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ENGEL LIE RINGS WITH CHAIN CONDITIONS

RarrH K. AMAYO

A result of Max Zorn states that if a Lie ring satisfies
the maximal condition for subrings and if each element is
a bounded left Engel element then the Lie ring is nilpotent.
The purpose of this paper is to extend this result to Lie
rings satisfying the general Engel condition and with no
infinite strictly ascending chains of abelian subrings. A
similar result was obtained by I. N. Stewart for locally nil-
potent Lie algebras.

2. Notation and terminology. Let t be a noetherian ring
(i.e., commutative associative ring with unit and satisfying the
ascending chain condition on ideals). Following Barnes [1, 2] we
define a Lie algebra over t to be an t-module which is a Lie ring
and satisfies for x, y in the Lie ring and rer,

rla, y] = [ra, y] = [, ry] .

(Here [, ] denotes Lie multiplication.) Let L be a Lie algebra over t.

If A is a subset of L we write 4 < L; if in addition A is an
1-submodule and a Lie subring we write A < L and call A a sub-
algebra of L. In general (A) will denote the subalgebra of L
generated by A. If A = {a} then

{ay = ta = {ra|rer} = ({a}),

and we call <a) a cyclic t-module. An :r-module A is said tc be
finite dimensional over t if it is a sum of finitely many cyelic
r-modules. If 4 ={a, ---, a,} we define <{a, -+, a,) = (4).

Let A, BS L. We define [A4, B] to be the r-submodule spanned
by the products [a,d] for ac A and be B. We also define in-
ductively, [4, ,B] = A and [A, ,..B] = [[4, .B], B]. If z,yc L then
[, w] =« and [z, ,..y] = [[%, .¥], y]l. An t-submodule H is said to
be an ideal if [H, L] = L; in this case we write H<| L. If AS L
then

I(A) = {we L|[A, o] = A}
and
C(A) ={we L|[A, 2] =0}.

If A is an r-submodule then
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C(A)JI(4) = L

and I;(A4)/C.(A) is isomorphic to a subalgebra of End, (4); if also A
is finite dimensional then (since r is noetherian) End,(A4) is finite
dimensional and so I;(A4)/C.(A) is finite dimensional over t.

We will employ the notation of Stewart [3], with the under-
standing that by Lie algebra we now understand a Lie algebra
over t. So concepts like subideal, ascendant subalgebra, class of
Lie algebras, need no further explanation.

We say that L is finitely generated if L = (A) for some finite
subset A of L; we denote by ® the class of finitely generated Lie
algebras over r. We define

F, A, N, LN

to be (respectively) the classes of finite dimensional, abelian, nilpotent
and locally nilpotent Lie algebras over t. Then we have as is well
known,

GNN=JnNnNR=8nLN.

Let X be a class of Lie algebras over tr and let 4 be any of the
relations =<, <], <|*, si, asc (see Stewart [3, p. 334-335]). We say
that

L e Fin-4%

if and only if H4L and He % implies that He . (For Fin-< X we
write Fin-X.) As is mentioned in [3] the following assertions are
equivalent:

(1) Every infinite dimensional X-algebra L (over 1) has an
infinite dimensional abelian subalgebra A, with A4L.

(2) ¥NFin-4U £ GH.

We say that L satisfies the (general) Engel condition if to each
pair x,y of elements of L there corresponds a positive integer
n = n(x, y) such that [z, ,y] = 0.

We denote by & the class of Lie algebras over t which satisfy
the Engel condition. (An element y is said to be a bounded left
Engel element if [L, ,y] = 0 for some n = n(y).)

If £ and 9 are classes of Lie algebras over r then X% denotes
the class of Lie algebras L (over 1) which have an X-ideal H such
that L/He 9.

3. Preliminary results. The first half of this section is devoted
to proving the result:

THEOREM 3.1. Let t be a mnoetherian ring and let L be a Lie



ENGEL LIE RINGS WITH CHAIN CONDITIONS 3

algebra over x. Then the following assertions are equivalent:
(a) To each finite subset A and each & N N-subalgebra H of L
there corresponds a nonnegative integer n = (A, H) such that

[4, H]=0.
(b) Leg.

That (a) implies (b) is trivial. To show that (b) implies (a) we
make use of some results below most of which appear in some form
in Zorn [4].

