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SELF-ADJOINT EXTENSIONS OF
SYMMETRIC SUBSPACES

A. DlJKSMA AND H. S. V. DE SNOO

A theory of self-adjoint extensions of closed symmetric
linear manifolds beyond the original space is presented. It
is based on the Cayley transform of linear manifolds. Resol-
vent and spectral families of such extensions are characterized.
These extensions are also determined by means of analytic
contractions between the "deficiency spaces" of the original
symmetric linear manifold.

1* Introduction* Let § be a Hubert space over the complex
numbers C and denote by ξ>2 the Hubert space § © § . The adjoint
Γ* of a linear manifold T in £>2 is a closed linear manifold defined
by

T* - {{h, k] e &/(g, h) = (/, k) for all {/, g] e T} .

A linear manifold S is called symmetric if S c S* and a self-adjoint
linear manifold H is one for which H* = H. Our interest will be in
self-adjoint extensions of a given symmetric subspace (closed linear
manifold). Such extensions were studied by Coddington in [4], who
gave a complete description of all self-adjoint extensions of a sym-
metric linear manifold in possibly larger Hubert spaces. In [5]
Coddington applied this theory to nondensely defined ordinary differ-
ential operators and several of his results suggest that a fairly com-
plete extension theory may be given along the lines of Naimark [7]
and Straus [12].

In this paper we attempt to present such a theory thereby con-
necting Coddington's work to results of Phillips [10], McKelvey [6],
and Schneider [11]. Fundamental is that for a self-ad joint subspace
H in ξ>2 the linear manifold JB(λ) = (H — λ)-1(λ e C — R) is a bounded
linear operator defined on all of φ, with the properties i2(λ)* = R(X)
and R(x) - R(μ) = (λ - μ)R(X)R(μ). This fact, due to Coddington [5]
and also proved by Bennewitz [3], forms the basis of our paper. As
was shown by McKelvey [6] and Schneider [11], these relations are
sufficient to guarantee the existence of a spectral family E(t) (t e R)
such that

(*) jβ(λ) - ( — - — d E ( t ) , λ e C - R .
JR t — λ

Thus one is led to the question what will happen when the iϋ(λ)'s
satisfy the weaker conditions for a generalized resolvent family,
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without being injective. It turns out that they are the resolvent of
an analytic family of subspaces T(λ) in £>2 with negative imaginary
part (see §3): R(X) = (Γ(λ) - λ)"1, λ e C - R, while (*) holds for a
generalized spectral family E(t). We shall present these relationships
in such a way that they complete the results of McKelvey in [6].

The above results allow one to give an elementary treatment of
self-adjoint subspace extensions in possibly larger Hubert spaces of
a given symmetric subspace S in ξ>2. We introduce minimal self-
adjoint extensions and show that all minimal self-adjoint extensions
of S with the same spectral function in £> are unitarily equivalent.
The main theorem is that every self-adjoint extension determines a
family of subspaces Γ(λ) (XeC — R) in ξ>2 such that

S c Γ(λ)cS* .

Conversely each such family T(λ) determines (up to unitary equiva-
lence) a minimal self-ad joint extension of S. It is possible to restrict
this family to a certain subspace of §>2 such that one obtains a family
of operators with similar properties as the family of subspaces. An-
other principal result is the description of all families of Γ(λ) in
terms of analytic contractions between the deficiency spaces of S.
This includes the original theorem due to Straus [12].

The Cayley transform for linear manifolds in φ2 plays an impor-
tant role throughout this paper. The definition of this transform
given here is slightly more general than that of Arens [2]. We use
the Cayley transform to analyze linear manifolds with negative im-
aginary part, symmetric manifolds and self-adjoint subspaces. This
includes the results of Phillips [10]. Self-adjoint extensions of sym-
metric subspaces are also studied by means of the Cayley transform.
We present some theorems which are slightly more general than the
results in [4]. Coddington's description of all self-adjoint extensions
in possibly larger spaces is based on the corresponding results for
unitary extensions of isometric operators. Finally the Cayley trans-
form is used in proving the subspace version of the above mentioned
theorem due to Straus [12]. This is suggested by results of McKelvey
in [6]. It was this last paper that formed the starting point of our
work.

In §2 we give some preliminary results and a definition of the
Cayley transform for linear manifolds in φ2. Linear manifolds with
negative imaginary part are analyzed in § 3. Every contraction op-
erator in ξ> is the Cayley transform of a linear manifold with nega-
tive imaginary part in φ2, and conversely. A result due to Arens
is: Every unitary operator in φ *s the Cayley transform of a self-
adjoint subspace in φ2, and conversely. Our definition of maximality
of a linear manifold with negative imaginary part is different from



SELF-ADJOINT EXTENSIONS OF SYMMETRIC SUBSPACES 73

the one given by Phillips [10]. In terms of Cay ley transforms our
definition seems the more natural one. We also prove that certain
(in particular self-adjoint) subspaces can be written as the orthogonal
sum of a purely multi-valued part and the graph of a corresponding
densely defined operator in a subspace of φ. Section 4 is based on
McKelvey's paper [6]. We study noninjective resolvents and gener-
alized resolvents and show how they are related to certain subspaces
in ξ>2. We include some of McKelvey's results for completeness.
Unitary extensions in a possibly larger Hubert space of a given
isometric operator are considered in § 5. The description of all such
extensions seems to be new. The results of the preceding sections
are applied in § 6, where we finally consider self-ad joint subspace
extensions of a symmetric subspace.

We shall make use of results and notations as given by Coddington
in [4]. We wish to thank Professor Coddington for providing us
with several of his papers before publication. We understand that
some years ago Professor McKelvey knew already about some of the
theorems which we prove here, but did not publish them.

2* Some preliminaries* In this section we shall collect several
basic observations concerning linear manifolds in § 2 = § 0 § where
§ is a Hubert space. For linear manifolds T and S in $2 we shall
use the following definitions and notations:

= {/ e £/{/, g}eT for some g e

3t(T) = {ge $/{/, g}eT for some fe

= {g/{f,g}eT} for/e©(Γ),

-ι = {{g,f}/{f,g}eT},

T + S = {{/, g}/g = h + k for some h, k such that {/, h] e T, {/, k) e S},

Γ - λ = {{/, g - λ/}/{/, g}eT} for λeC,

ST = {{/, &}/{/, g) e T, {g, k}eS for some g e $},

aT={{f,ag}/{f,g}eT} for aeC,

T* = {{h, k) e £7(0, h) = (/, k) for all {/, g} e T).

In addition we shall use

T + S = {{/ + h, g + k}/{f, g} e T, {h, k} e S], T and S linearly
independent

T φ S = T + S, T and S orthogonal in &,

TQS= {{f,g}eT orthogonal to S},
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The linear manifold T is an operator if and only if T(0) = {0}. If
T is an operator in the traditional sense, then in this paper T is
frequently identified with its graph. Conversely, if T is an operator
in the sense of this paper then there is an operator in the traditional
sense with which T can be identified. The adjoint of T is a closed
linear manifold (subspace). Let T be the closure of T. Then

T** = T,

(aT)* = 5T*, aeC,

(τ-γ = (r*rs
SdT implies T*cS*,

For a subspace T in £ 2 we define TL by ϊ ^ = {{0, g} e Γ} and Γs by
T8= TQ T^ Then Ts is a closed operator in φ with ©(ϊ7,) = ©(T).

THEOREM 2.1 (Arens). If T is a subspace in φ2,
( i ) T.. = {0} 0 Γ(0),
(ii) Γ(0) = (S(Γ*))S
(iii) φ(Γ.) = ©(Γ) is de^se w (Γ^O))1,
(iv)

PROPOSITION 2.2. If T is a subspace in £>2, ί/̂ w 9l(Γ) = § i/
and only if 3ΐ(Γs) = φ θ Γ(0).

LEMMA 2.3. Lei T be a subspace in $2. Then 3ΐ(Γ) is closed if
and only if 9t(T*) is closed.

