n$. For $m \ge n$, $\mathscr{M}_m \supset \mathscr{M}_n$, and putting $C_m = BD_m \setminus \bigcup_{n \le k < m} D_k$, we have

$$egin{aligned} \mu(ABigcup_{k\geq n}D_k) &= \sum\limits_{m\geq n}\mu(AC_m)\ &&\geq \sum\limits_{m\geq n}r\mu(C_m)\ &&= r\mu(Bigcup_{k\geq n}D_k) \end{aligned}$$

Taking intersections over n we have

$$\mu(AB\bigcap_{n}\bigcup_{k\geq n}D_k) \geq r\mu(B\bigcap_{n}\bigcup_{k\geq n}D_k).$$

By considering monotone sequences of such B we see that this holds for all B in \mathcal{A} , the σ -field generated by the field $\bigcup_n \mathcal{A}_n$. In particular, putting $B = A^c$ we have $0 \ge r\mu(A^c \bigcap_n \bigcup_{k \ge n} D_k)$. But r > 0, so $\mu(A^c \bigcap_n \bigcup_{k \ge n} D_k) = 0$. Taking the union over rational r in (0, 1) we have $A^c d'(A) \doteq \emptyset$. This proves (a). Replacing A by A^c we have (b).

To prove (c) we let $k \in N$, 0 < r < 1 and show

$$d(A; k, r)^{\circ} \subset d(A^{\circ}; k, 1 - r)$$
.

To this end suppose $\emptyset \neq E \in \mathscr{F}_k$ and $E \subset d(A; k, r)^\circ$. Then $E \notin \mathscr{D}(A; k, r)$, so there exists F in \mathscr{F}_k contained in E with $\mu(AF) < r\mu(F)$. Let \mathscr{K} be a maximal disjoint collection of such F. By Remark 2(3) and maximality of \mathscr{K} we have $E \setminus l_k(\bigcup \mathscr{K}) = \emptyset$, so $E = l_k(\bigcup \mathscr{K})$. Moreover, $\mu(AE) = \sum_{F \in \mathscr{K}} \mu(AF) \leq \sum_{F \in \mathscr{K}} r\mu(F) = r\mu(E)$. In other words, $\mu(A^\circ E) \geq (1 - r)\mu(E)$. This shows that $d(A; k, r)^\circ \in \mathscr{D}(A^\circ; k, 1 - r)$, so $d(A; k, r)^\circ \subset d(A^\circ; k, 1 - r)$. Hence,

$$d(A)^{\circ} = \bigcup_{r \in (0,1)} \bigcap_{n} \bigcup_{k \ge n} d(A; k, r)^{\circ}$$
$$\subset \bigcup_{r \in (0,1)} \bigcap_{n} \bigcup_{k \ge n} d(A^{\circ}; k, 1 - r)$$
$$= d'(A^{\circ}) .$$

Since it is clear that $d(A) \subset d'(A)$, this proves (c) and completes the proof of the theorem.

To prove the lifting theorem, we need one more lemma, due to A. and C. Ionescu Tulcea [2]. For completeness, we include a proof here.

5. LEMMA. Let \mathscr{A} be a σ -field with $\mathscr{N} \subset \mathscr{A} \subset \mathscr{M}$, l a lifting

 $\mathbf{270}$

on \mathscr{A} . If $A \in \mathscr{M} \setminus \mathscr{A}$ and $\mathscr{A}' = field (\mathscr{A} \cup \{A\})$, then there exists a lifting on \mathscr{A}' extending l.

Proof. Let $\mathscr{F} = l[\mathscr{A}]$, $\mathscr{C} = \{E \in \mathscr{F} : \mu(EA^{\circ}) = 0\}$. Let \mathscr{K} be a maximal disjoint subfamily of \mathscr{C} and let $A_1 = l(\bigcup \mathscr{K})$. Then $A_1 \in \mathscr{C}$ and, by maximality of \mathscr{K} and Remark 2(3), $E \setminus A_1 = \emptyset$, for all E in \mathscr{C} , so that A_1 is the largest element of \mathscr{C} . Similarly, let A_2 be the largest E in \mathscr{F} with $\mu(EA) = 0$. Put $\overline{A} = (A \cup A_1) \setminus A_2$. Then $\overline{A} \doteq A$. (Indeed, $\overline{A} \varDelta A \subset A_1 A^{\circ} \cup A_2^{\circ} A \doteq \emptyset$.) Thus, $\mathscr{A}' =$ field $(\mathscr{M} \cup \{\overline{A}\})$ (= { $(C\overline{A} \cup D\overline{A}^{\circ} : C, D \in \mathscr{A}\}$). For E, F in \mathscr{F} ,

(a) $E\bar{A} \doteq F\bar{A}$ implies $E\bar{A} = F\bar{A}$, and

(b) $E\bar{A}^{\circ}\doteq F\bar{A}^{\circ}$ implies $E\bar{A}^{\circ}=F\bar{A}^{\circ}$.