Let L be a Lie algebra over r and let A, B, C be subsets of L.

LEMMA 3.2. If C < I(B) then [A, B, C] S [4, B] + [4, C, B].

Proof. Immediate from the Jacobi identity and the fact that
[B,Cl]<tB={3rb,|r, et and b,c B}.

COROLLARY 3.3. If CZ I(B) and m, -+, Ny, Ny, <=+, N, are
nonnegative integers then

(a) [4,.B .Cls >[4, .C, ,.B] and

(b) [4,.B.C, ---, B, 1, Cl1 S S5 A, C, pooim Bl

Proof. (a) By induction on m, + %, and by Lemma 3.2, noting
that for any ¢ if A, = [A4, ,C] then

[Aiy mlBr C] = [Au mlB] -+ [Az; mi—lBy C} B] .

(b) follows from (a) and induction on k.
Let ¢ be a nonnegative integer and let A, B, C be subsets of L.
Then clearly

(*) [A) qB + C] g Z[A, mlBy nlcy ) kar nkc] ’

where the summation is taken over all sets of nonnegative integers
My =+ o, My, Ny, +++, n, for which Sym;, + S\m, = ¢ (and £ >0 and
m,, n, may be zero but m,, -, my, Ny, -+, 0, (if they exist) are
nonzero).

For subsets A and B of L we define A” to be the smallest
1-submodule containing A and invariant under Lie multiplication by
the elements of B. Clearly

AP =1A + 3[4, .B].

Evidently if A and B are contained in some finite dimensional 1-
submodule of L (and r is noetherian) and for some 7 [A4, ,B] S
tA + >[4, ;B] then A? is finite dimensional.
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We remark that if C = I(B) then [A, C, B] < [A4, B, C] + [A, B]
and so

[A’ nlcy mlB] g i [A7 mlB; zC] .
(+) Thus if [A4, .B] = 0 then [4° ,B] = 0 and conversely.

LEMMA 3.4. Let L be a Lie algebra over a moetherian vring x
and let A, B,C be subsets of L with C< I(B). If m,n are non-
negative integers such that [A®, Bl = 0 = [47%, ,C] then

(44, ,..B+C]=0.

Proof. If m =0 or n =0 then A” =0 and the result holds
trivially. Thus suppose that m >0 and = >0. Put A4, = 4%
From (*) we have

[Aly mnB + C] S Z [Al’ mlBy nlcy Tty ka, nkC] ’

where & > 0, my, -+-, m, 0y, -+, _, >0 and Zm, + Zn, = mn. Con-
sider a typical term

X = [Aly 'mlBy nlc9 ) ka3 nkC] .
By Corollary 8.3(b) we have

X< z [4,, /C, -, B] .
Hence if XYm,=m, then X =0 (see remark (+) above). Thus
assume that Im, < m; then as m,, ---, m, are nonzero we must have
E—1Z23m,<m and so k <m + 1.

Suppose then that each n, <n. Then In, < k(n — 1) = m(n — 1)
and so Im,; = mn — In; = mn — m(n — 1) = m, a contradiction. Thus
some 7, =mn. If ¢=1, then as [A, ,B]S A, we have X =0.
Suppose ¢ > 1; then [A, ., B, ,C, :-+, »,Bl S A{ and [A7,.C] =0 so
X =0.

Hence X = 0 in all cases and so [A4,, .,B + C] =0. This proves
the required result.

Evidently the conclusion [A4, ,..B + C] =0 holds for [4, ,B] =
[4, .C] = 0 provided that B< I,(A) and C & I(B).