Proof. Let 3t(T) be closed and let vn be a sequence in
converging to v 6 φ as w —> oo. There exist elements u% e ©(T*) such
that {un, vn}e Γ*, hence

(uw, 6) = (vft, α)

for all {α, 6} 6 Γ. This implies that un (un is the projection of un to
9ΐ(T)) converges weakly in the Hubert space 9ΐ(!Γ). Thus there ex-
ists an element we3i(T) such that

(w, b) = (v, α)

for all {a, b] e Γ. Therefore {w, v} e Γ* and v e 3ΐ(Γ*). For the proof
of the converse we use the equality T = ϊ7**.

LEMMA 2.4. Lβί T be a linear manifold in $2 and R(X) =
(ϊ7 — λ)"1, λeC. If X, μeC are such that B(X) and R(μ) are opera-
tors defined on all of @, then
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R(X) - R(μ) = (λ - μ)R(X)R{μ) ,

and R(X) and R(μ) commute.

Proof. Let he § and R(μ)h = k. Then {k, h} e T - μ or
{k, h + μk}eT and hence {k, h + (μ - X)k) e T ~ λ. Thus R(X)[h +
(μ - X)R(μ)h] = R(μ)h for all he§.

A linear manifold U in >̂2 is called unitary if U* — U~ι. Arens
proved that a unitary subspace is an isometric operator with ®(£7) =

A linear manifold $ is called symmetric if Sa S* and a linear
manifold H is self-ad joint if H = iί*.

LEMMA 2.5. Lβ£ S be a symmetric linear manifold in ξ>2. 7/
is α number XeC such that ίR(S ~ X) = ?ft(S — X) = ίg, then S

is self-adjoint.

Proof. Let {/, g} e S*, then {/, g - λ/} e S* - λ. There exists
an element u e ®(S) such that {u, g — Xf} e S — X. Hence {/ — u, 0} e
S* - λ. However, y(S* - λ) = (3i(S - λ))1 - {0}. Thus f=u or
{ / , ^ - λ / } e S - λ and {/, g) e S. This shows S * c S and proves the
lemma.

For a linear manifold Γ in ξ>2 and for λ e C w e define the Cayley
transform Cλ by

Cλ{T) - {{̂  - Xf g - λ/}/{/, }̂ e T) .

Then C;(Γ) is a linear manifold in if with ®(C;.(Γ)) = 3 l (Γ- λ) and
9ΐ(C;(T)) = 3ΐ(T - λ). Note that for λ e R Cλ(T) reduces to the iden-
tity operator on ?Ά(T — λ). The transform Fλ with X e C is defined by

F,{T) = {{g ~fxg~ Xf}/{f g) e T) .

If T is a linear manifold in £>2, then so is Fλ(T). We have ®(i^(T)) =
S l ( Γ - / ) and Sft(i^(Γ)) = Sft(λΓ-λ). For XeR Fλ(T) reduces to
multiplication by λ on 3ΐ(T— I).

L E M M A 2 . 6 . L e £ T a n d S be l i n e a r m a n i f o l d s i n ξ>2 a n d l e t XeC —
R , t h e n 1

( i ) T = Cλ(Fλ(T)) = Fλ(Cλ(T)),
( i i ) Γ c S « C , ( Γ ) c C
(iii) CUT) - Cλ(- T),
(iv) d ( T ) - (Cλ(T))-\ F-λ{T) = Fλ{T-%
( v )

1 Several assertions are valid for more values of λ.
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( vi) CX{T + S) = C/Γ) + C£S), F,(T +S) = FX(T)
(vii) C,(T)(0) = v(T - λ), FiT)(0) = v(T - I),
(viii) 2>(T) - 9Ϊ(C,(Γ) - I) = VϊiFiT) - X),
(ix ) Γ(0) - v{C,{T) -I) = v(F3(T) - X),
( x ) T is closed «=> Cχ(T) is closed *=» Fλ{T) is closed.

LEMMA 2.7. Let T and S be linear manifolds in φ2 and let
λe {%, —ί}, then1

( i ) C,(- Γ) = {CiT)Y\ Fλ{- T) = (FiT-1))'1,
(ii) CAT-1) = -(CiT)r\ F£T-1) = -FIT),
(iii) Γ i S - φ ) i CXS) « F,(T) ± Fλ(S),
(iv) C;(Γφ S) = C3(T) φ

3* Various linear manifolds and their Cayley transforms* A
linear manifold T in ξ>2 is said to have the property I m T ^ O if
Im(/, g) ̂  0 for all {/, g)e T. The property I m T ^ O is defined
analogously. Hence a linear manifold S in £>2 is symmetric if and
only if I m S ^ O and Im S ̂  0. A linear manifold T has the property
Im T ̂  0, if and only if for some (and hence for all) λ e C+ 2 and for
all {/, g}e T the following inequality holds

(3.1) Im (/, g-\f) = (Im λ)(/, /) + Im (/, g) ̂  (Im λ)(/, /) .

A consequence of (3.1) is

(3.2) |k-λ/[|^(Imλ)||/||,λGC+,

for all {/, g) e T.

THEOREM 3.1. Let T be a linear manifold in $2 with Im T fg
0. Then

( i ) (T — λ)"1 is an operator, λeC + ,
(ii) | | ( Γ - λ)' 1 ! ! ^ l / I m λ , λeC + ,
(iii) if 1ft(T — X) is closed for λeC + , then T is closed.

If in addition T is closed, then for all XeC+

(iv) 3Ϊ(Γ- λ) is closed,
(v) dl(T-X)_=(v(T*-X)y,
(vi) 9ΐ(T* - λ) = φ.

Proof. The inequality (3.2) shows that

is an operator, which satisfies (ii). Now let 9ΐ(Γ— λ) be closed for
some XeC+ and let {un, vn} e T converge to {u, v) in & as n —• co.

1 Several assertions are valid for more values of λ.
2 We shall use the notations C+ = {λeC/lmλ > 0} and C~ = {λeC/lmλ < 0}.
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Hence {un, vn — Xun} e T — λ converges to {u, v — Xu} G§2 as n —» oo.
Thus v - λ π e 3 ΐ ( T - λ) and there exists an element we®(T) such
that {w, v — λu} e T - λ . We apply (3.2) to the element {un — w, vn —
v — X(w — u)}e T t o o b t a i n

\\Vn-v\\ + \X\\\u- un | | ^ ( I m λ ) | | un - w\\.

This shows w = w6i8(r), {u, v} e T and Γ is closed. This proves
(iii). In order to prove (iv) we let vne$l(T— λ) converge to v e $
as n-+ oo for some XeC+. Then there exist elements u%e®(T) such
that [un, vn}e T — λ. From (3.2) we obtain

II vn - vm || ^ (Im λ)|| MW - uTO || ,

which shows that un converges to some ue ξ> as n —* °o. Hence
{̂ Λ, ^J converges to {u, v) e T — λ, since Γ is closed. Thus %eS)(Γ)
and ^e9ΐ(Γ--λ) and ^ ( T - λ ) is closed. In general we have
(3Ϊ(T- λ))1 = v(T* - λ), therefore the assertion (iv) implies (v). We
also have (ΪR(T* - λ))1 = v(T - λ) for T is closed. The assertion (vi)
follows from (i), (iv), and Lemma 2.3.

In § 2 we have introduced the Cayley transform for linear mani-
folds in ξ>2. We shall now use this transform to analyse linear
manifolds T in £>2 with I m Γ ^ O .

THEOREM 3.2. Let T he a linear manifold in $2 with Im T ^ 0.
If XeC+ then

(i) C}(T) is an operator,
(ϋ) ||

Proof. Consider C ;(T)(0). If g = Xf for {fg}eT then

— (Imλ)(/ , / ) >̂ 0, which implies / = g = 0. This proves (i). For

{/, g} e T we have

II9 - λ/| | 8 - || Q II2 - λ(/, g) - % , / ) + I λ | 2 | | / | | 2 .

Hence

which shows (ii).

THEOREM 3.3. Lβί V he a linear operator in § defined on ®(F)
|| F | | ^ 1. // λ e C + ίAe^ i^(F) is α linear manifold in ξ>2

I m ^ ( F ) ^ 0.