Indeed, $E\bar{A} \doteq F\bar{A}$ implies $\mu((E\Delta F)A) = \mu((E\Delta F)\bar{A}) = 0$, so that, by definition of A_2 , $E\Delta F \subset A_2 \subset \bar{A}^\circ$. Thus, $(E\Delta F)\bar{A} = \emptyset$, so $E\bar{A} = F\bar{A}$. The proof of (b) is similar.

Now define l' on \mathcal{M}' by

$$l'(Car{A}\cup Dar{A}^{\circ})=l(C)ar{A}\cup l(D)ar{A}^{\circ}\,,\,\,\,\, ext{for}\,\,\,C,\,D\,\,\, ext{in}\,\,\,\mathcal{A}^{\circ}\,.$$

Using (a) and (b) we see that l' is well-defined and that for M_1 , M_2 in \mathscr{N}' , $M_1 \doteq M_2$ implies $l'(M_1) = l'(M_2)$. The other properties of a lifting are easily verified. Moreover, for C in \mathscr{N} , $l'(C) = l(C)\overline{A} \cup l(C)\overline{A^\circ} = l(C)$, so l' extends l.

We can now prove the lifting theorem:

6. THEOREM. Let (S, \mathcal{M}, μ) be a complete measure space with $\mu(S) < \infty$. Then, there exists a lifting on \mathcal{M} .

Proof. Let \mathscr{H} be the set of pairs (\mathscr{A}, l) where \mathscr{A} is a σ -field with $\mathscr{N} \subset \mathscr{A} \subset \mathscr{M}$ and l is a lifting on \mathscr{A} , with the ordering: $(\mathscr{A}, l) \leq (\mathscr{A}', l')$ iff $\mathscr{A} \subset \mathscr{A}'$ and $l = l' | \mathscr{A}$. We show that \mathscr{H} has a maximal element. Indeed, suppose $\mathscr{H}' = \{(\mathscr{A}_i, l_i): i \in I\}$ is a totally ordered subfamily of \mathscr{H} . We distinguish two cases:

(a) If \mathcal{H}' has no countable cofinal subfamily, put $\mathscr{A} = \bigcup_{i \in I} \mathscr{A}_i$ and $l(A) = l_i(A)$, for A in \mathscr{A}_i , i in I. Then (\mathscr{A}, l) is an upper bound for \mathcal{H}' in \mathcal{H} .

(b) If \mathscr{H}' has a countable cofinal subfamily $\mathscr{H}'' = \{(\mathscr{A}_{i_n}, l_{i_n}): n \in N\}$, then by Theorem 4, \mathscr{H}'' (and hence \mathscr{H}') has an upper bound in \mathscr{H} . By Zorn's lemma, we conclude that \mathscr{H} has a maximal element, (\mathscr{A}, l) .

By Lemma 3, and maximality, $\mathscr{M} = \mathscr{M}$, and the theorem is proved.

7. REMARKS.

(1) To see the relationship of our method to that of Sion [5],

for each k in N and s in S, let $\hat{\mathscr{F}}_k(s) = \{F \in \mathscr{F}_k : s \in F\}$, directed downward by inclusion. Then,

$$d(A;\,k,\,r)=l_k\Bigl(\Bigl\{s\in S: \lim_{F\in\widehat{\mathscr{F}_k}(s)}rac{\mu(AF)}{\mu(F)}\geqq r\Bigr\}\Bigr)\,.$$

(One inclusion is obvious, the other follows from Sion's Theorem 2'.)

(2) As several authors have pointed out (see, for example, Sion [5], and for more references, Sion [6]), liftings provide very special Vitali differentiation system, even when no others are available. (If l is a lifting on \mathcal{M} , such a system is obtained by assigning to each s in S, $\{F: s \in F \in l[\mathcal{M}]\}$, directed downward by inclusion.) Apart from our desire for an elementary proof, this was our main motivation in looking for a construction of a lifting without using differentiation concepts.

(3) Added in proof. S. Graf [On the existence of strong liftings in second countable topological spaces, (to appear)] has noticed that one may change the word "lifting" to "density" in the statement of Theorem 4. The proof is essentially contained in our proof. Graf has independently obtained a proof of this result (using Radon-Nikodým derivatives).

References

1. G. Hansel, Théorème de relèvement et mesures bivalent, Ann. Inst. Poincaré 8 (1972), 395-401.

2. A. and C. Ionescu Tulcea, On the lifting property I, J. Math. Annal. Appl., 3 (1961), 537-546.

3. ____, Topics in the Theory of Lifting, Springer-Verlag, 1969.

4. D. Maharam, On a theorem of Von Neuman, Proc. Amer. Math. Soc., 9 (1958), 987-994.

5. M. Sion, A proof of the lifting theorem, Univ. of British Columbia, 1970.

6. _____, A Theory of Semigroup-valued Measures, Univ. of British Columbia 1971-72.

Received August 1, 1973 and in revised form October 3, 1973. This work was supported by the Summer Research Institute of the Canadian Mathematical Congress.

UNIVERSITY OF WINDSOT