Let B, C be subsets of L such that [B,C]&1(BNC). Let
My, Ny, +++, My, N, be nonnegative integers with m' = >k, m; and
n' = >k n;. Then it follows from Corollary 3.3 that for any sub-
set A of L,
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[4, B, 0C, - B, 01 € (314,.6, B 0 (314, B, .01) -

Thus by (*) and the remarks preceding Lemma 3.4 it follows that
if [4, .B] = [4, ,C] =0 then [A4, ,.....B + C] = 0 (where we interpret
[4, ninosB+ C] as 0 in case m = n = 0). Inducting on kt we now
have:

If A, B, -+, B,< L such that [4, , B] =0 fori=1,---, %k and
[B1+ cre Biy Bi+1]gr((31+ cee b Bi)mBl—H) for i = 1: "',k—— 1,
then

(**) [4, m1+~~~+mk—k+lBl + s+ Bl =0,

Proof of Theorem 3.1. We want to prove that (b) implies (a).
So let Lc@ and let A be a finite subset of L. Suppose that H =
@y, o+, 3,p =< L and H is nilpotent of class ¢. We induct on ¢ to
show that [A, ,H] =0 for some n = n(A, H). Suppose that ¢ = 1.
Then H=1tx, + +++ + tx,. As A is a finite set we can find %, such
that [4, ,x] =0, whence [4, ,12]=0 for =1, ---, k. Further-
more, [H, xx] =0 for all 4 and so by (**), |4, .,H] =0, where n =
Yn, —k + 1. So the result holds for ¢ = 1.

Suppose that ¢ > 1 and the result holds for ¢ — 1. For each ¢
let B, = H®* + 1x,. Evidently B, is nilpotent of class not exceeding
¢ — 1 and is finitely generated as a subalgebra of L. Hence we can
find n, such that [4, ,.B,] = 0, by the inductive hypothesis on ¢ — 1.
Now B, <| H for each 7 and so by (**) [A4, ,H] = 0, where n = Xn, —
kE+1, since H= B, + .-+ + B,. This completes our induction on ¢
and the proof of Theorem 3.1.

REMARK. Evidently Theorem 3.1 holds for Lie algebras defined
over an arbitrary commutative ring t.

Define the classes €* and &, (n > 0) of left Engel algebras and
n~-Engel algebras respectively by:

Lec@* is and only if to each we L there corresponds m = m(z)
such that [y, .x] = 0 for all y € L (equivalently, [L, ,x] = 0);

Le@, if and only if [2, ,y] =0 for all @, ye L. Clearly

U.C=6¢"=<¢,

and G* is the class of algebras in which each element is a bounded
left Engel element.

Let &, be the class of Lie algebras which can be generated by
k elements and 9, the class of Lie algebras which are nilpotent of
class < e¢.
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In much the same way as the proof of Theorem 3.1 we can
prove:

THEOREM 3.5. Let L be a Lie algebra over a commutative ring
t. Then

(1) LeG* if and only if to each & N N-subalgebra H of L
there corresponds m = m(H) such that [L, ,H] = 0.

(2) LeG, if and only if there exists h = h(n, m, ¢) such that
for any &, N N.-subalgebra H of L, [L, ;H]=0. (k(n,m,1)=
mn—1)+1 and hn, m, c) = mh(n, m, c —1) —1) with m, =
m(m® — 1)/(m — 1).)

The following result is probably well known:

LEMMA 3.6. Let Le@ and H be a & NN subalgebra of L.
(a) If KeSNN and K < I,(H) then H+ Ke®GnN.
(b) If H< L then there exists Ke G NN with

H< K < I(H).

Proof. (a) Evidently H + K is a finite dimensional subalgebra
of L. By Theorem 3.1 we can find m and % such that

[H+ K, ,Hl=[H+ K, ,K]=0.
Thus by Lemma 3.4 we have
[H+ K, .H+ K]=0

and so H+ Ke® NN,

(b) If H< L then we can find a finite subset A of L with
A& H. By Theorem 3.1 we can find m such that [4, ,H] =0& H.
Let k& be minimal with respect to [4, ,H]|S H. If k=0 then 4 =
[4, H] & H, a contradiction. So k> 0. Now by the definition of
k we have [A, ,_,H]| & H and [A, .. H] &SI, (H). Pick zc[A4, ,_.H]
with x¢ H and let K = H + {x). Then H < K < I;(H) and by part
(a) Ke@ NN (for {z) is abelian and 1-dimensional and contained in
I.(H)).

Let A, B be closure operations (see Stewart [3]) and let X be a
class of Lie algebras (over 1). Define the class (AB)X by

(AB)X = A(B%) .
If « is an ordinal and (AB)*% has been defined, let
(AB)*"'% = (AB)((AB)*%) .
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If X is a limit ordinal and (AB)*X has been defined for all ordinals
a <\, define
(AB)yX = U (AB)X .

a<i

Let
{4, B}X = U AB)%. (AB)X =% .)

all ordinals a
Define the closure operation £ by LeEX if L has an ascending
series (from 0 to L) with X-factors (see Stewart [3]).