Proo/. For Λ,G©(F) we find

I m ( ( F - I)h, (XV- X)h) = (Imλ)((fc, Λ) - (Vh, Vh))
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which proves the theorem.

The preceding theorems show that there exists a one-to-one cor-
respondence between the linear manifolds T in £>2 with I m T ^ O and
the linear operators V in § with || V\\ ̂  1. We shall now consider
the linear manifolds in £>2 which correspond to the linear contractions
defined on all of φ.

We shall say that the linear manifold T in # 2 with I m Γ g O is
maximal (denoted by I m Γ ^ O (max)) if the existence of a linear
manifold S in £ 2 with Γ c S and Im S ^ 0 implies S = T. The prop-
erty I m T ^ O (max) is defined analogously.

THEOREM 3.4. Let T be a linear manifold in £>2 with Im T ̂  0.
(i) If I m T ^ O (max) then ϋi(T - λ) = % for all λ e C+.
(ii) If 9ΐ(Γ - λ) = £ /or some λ e C + ίΛera ImT^O(max).

Proo/. Let I m Γ ^ O (max) and suppose ®(Cλ(T)) = 3t(T - λ) is
not equal to § for some λeC + . Then CX{T) can be extended to a
contraction defined on the closure of ®(C;(Γ)) and further extended
to a contraction defined on all of § in a trivial way. By Theorem 3.3
this contraction is the Gayley transform of a linear manifold S in $2

with I m S ^ O , such that Cλ(T)aCλ(S), but then by Lemma 2.6 we
obtain TaS, T Φ S, which contradicts the maximality of T. Hence
9Ϊ(JΓ - λ) = § for all λ e C+. This proves (i). Now suppose Sft(Γ - λ) =
φ for some XeC+ and let Γ c S , I m S ^ O . Then C,(T)<zCλ(S) by
Lemma 2.6 and hence ®(C;(S)) = £ which shows C;(Γ) = Cλ(S) but
this implies T — S. Hence T is maximal.

COROLLARY 3.5. Let T he a linear manifold in Sf with Im T ^
0 (max). Then T is closed.

Proof. By Theorem 3.4 we have 3ΐ(T~ λ) = £ for all λeC + .
The assertion of the corollary now follows from Theorem 3.1.

If T is a linear manifold in ξ>2 it is clear that I m Γ ^ O if and
only if Im (- T) ̂  0. Also I m T ^ O (max) if and only if Im (- T) ^
0 (max).

THEOREM 3.6. Let T be a subspaee in £2. Then I m Γ ^ O (max)
if and only if Im T* ̂  0 (max).

Proof. Let I m Γ ^ O (max). Since Im T* ̂  0 (max) if and only
if Im(-T*) ^ 0(max), it suffices to prove Im(-T*) <: 0(max). By
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Lemma 2.6 we have with XeC+

Since — XeC+ it follows that C_Ϊ(T) is a contraction and hence so is
(CLi(T))* so that I m ( - T * ) < ; 0 by Theorem 3.3. Also we have
St(- T* - λ) = 3ΐ(T* - (-λ)) = § by Theorem 3.1. The assertion fol-
lows from Theorem 3.4. Conversely let Im T* ;> 0 (max). Since T is
closed T = T** and we have Im T <Ξ 0 (max) by the previous argu-
ment. This completes the proof.

THEOREM 3.7. Let T be a linear manifold in ξ>2 and R(X) =
(T- x)-\ xeC.

(i) If Im T ^ 0 (max) then for all XeC+ R(X) exists as a linear
operator defined on all of ξ> and

(3.3) Im (R(X)h, ft) ^ (Im λ)|| R(X)h \\\ ft e <ρ .

(ii) If for some XeC+ R(X) exists as a linear operator defined
on all of φ and setisfies (3.3) then I m T ^ O (max).

Proof. Since I m T ^ O (max) we have ®(i2(λ)) = 3t(Γ - λ) = §
for all λ e C + by Theorem 3.4. Let he® and & = R(X)h then
{A, A + Xk} e T. Hence

0 ^ Im (fc, ft + λfe) = Im (i2(λ)ft, ft + λi2(λ)ft)

which implies (3.3). This proves (i). In order to prove (ii) we note
that for the given X e C+ 3ΐ('Γ - λ) = ®(ie(λ)) = § . If {h, k} e T, then
R(X)(k - λft) = h. Applying (3.3) we find

Im(hjc- λ f t )^ (Imλ)| | ft | | 2

and this gives Im (ft, k) ̂  0. The assertion (ii) follows from Theorem
3.4.

THEOREM 3.8. Let V he a linear operator in !Q defined on ®(F)
with || F | | ^ 1.

( i ) If $ϊ(V~ I) is dense in φ, then V — I is injective.
In addition we let ®(F) = §.

(ii) IfV—I is injective, then 3ΐ(F— I) is demise m φ.
(iii) 1/ Fi is έftβ restriction of V to &Ov(V~ I), έfte% F : is

an operator in ίgQv(V — I) and 3ί(Fx — I) is dense in ξ) Qv(V — I).

Proof. For the proof of (i) we refer to Phillips [10, p. 200].
In order to prove (ii) we use a simple result which can be found in
[13, p. 8]: v(V — I) = v(F* - /) if F is a contraction. Hence



80 A. DIJKSMA AND H. S. V. DE SNOO

(β(V- J ) ) 1 = v(V* - I) = v(V - I) = {0}. This shows t h a t 3t( V - I)

is dense in φ , which is (ii). Finally we note t h a t for all ye$ and

zev(V — I) we have

This implies Vy 1 v(V - I) for all y e Q Q v(V - I).

COROLLARY 3.9. Let T be a linear manifold in & with Im T ^
0. If ®(T) is dense in φ, ίλew Γ is αw operator.

Proof. It follows from Lemma 2.6 that 3t(C;(T) - /) = S)(Γ) is
dense in φ. For λ e C + Theorem 3.8 implies that CiT) - I is injec-
tive. However, by Lemma 2.6 we have v(Ci(T) - I) = Γ(0), hence
we find T(0) = {0}.

Let Γ be an operator in § with Im T ̂  0. We shall say that
T is operator maximal if the existence of an operator S in § with
TaS, ImS^O implies that S = T.

An immediate consequence of Corollary 3.9 is, that a densely
defined operator T with I m Γ ^ O is maximal if and only if it is
operator maximal. Hence by Corollary 3.5 a densely defined operator
T with I m Γ ^ O which is operator maximal is necessarily closed.

The concept of operator maximality is due to Phillips [10], who
gave the following result. Our proof is based on Theorem 3.8.

LEMMA 3.10. Let T be an operator in φ with Im T <; 0. If T
is operator maximal and closed, then ®(Γ) is dense in φ.

Proof. As in [10] it can be shown that SR(Γ - λ) = £ for λ e C+.
For such λ, CIT) is a contraction with ®(CXΓ)) = § and v(Cλ(T) - I) =
T(0) = {0}. Applying Theorem 3.8 we find S(Γ) = ϋt(Cλ(T) - J) is
dense in jg.

COROLLARY 3.11. Let T be an operator in φ with Im Γ ̂  0.
T is maximal if and only if T is operator maximal and closed.

For an example of an operator T in § with Im T ̂  0, which is
operator maximal, but not closed (and hence not maximal) we refer
to Phillips [10].

THEOREM 3.12. Let T = Γs 0 TU be a linear manifold in &
with ImT^O(max). Then T8 is a densely defined operator in
£ θ T(0) with Im Ts ̂  0 (max).
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Proof. Since T is maximal it follows from Theorem 3.4 that
ϋt(T - i) = § and hence by Proposition 2.2 we have 3*(TS - i) = £ θ
T(0). This implies ®(C,(TS)) = § θ 2X0). From Lemma 2.6 we infer
that v(Ct(Γ) - /) = T(0). Hence C^Ts) is the restriction of Ct(T) to
£> θ v(C£T) - I). An application of Theorem 3.8 completes the proof.

We shall now present analogous results for symmetric linear
manifolds S in § 2. A linear manifold S in £>2 is symmetric if and
only if for some (and hence for all) XeC — R and for all {/, g) e S.

(3.4) Im (/, g-Xf) = (Im λ)(/, /) .

A consequence of (3.4) is

(3.5) | | f l r ~ λ / | | ^ | I m λ | | | / | | , λ e C - Λ ,

for all {/, g) e S.

THEOREM 3.13. Let S be a symmetric linear manifold in £>2.
Then

( i ) (S — λ)"1 is an operator, XeC — R,
(ii) || (S- λ)-L|l ^ l/ |Imλ|, XeC- R,
(iίi) if ίR(S ~ X) is closed for some Xe C — R, then S is closed.

If in addition S is closed, then for all XeC — R

(iv) ?ft(S — λ) is closed,

(v) 5R(S - λ) - (v(S* - λ))\
(vi) ϊft(S* - λ) = φ.

THEOREM 3.14. Lei S he a symmetric linear manifold in £>2.
If XeC — R then C}(S) is an isometric operator.

THEOREM 3.15. Let V be an isometric operator in $ defind on
®(F). If XeC — R then Fλ(V) is a symmetric manifold in ξ)2.

We shall say that the symmetric linear manifold S in § 2 is
maximal if the existence of a symmetric linear manifold T in ξ>2

with S c Γ implies T = S.

THEOREM 3.16. Let S be a symmetric linear manifold in φ2.
(i) If S is maximal then $i(S — λ) = φ for all Xe C'h or for all

λeC-.
(ii) // ίfi(S — X) = ξ> for some XeC+ or for some X e C~ then S

is maximal.

COROLLARY 3.17. Let She a maximal symmetric linear manifold
in £)2. Then S is closed.
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THEOREM 3.18. Let S be a symmetric linear manifold in $ 2

and R(X) = (S - X)~\ XeC.
(i) // S is maximal, then for all XeC+ or for all XeC~ R(X)

exists as a linear operator defined on all of £ and

(3.6) Im (R(X)h, h) = (Im λ)| | R(X)h ||2, h e Q .

(ii) If for some XeC+ or for some XeC~ R(X) exists as a linear
operator defined on all of ίξ> and satisfies (3.6) then S is maximal.

Operator maximality for symmetric operators is defined in an
obvious way. We shall not state explicitly the results corresponding
to Lemma 3.10 and Corollary 3.11. The next result was proved by
Bennewitz [3] in a different way.

THEOREM 3.19. Let S = £ s 0 £L be a maximal symmetric linear
manifold in ξ>2. Then Ss is a densely defined, maximal symmetric
operator in ξ> Q S(0).

Finally we present some results for self-adjoint subspaces in $ 2,
cf. [2] and [4].

THEOREM 3.20. Let H be a self-adjoint subspace in £>2. Then
for all XeC - R

( i ) (H — λ)"1 is an operator,
(ii) |( (H — λ)"1]! <; l / | I m λ | ,
(iii) ϋi(H - λ) = φ.

THEOREM 3.21. Let H be a self-adjoint subspace in tξ>2. Then
for all XeC — R Cχ{H) is a unitary operator in φ.

Proof. By Theorem 3.14 Cλ(H) is isometric. Theorem 3.20 shows
that ©(CjCff)) = ^(H - λ) and fR(C2(H)) = !R(H - λ) are equal to all
of φ. Hence C?(H) is unitary.

THEOREM 3.22. Let U be a unitary operator in φ. For all
XeC — RFχ(U) is a self-adjoint subspace in ξ>2.

Proof. By Theorem 3.15 Fλ(U) is symmetric. We also observe
that ΪR(Fχ(U) - λ) = ΪR(Fλ(U) - λ) = φ. Hence application of Lemma
2.5 shows that Fλ(U) is self-ad joint.

THEOREM 3.23. Let H = Hs® H^ be a self-adjoint subspace in
§ 2 . Then Hs is a densely defined self-adjoint operator in & Q H(0).
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4* Various linear manifolds and corresponding operator family
ies* Let R(φ) denote tlie class of all functions R from C — R to

(all bounded linear operators defined on all of §) such that

(4.1) 22(λ)* - 5 ( λ ) , λ e C - R ,

(4.2) JB(λ) - jβ(μ) = (λ - μ)R(X)R(μ), X, μeC- R .

Note that (4.1) and (4.2) imply the inequality

\\R(\))} ^ —±—,\eC - R .
I I m λ I

THEOREM 4.1. (i) Let 2ίeR(φ), ίfeew ίfeβ linear manifold H de-
fined by

(4.3) H = {{R(X)h, XR(X)h + h}/h e £}, λ e C - i? ,

is self-adjoint in £>2 ami i2(λ) = ( ί ί — λ)- 1(λ eC — R).
(ii) Lei H be a self-adjoint subspaee in !Q2 and let R(X) =

(H - λ)-1 ( λ e C - i?). T/^e^ R e R(#) a^rf (4.3) ^oMs.
(iii) If Re R(φ) aπcί £&β self-adjoint subspaee H in φ2 are coπ-

neeted by (4.3) ί/̂ ew

v(J?(λ)) = £Γ(0), XeC - R .

Proof. In order to show t h a t i f defined by (4.3) does not depend
on λ we denote the r ighthand side of (4.3) by H(X). I t clearly suf-
fices to show H(X) c H(μ) for X, μeC — R. This inclusion holds on
account of (4.2) because

{R(X)h, XR(X)h + h} = {R{μ)k, μR(μ)k + k}

where for h e § the element k e φ is defined by k = h + (λ — μ)R{X)h.
Since H-X = {{R(X)h, h}/he$} = R(X)'\ we have

IT* - λ - (H- X)* = (iϊ(λ)"1)* = CK(λ)*)-1 - (i2(λ))"L = H-X,

which is equivalent to H=H*. This proves (i). If H = H* and
i2(λ) = (£Γ- λ)"1 then R(X)eB($) for XeC-R by Theorem 3.20.
Thus (4.2) follows from Lemma 2.4, and (4.1) follows by direct veri-
fication. This proves (ii). In order to prove (iii) we note

fe v(R(X)) <=> {/, 0} G R(X) < = * {0, /} G H — fe H(0) .

Let E(φ) denote the class of all functions E from R to
such that

(4.4) E(tγ = E(t), teR ,
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(4.5) E(t)E(s) = E(min (t, s)), t,seR,

(4.6) lim E(t) = 0 (strong) .

We assume E to be right continuous (strong). Note that E(c-o) exists
(strong limit) and is an orthogonal projection, cf. [1].

THEOREM 4.2. (i) Let EeΈ(&), then the function R defined by

(4.7) R(X) = \ — 1 — d E ( t ) , XeC- R ,
J « t — X

belongs to
(ii) Let J B G R ( Φ ) then there exists a function EeΈ(ξ>) such that

(4.7) holds.
(iii) 1/ 2£eE(φ) and ReU(tQ) are connected by (4.7) then

v(E(oo)) = v(R(X)), XeC- R .

The proof of (i) is straightforward, while (ii) depends upon a
representation theorem of Nevanlinna (cf. [1]). For details we refer
to [1], [6], and [11].

We have now seen that to every self-adjoint subspace H in ξ)2

there exists a function E e E(φ) such that

On the other hand, since Ci(H) is a unitary operator in § there exists
a spectral family F such that

CXH) =

THEOREM 4.3. E(t) = F(s) with t = —cotgs/2.

Proo/. If XeC - R then JBΓ - F^CJiH)) implies jβ(λ) =
i - λ)Ct(fΓ) + (λ + i)]-\ Hence

3-c (ΐ — λ)β~ ϊS + (λ + i)
Λ, e C - R .

Setting t = — cotgs/2 we obtain the desired result.
The above results show that a self-adjoint subspace H in £>2

determines, and is determined by, each of the functions R e R(φ) and
EeE($). Let RS(X) and £7β(ί) be the restrictions of R(X) and J57(ί) to
ίg © -H"(0) respectively. Theorem 3.23 shows the decomposition H =
Hs 0 fl"M where £Γβ is a densely defined self-ad joint operator in § θ
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H(0). We then have RS(X) = (Hs - λ)-1 and

R t ~ X

with E.(oo) = / in £ θ -#(0).
We will now present similar results for function classes extend-

ing R(£>) and E($). In particular the self-ad joint subspace in Theo-
rem 4.1 will be replaced by an analytic family of subspaces.