THEOREM 3.7. €N {E, L}A = LN.

Proof. Use transfinite induction on «a to show that
(") GN(EL)YA < LN

for all «. Evidently (') will hold for a limit ordinal )\ provided it
holds for all ordinals & < A. Thus we need only verify the induc-
tive step from a to a + 1. Since subalgebras and quotients of
Engel algebras are also Engel algebras this boils down to proving
that -

(") CNELN < LN.

Now the union on an ascending chain of Lt-subalgebras is locally
nilpotent and so (") will follow from showing that whenever Le G,
H<{L and H, L/He L% then Le LN.

This will follow from the following results: Let L e @,

(a) If H Ke LN and K< I,(H) then H+ Ke LR. For every
finitely generated subalgebra of H + K is contained in one of the
form C = (A4, B) where A and B are finite subsets of H, K re-
spectively. Now <(BYe® NN (for Ke LN) and so by Theorem 3.1
we can find » such that

[4, .{B)] = 0.

Therefore, A® = (315 [A, {B)]) is a finite dimensional submodule
of H (for K < I,(H)) and so A, = A®>e® NN (since He LN). By
Lemm 3.6, C = A, + (BY>e® NN and (a) is proved.

(b) If He LN, X < I,(H) and X* < H then Xe LI and so

H+ XeLM%.

For let =z, --.,2,€X and define X, =X?, X, ., =X, + {x,,,) for
1=0,1,--.,k—1. Clearly X, <]X for all X,. Now X,=X*<H
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and so X,eN. If X,e LN then by (a) we have X,,,€ LN. So by
induction X, e LN, whence <z, ---, x,>€ N and Xe LN. By (a) H+
Xe LN,

From (a) and (b) it follows by induction on ¢ that if He L%,
X< I(H) and X/X N H is nilpotent of class ¢ then Xe LN and so
H+ XeILN. In particular let H <] L with H, L/He L% and let X
be a finitely generated subalgebra of L. Then X/X N H is nilpotent
so X is locally nilpotent and thus nilpotent. Hence Le LN as
required. This completes the proof of the inductive step for ("). We
note that for &« = 0 we have (FL)¥U = 9 < LN. So (') holds for all
a and GN{E, L)AL LR, Evidently LN <€ and LN < LEA S {E, L},
This completes the proof of Theorem 3.7.

Clearly (£, L})¥ contains the class ZL: and the class of Lie
algebras with an ascending series whose factors are locally soluble.
So Theorem 3.7 includes the well known result of Gruenberg that a
locally soluble algebra with Engel condition is locally nilpotent. It
also shows that if Le @ and P is the sum of all the locally nilpotent
ideals of L then P is locally nilpotent, and L/P has no nontrivial
locally nilpotent ideals. This latter property is the basis of the
solution of the restricted Burnside problem by A. I. Kostrikin.

Finally we remark that all the results in this section hold for
Lie algebras defined over an arbitrary commutative ring.

Let 4 be one of the relations <, <|* (a > 0), si, asc and let X
be a class of Lie algebras. We define

B(A)%

to be the class of Lie algebras L with an ascending series {L;: 0= 8=<)\}
with L., /L, X for all 8§ <\ and L 4L for all g <. (Note that
Ly <] Ly, for all 8 < and L, = Usr L, for all limit ordinals
# <)) If 4is a transitive relation e.g. <, si, asc, then £(4) is a
closure operation. We normally write £X for E(<)X. We also write
LecE¥ when LeEX and ) is a finite ordinal. Clearly E is also a
closure operation.

4. The main result.

THEOREM 4.1. Owver any noetherian ring t,
ENFin-A=FNN.

That FNN < ENFin-A (for as r is noetherian then every sub-
module of a finitely generated r-module is also finitely generated) is
trivial. We will prove the reverse inclusion later on.
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First we need a result of Stewart [3, Corollary 1, p. 337] (there it is
stated for Lie algebras defined over a field, but holds as well for
Lie algebras over any noetherian ring t). Define the classes

Q, R

of Lie algebras over v by LeQ if Le® or L¢ Fin-U (i.e., L has an
infinite dimensional abelian subalgebra); LeR if Le% or C(x)¢F
for some x€ L (x = 0). Thus Q <R and QN Fin-A = F.