Let JS(φ) denote the class of all functions R from C — R to Z?(£>)
such that

(4.8) R(X)* = R(X), X e C - R ,

(4.9) R is holomorphic on C — R ,

~ I m λ

We remark that R(φ) c .

LEMMA 4.4. Le£ Re R(§), then v(R(X)) = v(R(μ)) for all λ, μeC-
R.

Proof. From (4.10) it follows that v(R(X)) = {h e §/(i2(λ)A, h) = 0}
for λ G C — i?. The condition (4.8) implies

v(R(x)) = {he ®/(R(X)h, h) = 0} = {he $/(h, R(X)h) = 0} = v(R(x)) .

So it suffices to prove the lemma for λ, μ e C+. For he $ we define
φ(X) = (i2(λ)ft, A), then by (4.9) φ is analytic in C+ and by (4.10)
Im φ(X) :> 0 for λ e C+. Suppose φ(X0) = 0 for λ0 e C+. Choose r > 0
such that {λ/| λ — λ01 ^ r} c C+. For all p with 0 ^ p < r we have

o = <*(λ0) - - ^ ( φ{z) dz - -±
2πι J\Z-)Q\=P z — λ 0 2

Taking imaginary parts we obtain Im ^(λ0 + peid) = 0 for all p with
OS p <r and (9 with 0 g # ^ 2τr. This shows that ^(λ) = 0 for all
λ e C+ and hence for all XeC — R. This completes the proof.

In order to prove a result corresponding to Theorem 4.1 we in-
troduce the class T(φ) of functions T from C — R into the linear
manifolds on £>2 such that

(4.11) Im T(X) ^ 0 (max), XeC+ ,

(4.12) T(λ) - T(λ)* ,λeC + ,

(4.13) C^(Γ(λ)) defines a holomorphic function in λ e C + for some
(and hence for all) μ e C+.
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Note that if H is a self-adjoint subspace in § 2 and if we set
Γ(λ) = H for all X e C - R, then Te T(ξ>).

THEOREM 4.5. (i) Let ReR($), then the function T defined by

(4.14) T(x) - {{R(X)h, XR(X)h + h}/h e %}, X e C - R ,

belongs to T{$) and R(X) = (Γ(λ) - λ)"1(λGC r- R).
(ii) Let Te Γ(£) αwd Ze£ JS(λ) = (Γ(λ) - λ Π λ e C -
i?(^) α^d (4.14) Λoiώs.
(iii) 1/ iΪ6Λ(^) and Te Γ(φ) are connected by (4.14),

- 5Γ(λ)(0), λ G C - R .

Proof. Let T(λ) be defined by (4.14), then it follows from (4.10)
for all λ G C+ that

Im (R(X)h, XR(X)h + h) ^ 0, h e § ,

which shows Im Γ(λ) <; 0. The assertion (4.12) follows directly from
Γ(λ) - λ - JK(λ)-1. Since ai(Γ(λ) - λ) = S>(J2(λ)) = φ, Γ(λ) is maximal
by Theorem 3.4. For λ, μ e C+ we consider

- λ/, g - /!/}/{/, £} G T(λ)} .

It is clear that Cλμ(T(X)) is an injective operator, mapping all of
onto itself, and also that

Therefore the inverse of C2rF(T(X))

(4.15) (C,f^(Γ(λ)))-1 - [I + (λ -

is a bounded operator defined on all of $ and holomorphic (in λ) in
C+. It is straightforward that (Γ(λ) — μ)'1 is a bounded operator
defined on all of § and

(4.16) (Γ(λ) - i)-1

and also that

(4.17) Cμ(T(X)) = I+(μ- μ)(T(X) - /i)"1 .

Taking (4.15), (4.16), and (4.17) together we find

Cμ(T(X)) = 1+ (μ - μ)R(X)[I+ (X - μ)R(X)Γ .

Hence Cμ(T(X)) defines a holomorphic function in XeC+ (for μeC+).
This proves (i). Now we let Te T(Q) and i2(λ) = (Γ(λ) - λ)"1. The
assertions (4.8) and (4.10) follow directly from (4.11) and (4.12). Using
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T(X) = Fμ(Cμ(T(X))) we obtain

T(X) = {{Cμ(T(X) - I)h, (μCμ(T(X))

or

B(X) = {{(μ - χ)Cμ(T(X))h + (λ - μ)h, (C,,

which shows

(4.18) iϋ(λ) = (Cμ(T(X)) - I)[(μ - λ)C,,(Γ(λ)) + (λ - ft]"1 .

For λ, μ e C+ we have

\X-μ\>\X- μ\

and this shows that for λ = μ and for λ Φ μ the linear manifold

[(μ - λ)C,(Γ(λ)) + (λ - ft]"1

is a bounded operator defined on all of ξ>. This together with (4.18)
implies that the function R is holomorphic in C+. From (4.8) we
obtain the holomorphy of R in all of C — R. This proves (ii). The
proof of (iii) is straightforward.

Lemma 4.4 and Theorem 4.5 show that for Te Γ(φ) the space
Γ(λ)(0) does not depend on XeC — R. We shall therefore use the
notation T(0) to indicate the space T(λ)(0).

Let E($) denote the class of all functions E from R to B($)
such that

(4.19) 0 S (E(t)h, h) ̂  {E(s)h, h) ̂  (h, h),t<s,he§ ,

(4.20) lim E(t) = 0 (strong) .

We assume E to be right continuous (strong). Note that E(°°) exists
(strong limit) and E(oo) ^ I, cf. [1]. We remark

THEOREM 4.6. (i) Let EeE(ξ>), then the function R defined by
(4.7) belongs to R(§).

(ii) Let ReR(ξ>) then there exists a function EeE(Og) such
that (4.7) holds.

(iii) // EeE{$g) and ReR(ξ>) and connected by (4.7) then

v(E(oo)) - i;(jβ(λ)), λ e C - R .

For the proof we refer to [6]. Analogous to the decomposition
Theorems 3.12 and 3.23 we now state a decomposition theorem for
Te Γ(φ). By jΓβ(φ) we denote the class of all functions T from
C — R into the densely defined linear operators in § such that (4.11),
(4.12), and (4.13) hold.
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THEOREM 4.7. Let Te Γ(φ) and let Ts denote the function defined
on C — R with values T(X)S given by the decomposition

Γ(λ) = T(X)S 0 T(XU x e C - R .

Then Ts e Ts($ Q Γ(0)).

Proof. It follows from Theorems 3.12 and 4.5 that Γ(λ), is a
densely defined linear operator in φ Q T(0) with Im T(X)S <̂  0 (max).
Cμ((T(X))s) is a restriction of Cμ((T(X))) to § θ ΪXO); hence for μeC+

it defines a holomorphic function (of λ) in C+. Restricting the rela-
tion (4.12) to £ θ T(0) we find

where the adjoint is now taken in $ Q Γ(0). This proves the theorem.

We remark that a function Te T(!Q) determines, and is deter-
mined by, each of the functions ReR($) and EeE(!g). Let RS(X)
and Es(t) be the restrictions of R(X) and E(t) to § θ W) respectively.
From Theorem 4.7 we have the decomposition T(λ) = ΓW s φΓ(λ) M

with Γ(λ)β determining a function Γ8 € T8(§ Q Γ(0)). We find the
relations i2β(λ) = (Γ(λ)8 - λ)"1 and

•R.(λ) = — l — dE.(t) .
JR t — X

It does not necessarily follow that Es(oo) = / in £> θ
Let £> and $1 be Hubert spaces suet that & a& and let P be the

orthogonal projection of SI onto φ. If £7eE($) and #(£) = PE(t)\&,
then EeE(§). Also 2?(oo) = / implies 2£(°o) = J, and Z?(Λ) = 0 im-
plies 2£(4) = 0. Here we use the notation E(Δ) — £7(6) — E(a) for the
interval z/ = (a, b], correspondingly for E(Δ). We shall now state a
converse result. It is a generalization of a theorem of Naimark [8],
due to McKelvey [6],

THEOREM 4.8. Let EeE(!g). Then there exists a Hubert space
Si such that !Q C & and a function E e Έ(B) such that

( i ) E(t) = PE(t) \9, where P is the projection of St onto φ,
(ii) & is spanned by $ and {E(t)hhe !Q, teR},
(iii) E(oo) = I if and only if E(oo) = I; E{Δ) = 0 if and only

if E{A) - 0.

5. Unitary extensions of isometric operators* Before we con-
sider self-adjoint extensions of symmetric subspaces we shall present
the corresponding theory for unitary extensions of closed isometric
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operators. In this section all isometric operators are supposed to be
closed. For reference we state the following simple result.

THEOREM 5.1. Let V be an isometric operator in φ, and let V
be an isometric extension of V in ίg. Then

(5.1) V'= V®W

where W is an isometric operator mapping a subspace of ξ> θ ®(V)
into § θ ^(V). Conversely let V and W be as above, then V defined
by (5.1) is an isometric extension of V in φ.

For a given isometric operator V in ξ> there do not necessarily
exist unitary extensions on £>. But if we extend V in the trivial
way to a contraction operator T with ®(T) — φ, then as Halmos
showed (cf. [13]) there exists a Hubert space SI with § c S and a
unitary operator U on SI such that Ta PU, where P is the orthogonal
projection of B onto φ. Since V is isometric it follows that V a U.

The following theorem shows how all unitary extensions of a
given isometric operator are to be constructed.

THEOREM 5.2. Let VΊ be an isometric operator in φ lβ Let V^a
U where U is a unitary operator on & — φx φ φ2. Let V2 be the
restriction of U to the subspace {f e tg2/Uf e ξ>2} of φ2. Then V2 is
an isometric operator in § 2 such that

(5.2) dim (& θ 9*( V2)) ̂  dim ( ^ θ

dim (& θ ®(Vi)) + dim (

- dim (φ, θ SR( Vi)) + dim (φ2 θ «(V2)) ,

U can be written in the form

(5.4) U - V, θ F2 0 PΓ

where W is an isometric operator in ^ 0 £>2 such that

(5.6) PiΐΓ-1 maί?s ^2Q3i(V2) one to one into & ©25(70

or equivalently

(5.7) P2 TF maps φ, © ®(V,) onto & © 5ft( V2) ,

where P}{j = 1, 2) is ί/te orthogonal projection from ^ φ φ2 onto
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Conversely, suppose that for a given isometric operator Vλ in
£>x there are a Hilbert space (Q2, an isometric operator V2 in £>2

satisfying (5.2) and (5.3) and an isometric operator W in ^ =
satisfying (5.5) and (5.6). Then U defined by (5.4) is unitary on
and V2 has the property that S(F2) = {/ e $2/Ufe £>2}.

Proof. Define W as the restriction of U to ®(WΓ) given in (5.5).
It is clear that V2 and W are isometric. Since U is unitary and
maps ®(F x )0®(F 2 ) onto Sft(Vi) ©3t(Fa), U and hence W maps BQ
(®(Vi)0®(F2)) = S)(TΓ) onto ^ θ ( ^ ( ^ i ) θ ^ ( F 2 ) ) = 3ί(TF). Hence
(5.5) holds and thus (5.3) holds also. The decomposition (5.4) of U
is now evident. Next we prove (5.6) from which (5.2) immediately
follows. Suppose that for some u e §2 Q ΪR(V2) PyW~ιu = 0. Then
y= F i e f e Q S ( F 2 ) , Hence y and Uy — Wy — u belong to £2

By definition of ®(F2), ye^)(V2) n (Φaθ®(V2)) - {0}. Hence u = 0.
This proves (5.6). If ue$2O$ϊ(V2) and i / e ^ © ® ^ ) * then

(5.8) (P^u, y) = (<*, P2Wy) .

If P^W^u = 0 then the lefthand side and so also the righthand side
of (5.8) equals zero for all 2/e & θ ® ( ΐ Ί ) Hence (5.7) implies (5.6).
If (u,P2Wy) = Q for all ye&ΘΏiVJ then by (5.8) P,W~lu = 0.
Hence (5.6) implies (5.7).

We now prove the second part of the theorem. The operator U
defined by (5.4) maps all of & isometrically onto ίϊ and hence is
unitary. Clearly we have ®(F2) c {/ e &2/Uf e <£><>}. On the other hand,
suppose that / and Uf belong to φ2. Then / = f, + /2, f e $2 Q ®(V2)
and/ 2 e®(F 2 ) and hence fx and Wf, = Uf - VJ2 belong to £2. So
P.W"1 TtTΊ = Px/X = 0 and hence by (5.6) this implies Wf = 0. Hence
ft = 0, i.e., /eS)(F2). Thus F2 has the stated property.

COROLLARY 5.3. Let V be an isometric operator in iρ.
there exists a unitary extension of V on ίg if and only if

(5.9) dim (g θ K(V)) = dim (£ θ

7/ (5.9) ΛoMs ίAβ^ αiί unitary extensions U of V on ξ) are of the
form U = V 0 W, where W is an isometry from $ Q S)( V) onto
£>θ 3 (̂10 and conversely each W with this property determines a
unitary extension U of V by U = 7 0 W.

Let V be an isometric operator in φ &nd l e t i7 be a unitary
extension of 7 o n S, § c ^ . [7 is called a minimal extension if

(5.10) R= (U*f/fe§, n = 0, ±1, ±2,
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(< > denotes "linear space spanned by".) From the representation

(5.11) U=

where F is the spectral family associated with U it follows that
(5.10) holds if and only if

S = (F(s)f/fe$,8e[0, 2ττ]> .

Let U be a unitary extension of V on St. Define Bλ as the closure
of the linear subspace of & spanned by {Unf/fe Q, n = 0, ± 1 , ±2, •}
and let Ux be the restriction of U to $tlm Then Ux is a minimal
unitary extension of V on ^ and U1 c £7.

THEOREM 5.4. Le£ F 6β αw isometric operator in ίg. For j =
1, 2 Zgί ί/y be a minimal unitary extension of V in Stj such that

(5.12) PJJ? = P2C/2

W on § , w = 0, 1, 2, - -

where Pj is the orthogonal projection from ®j on ίg. Then there
exists an isomorphism Φ from B± onto ί£2 such that Φf — f for all

/ e φ and Ux = Φ~ιU2Φ.

Proof. Clearly (5.12) also holds for n = —1, —2, . For/, g e §
and π and m integers we have

(Utf, U?g) - (P.UΓΎ, 9) - (P*UΓmf, 0) = (Utf, U2

mg) .

From this and the minimality of Uj(j = 1, 2) it follows that the con-
tinuous continuation Φ (to all of ^ ) of Φf defined by

Φ'( Σ U?fn) - Σ t^Λ , k = 0, 1, 2, .,/,e φ ,

maps $! isomorphically onto ^ 2 ^ n ( i tas the properties mentioned in
the theorem.

We note that (5.12) is equivalent to

(5.13) PiFάs) = P2F2(s) on §, s e [0, 2ττ] ,

where Fj is the spectral family associated with U3- on Bj(j — 1, 2)
by (5.11).

6* Self-ad joint extensions of symmetric subspaces* For a linear
manifold S in § 2 we define the "deficiency space" M2(S) or Mλ by

(6.1) M"; = {{h, k) e S*/k = Xh}, λ G C .

N o t e t b a t M"^ i s a l i n e a r o p e r a t o r a n d f o r X e C — R
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(6.2) ®(M,) = (9t(S - λ))1 .

THEOREM 6.1. Let S be a symmetric subspace in £>2. Then

(6.3) S* = S + Mλ + Mj, X e C - R .

For Xe{i, —i} the direct sum in (6.3) is orthogonal:

Furthermore,

dim Mλ = dim Λf€, λ e C+ ,

dim Mλ — dim M_i, λ e C~ .