For a Lie algebra L over t we define Zy(L) =0, Z(L)= Cy,(L);
if a is an ordinal and Z,(L) has been defined then Z, ,(L)/Z(L) =
Z(L/Z(L)); for limit ordinals N, Z,(L) = U.:ZuL).

We define the clags 83 by Le 3 if L = Z, (L) for some «.

We denote by

B(<U

the class of Lie algebras which have an ascending series of ideals
with abelian factors.

ProOPOSITION 4.2. (Stewart [3]). Over any noetherian ring x,
L < Q

and in particwler LN N Fin-U = F N I

Proof. Sketch.

(i) If Le3 and 0 N<|L then NN Z(L)=0. (Let a be
minimal with respect to N Z,(L) s 0; then «a is not a limit ordinal,
so «—1 exists. Then [NNZJ (L), LIS NNZ,_(L)=0 and so
0+ Nn Z. (L) = Z(L).)

(ii) If Led and A is a maximal abelian ideal of L then
C(A) = A.

(C,(A)JA | L/Ae 3; thus if C,(A)/A + 0 then by (i) we have x¢ 4
such that K = (&) + A/A £ C(A)JAN Z(L/A); hence B =<2) + A
L and B® = 0, a contradiction.)

i) 3N Fin-JA=FnN.

Let Le 3N Fin-<{% and let A be a maximal abelian ideal of L
(existence by Zorn’s lemma); then A€ and so L/C(A)eF; but
by (i) C,(A)=A and so LeFNIZ3=FNN. The converse is
trivial.)

(iv) E(<UN Fin-<?A = B.

Let LeE(<)AUN Fin-<*A and let {L,|0 =<« < o} be an ascending
series of ideals of L with abelian factors in which all the terms are
distinet. Consider two cases:

(a) For some finite n, L,¢@; if so let m be minimal with
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respect to L,¢E. Then m >0 and L, e and so LLeF. Now
C=0C, (L)L and CeM,. Thus Ce 3N Fin-JAXF. We also
have L,/Ce$, whence L,c$F, a contradiction.

(b) So assume that L,e$ for all n <w, and K= L, ¢ J.
Now K = U,<v L,; suppose that H,<|L, H,eFNN and H, < K.
Then C, = Cx(H))¢F (since K/C.,eF and Ke¢F) and C,<{ L. We
have C;, = U L, N C; and so there exists %, minimal with respect to
C.,=CnL, £ H, whence C;, < C;NL,,_, < H, and C,, ¢ N,; further-
more, C,, <| L and C,, €. Set H,,, = H,+ C,, and H, = L. Then
H, < H,,. Define H= Uz, H,. We note that C,,, centralizes H,,,
for all k=1; and H?, < H,. Finally for any ¢ we have H =
(Hips, C’ﬂi+1’ Cn¢+2’ D and so [E{Hn H]l < H}, < H. Therefore, H; <
Z(H) for all + and He 8. But H <] L, whence He Fin-<] 2 and by
(ili) He P, a contradiction since we would have H = H, for some 1
and so C,, < H,.

The rest of the proof follows along the lines of Stewart [3,
Lemmas 3.1 and 3.2, p. 336-337].

Proof of Theorem 4.1. Let Le &N Fin-A. Let H be a maximal
locally nilpotent subalgebra of L (existence by Zorn’s lemma, since
the zero subalgebra and the union of any well ordered chain of
locally nilpotent subalgebras are locally nilpotent). Then He Fin-a
and so HeLN N Fin-U. Hence HeFN N by Proposition 4.2. If
H =+ L then by Lemma 3.6 there exists KeFN N (=GN N) with
H < K £ I,(H). But this contradicts the choice of H as a maximal
locally nilpotent subalgebra. Hence H= L and Le@FNN. Thus
ENFin-A <FNRN and our proof is complete.

Trivially § < Fin-9 (strict inclusion since any free t-Lie algebra
with more than one generator is in Fin-% but infinite dimensional)
and if H < LeFin-2 then He Fin-2.