The proof of this theorem can be given along the same lines as
the proof of the corresponding theorem for symmetric operators (cf.
[9]). For λ e j i , — i) (6.3) has been proved by Coddington [4].

From the previous section we deduce the following extension
theorems, which have been proved in a different manner for the case
λe{i, —i) by Coddington [4].

THEOREM 6.2. Let S be a symmetric subspace in ξ>2. Let S' be
a symmetric subspace extension of S in £>2. Then for fixed XeC — R

(6.4) S' = S+(I- V)M,

where V is an isometry, mapping a subspace M of M-, into Mj.
Conversely, let S and V be as above then SF defined by (6.4) is a
symmetric subspace extension of S in £>2. For Xe{i, —i] the direct
sum in (6.4) is orthogonal.

Proof. Let V = Cλ(S), V = Cλ{S'), then V and V are isometries
in φ. By Theorem 5.1 there exists an isometric operator W mapping
a subspace of § θ ® ( ^ ) = 91(5- X)1 = ^>(Mj) (cf. (6.2)) into a sub-
space My of Φ Θ ^ W = 3t(S- xy - ®(lf;) such that (δ.l) holds.
Define the subspace M of Mλ by

M = {{h, Xh}/h e JkfJ

and the isometry V oί M into Jlί̂  by

(6.5) V{h, Xh} = {W~% XW~Ίι} .

From (5.1) and Lemma 2.6 it follows that

Sf - FλCλ{S') - F2(C,(S) 0 W)

= S + F2W= S+(I- V)M.
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For Xe{i, —ϊ) the direct sums are orthogonal by Lemma 2.7. By
defining W by means of (6.5) one can easily deduce the second part
of the theorem from the second part of the Theorem 5.1.

From the remarks following Theorem 5.1 one can deduce by using
the Cayley transform that each symmetric subspace in φ2 can be ex-
tended to a self-ad joint subspace in B2 for some Hubert space & D ξ>.

Let Sj be a symmetric subspace in $j, j = 1, 2. Then Sλ 0 S2 is
a symmetric subspace in SQX 0 ξ>2. Furthermore, let Mλ, Ml, and Ml
be defind for S,@ S2 in (& 0 %2)\ S, in £ 2 and S2 in £ 2 by (6.1),
XeC - R. Then

Mλ = Ml@Ml,XeC- R .

By P y we denote the orthogonal projection from & 0 £>2 onto £>y and
by Pj2) we denote the orthogonal projection from (^1 0 φ2)

2 onto φ |
defined by

for i = 1, 2. Using these notations we state the following theorem.

THEOREM 6.3. Let Sx be a symmetric subspace in φ 2. Let S^
H, where H is a self-adjoint subspace in $2, ̂  = ^ 0 ^ρ2. Let S2 —
Hf] tgl and let XeC — R be fixed. Then S2 is a symmetric subspace
in $1 such that

(6.6) dim M! ^ dim M\ ,

(6.7) dim {Ml 0 Ml) = dim (M{ 0 Mf) ,

and H can be written in the form

(6.8) H = S ι e S 2 + (I- V)Mlt

where V is an isometry in (ξ>1 0 φ2)
2 such that

(6.9) <&(¥) = Mλ and ΪR(V) = Mj ,

(6.10) P[2)V maps Ml one to one into Mj ,

or equivalently

(6.11) P^V'1 maps Mj onto Ml .

Conversely, suppose that for a given symmetric subspace Sλ in
ίgl there are a Hilbert space φ2, a symmetric subspace S2 in §\ satis-
fying (6.6) and (6.7) for a fixed XeC — R and an isometric operator
V in $2, fl = & © § 2 satisfying (6.9) and (6.10). Then H defined
by (6.8) is a self-adjoint subspace in St2 and S2 has the property
that S2 — jffΠ ^2 For X e {i, —i) the direct sum in (6.8) is orthogonal.
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Using the Cayley transform we can deduce this theorem from
Theorem 5.2 in a similar way as Theorem 6.2 is deduced from Theo-
rem 5.1. We omit the details.

COROLLARY 6.4. Let S be a symmetric subspace in φ 2 . Then
S has self-adjoint extensions in $2 if and only if for some XeC — R

(6.12) dim M2 = dim AT,.

If (6.12) holds, then all self-adjoint extensions H of S in ίg2 are of
the form

(6.13) H= S+(I- V)M2,

where V is an isometry from Mλ onto Mλ. Conversely, each such
isometry determines a self-adjoint extension of S in $2 by (6.13).
For λefέ, — i) the direct sum in (6.13) is orthogonal.

Let S be a symmetric subspace in ξ>2. Let H be a self-adjoint
subspace extension of S in ί£2, $ c ίϊ. We call the extension H
minimal if Ct(H) is a minimal unitary extension of C^S). From the
remarks following Corollary 5.3 and Theorem 4.3 it follows that H
is minimal if and only if & is spanned by

where E is the spectral function of H in St2 (cf. Theorems 4.1 and
4.2). Furthermore, it follows that each self-adjoint extension of a
symmetric subspace contains a minimal extension.

THEOREM 6.5. Let S be a symmetric subspace in $2. For j =
1, 2 let Hj be a minimal self-adjoint subspace extension of S in Stj
such that

(6.14) Pi#i(t) - P*Et(t) on ®,teR,

where Eό is the spectral function of H3 in ΛJ and Ps is the orthogo-
nal projection from &3 onto φ. Then there exists an isomorphism
Φ from Stt onto B2 such that Φf = f for all fe§ and Φ(2)JEζ = Hz,
where Φ (2):5£2-* ̂  is defined by

Φ{2){h, k} = {Φh, Φk}9 {h, k} 6 ft» .

Proof. Let V = C^S) and Uό = C Ĵffy), j - 1, 2. Then on ac-
count of Theorem 4.3 the relation (6.14) implies (5.13) and hence
(5.12) holds. Thus the conditions of Theorem 5.4 are satisfied, and
the isomorphism Φ of Theorem 5.4 satisfies the conclusions of this
theorem.
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We shall now describe the self-adjoint extensions H in R2 of a
symmetric subspace S in φ2 in another way, analogous to the results
of Straus [12] for operator extensions. To this end let P be the
orthogonal projection of $ onto § and denote by P ( 2 ) the mapping
P{2){h, k} = {Ph, Pk}, {h, k}e®2. It is not difficult to see that

THEOREM 6.6. Let S be a symmetric subspace in Q2. Let Hbe
a self-adjoint subspace extension of S in $t2, § c & For XeC — R
let

(6.15) L(λ) - {{R(X)h, XR(X)h + h}/h e £} ,

ίvhere R(X) = (H — λ)"1. Then L(λ) is a symmetric subspace in ^ 2 .
Let

(6.16) Γ(λ) - P(2)L(λ), XeC- R

then R{X) = (T(X) - λ)"1, where R(X) = PR(X) |*,

(6.17) ScΓ(λ)cS*

and Te T(φ). Conversely, if Te T(1Q) satisfies (6.17) for a given
symmetric subspace S in ξ>2, then there exists a Hilbert space & Z) ig
and a self-adjoint subspace extension H in ί£2 of S, such that T
satisfies (6.16), where L is defined by (6.15).

Proof. Since L(λ) c H, it is symmetric. From (6.16) it follows

that

Γ(λ) - {{R(X)h, XE(X)h + h}/h e §}

where R = PR\9e R(§). According to Theorem 4.5 we find Te
The verification of (6.17) is straightforward. The second part of the
theorem follows from Theorem 4.8.

THEOREM 6.7. Let S be a symmetric subspace in ξ>2. Then

(6.18) Te Γ(£) and Sc T(λ) c S * for all XeC ~ R

if and only if

( β m T(X) = S+(I~ V(\))M-μ,
1 ' • T(X) = S+(I- V{X))Mμ ,

for all XeC+ and fixed μ e C+, where V(X) is an analytic contrac-
tion, mapping Mrμ into Mμ, i.e., (1) (V(X){h, k), {x, y}) is analytic in
C+ for all {h, k)el, {x, y]e <ς>2, (2)Jf V(X){hf k] - {/, g) then | | / | | 2 +

\\g\\2^ | | ^ | | 2 + !!^!!2, and where V(X) maps Mμ into Mrμ and is de-
termined by
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(V(X){f, g}, {h, k}) = ({/, g], V(\){h, k})

for all {/, g} e Mμ, {h, k] e Mμ. (Hence V(X) is a contraction, analytic
in XeC~)). If μ — i the direct sums in (6.19) are orthogonal.

Proof. Let (6.18) be satisfied and let μeC~ be fixed. Since
Im Γ(λ) ^ 0 (max) and Im Γ(λ) ^ 0 (max) for λ e C+, Cμ(T(X)) and
C^(T(X)) are contractions defined on all of § . From (6.18) we deduce
that

(6.20) Cμ(T(X)) = Cμ(S) + W(X) ,

(6.21) C7ί(T(X)) = C7ί(S) + W(X) ,

where W(X) is the restriction of Cμ(T(X)) to φ θ ®(Cμ(S)) =
and TF(λ) is the restriction of C?(Γ(λ)) to ^ Q®(Cμ(S)) =
Hence W(X) is an analytic contraction for XeC'1' and W(X) is an
analytic contraction for λ e C " . From (C^(Γ(λ)))* = Cμ(T(X)) (cf.
Lemma 2.6), SR(C (̂S)) = § θ ®W«) a n<* 5R(C,(S)) - φ θ ® T O we
derive

(6.22)

(TF(λ)x, y) = (α, TΓ(λ)i/) for all a; e S(lfί), 2/ e

Define

(6.23) V(X){x, μx) = {W(X)x, μW(X)x}, x e

and

(6.24) V(X){y, μy) = {W(λ)y, μ W(X)y}, y e

Then V(X) and F(λ) satisfy the descriptions in (6.19) and

= (I- V(\))Mμ,

= (I- V(X))Mμ.

Applying Fμ to (6.20) and Fμ to (6.21) and using the last two eq-
ualities we find the relations (6.19).

Now let (6.19) be satisfied. Define V/(X) and W(X) by (6.23) and
(6.24). Then W(X) is an analytic contraction, mapping S5(Λf̂ ) into
®(Jf«) and since (6.20) also holds we conclude that Cμ(T(X)) is an
analytic contraction defined on all of ξ>. Hence Im Γ(λ) ^ 0 (max).
Also (6.21) and (6.22) hold, and since S is symmetric we have

C7χT(X))c:(Cμ(T(X)ψ = C-μ((T(xyr) .

Now %)(Cj(T(X))) = § and since C-(T(X)) and C~((T(λ))*) are operators
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they are equal. Applying F~μ we find Γ(λ)* = T(λ). Hence Te
Clearly S c T(X)aS\ Hence (6.18) holds.

Another way of describing all self-adjoint extensions H in £ 2 of
a symmetric subspace S in ξ>2 can be given via the class Jϊ(φ), cf.
McKelvey [6].

THEOREM 6.8. Lβ£ S be a symmetric subspace in ξ)2. Let Hbe
a self-adjoint subspace extension of S in 5£2, § c S . For XeC — R
let

(6.25) R(λ) - PR(X) U

where R(X) = (if — λ)"1 αweZ P is the orthogonal projection of $t onto
φ. Tftew ReR($) and

(6.26) Λ(λ)(S - λ ) c J , λ e C - Λ .

Conversely, suppose that for some ReR(ξ>) (6.26) holds. Then there
exists a Hilbert space t D § and a self-adjoint subspace extension
H of S in B\ such that R satisfies (6.25) for XeC - R.

Proof. Let R be defined by (6.25), then clearly ReR($). Let
T(λ) = λ + Λ(λ)"1. Then T e T($) by Theorem 4.5 and T satisfies
(6.16). Hence by Theorem 6.6 the assertion (6.17) holds. But (6.17)
is equivalent to (6.26). The converse follows in a similar way from
the second part of Theorem 6.6.

Related to Theorem 6.8 is the following result, the operator
version of which is due to McKelvey [6]. The proof follows the same
lines as in [6].

T H E O R E M 6.9. Let S be a symmetric subspace in %>2. Let
ReR($) and Te Γ ( φ ) be connected by T(X) = X + R(X)~\ XeC ~ R.
Suppose for some XeC — R

(6.27) R(X)(S- λ ) c / ,

or equivalently

(6.28) ScΓ(λ) .

Then

(i) if Xe C+(X e C~) then I m S ^ 0 ( I m S ^ 0),
(ii) if (6.27) holds for some XeC+ and for some X e C~, then S

is symmetric and (6.27) (or equivalently (6.28)) holds for all XeC~R.

Finally we return to the situation as described in Theorem 6.6.
Hence let S be a symmetric subspace in £>2 and let H be a self-
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adjoint subspace extension of S in B2. The subspace H defines a
function Te T(Q) such that S c Γ(λ) c S * (λ e C - R). The function
Te T(§) gives rise to a function Tse T8($ Q T(0)) according to Theo-
rem 4.7. On the other hand, the self-adjoint subspace Hin $h2 defines
a densely defined self-ad joint operator Hs in Si Q H(0).

LEMMA 6.10. (i) Γ(0) = § n H(0),

(ii) T(0)cPiί(0),
(iii)
(iv)

Proo/. Let ft e T(0), then {0, ft} e T(λ), hence ft e § and Pi2(λ)ft =
0, where jfί(λ) = (H- λ)"1, λ € C - R. This implies ft € § and i2(λ)ft 1 £.
Now

{i2(λ)ft, \R(X)h + h}eH

shows

λ|| i2(λ)ft ||2 + (-R(λ)ft, Λ) = (ft, R(X)h) +

Hence i2(λ)Λ = 0, while h e φ, thus ft e § n fl(0). Therefore Γ(0) c
φ Π H(0), while the other inclusion is clear. This proves (i). A con-
sequence of (i) is Γ(0) c jff(O), which implies (ii). Hence § θ PH(0)<z
$ θ Γ(0). Now

and φ n (iί(O)1) - φ θ PfΓ(0). This proves (iii). Let fte
then Pft 6 § and (ft, tt) = 0 for all ft e J3"(0), hence certainly (ft, w) = 0
for all % 6 § n £Γ(0) - Γ(0). This proves (iv).

We have already noted that S c Pi2)HaS*9 but then also P^H^cz
S* or P£Γ(0)cS*(0). In case S is a densely defined symmetric op-
erator in φ, then this inclusion shows H(0) ± §, and by Lemma 6.10
we find T(0) = {0}. Hence T is a function, with densely defined
operators as values. It is clear that a densely defined symmetric
operator S has self-ad joint operator extensions: If if is a self-ad joint
subspace extension in St, then Hs is a self-adjoint operator extension
in St θ H(0). Any function Ee E{§) which is associated with Te Γ(φ)
via Theorems 4.5 and 4.6 has the property that E(oo) is the identity
on £>.

The situation may be quite different if S is any symmetric sub-
space in £>2. The self-adjoint extension H in $2 generates a densely
defined self-ad joint operator Hs in St Q H(0); also H gives rise to a
function Te Γ(φ) according to Theorem 6.6. This function Te T(£)
itself generates an operator-valued function Tβ e Ts(ίg Q T(0)), accord-
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ing to Theorem 4.7. Let Es be the restriction to Jϊ Q H(0) of the
spectral function EeE(B) belonging to H via Theorems 4.1 and 4.2,
and let E8 be the restriction to $ θ T(0) of the spectral function
EeE($) belonging to the function TeT($) via Theorems 4.5 and
4.6. The relation

(6.29) ^ ( ί ) = PE(t) U,teR ,

is eas i ly e s t a b l i s h e d , s i n c e R(X) = PE(X) \9, XeC — R (cf. t h e p r o o f
of T h e o r e m 6.6). F r o m (6.29) w e c o n c l u d e

(6.30) E.(t) = PE(t)

while we already have

(6.31) PE.(t) = PE(t) | , θ

ΦQT(0) 1

The assertions (6.30) and (6.31), together with Lemma 6.10 show that
on £ θ PHφ) the functions Es and PES coincide.1
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