Evidently EY is the class of soluble algebras and

EANFin-A =FNEA,

by part (iv) of the proof of Proposition 4.2. Thus if He E and
H<] L then LeFin-9 if and only if H, L/He Fin-2.

Suppose that Le E(<])&N Fin-2A. Then L has an ascending @-
series of ideals,

0=L L, - L,=L

for some ordinal N. Suppose if possible that L& F N EN. Then we
can find an ordinal a@ <\, minimal with respect to L,& % N EA.
Now L, e &N Fin-% = FN N by Theorem 4.1 so a > 1.

If a is not a limit ordinal then a — 1 exists and H= L, €
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FNEA. Now L,ecFin-2U and so by our remark above L,/ H e Fin-2I.
But L,/He@ and so by Theorem 4.1 L,/HeFNN, whence L,¢c
&N EA, a contradiction. So « is a limit ordinal. By definition
L, = Up<a Lj, and by the definition of a L, F N EA for each B < a.
Thus L,cE(<)(F N EA) < E(<QA. Since also L,c€Fin-A then by
part (iv) of the proof of Proposition 4.2 we have L,eF N EL,
another contradiction. Therefore Le &N EA.

The first part of our proof above shows that EG N Fin- =
TN EA. So we have:

COROLLARY 4.3. Over any noetherian ring t,
(a) €nF=FnN

(b) Fin-¢ = Fin-LN = Fin-N = Fin-A.

(¢) ECNFin-A = E(<)E N Fin-A = F N EA.

REMARK. Let Max and Min denote respectively the classes of
Lie algebras over r (a commutative ring with unit) satisfying the
maximal and minimal condition on subalgebras. Clearly Max <
Fin-91. However, if t is not a field we do not necessarily have Min <
Fin-: e.g., let L = C,o0, considered as an abelian Lie algebra over
the ring of integers. Then L e N Min but L& .

Now suppose that X is a class of Lie algebras over 1 (a noe-
therian ring with unit). Then

(§8) EXNFin-A<FN EA if and only if XN Fin-A < FN EAN.

The implication in one direction is clear. For the reverse implica-
cation we evidently need only consider the case L =7, L,¢<
Fin-, with L, <] L,., and L, N EA for each n. For this we note
that L, asc L for each n and so by Proposition 4.5 (below) we have
H,=L;<]L and H,e3FNEA for each m. Thus H=H,e
E(<D@ N EA) < E(<)€ and He Fin-AU and so by Corollary 4.3, He
F N EU. Since also H<| L we have L/HecFin-3 and clearly L/He
LN. Thus by Proposition 4.2, L/HeF NN and so LeFn EA and
(8 is proved.

Next if X is a class of Lie algebras over a noetherian ring
then

(B) XNE=<LNif and only if {E, L)X NE < LN,
(B) follows from the fact that & ZLR < LR and for each ordinal «,
C N EL(BL)X) = G N EL(E N (EL)°X) .

From (8), (B), and Corollary 4.3 we have:
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THEOREM 4.4. Ower any noetherian ring t,

(1) E€GNFin-A = FN EA.

(2) €n{& L}(Fin-N) = LN.

Evidently § < Fin-l and A=< EF and so {E, LA {E, LIF <
(£, L} Fin-2. Thus Theorem 4.4 is a generalization of Theorem 3.7.

If L is a Lie algebra we define the transfinite lower central
series inductively by: L' = L, L*™ = [L*, L] and at limit ordinals g,
L#* = Nu<.L* The transfinite derived series is defined by: L® = L,
Li*™ = [L" L], and at limit ordinals g, L' = N,<.L'*.

PROPOSITON 4.5. Let L be a Lie algebra over a commutative
ring . If H asc L and there exists H,<| H such that H/H,c$
and [L, H) S H then H* <| L and H' < L.

Proof. Let H =X, H,y where X is a finite dimensional 1-
submodule and let H = K, <] K, <] --+- K, = L be an ascending series
from H to L. Suppose that A is a finite dimensional r-submodule
of L.

For each nonnegative integer n let «, be the least ordinal such
that [4, ,X] S K,,. As [4, ,X] is finite dimensional for each = it
is clear that «, is not a nonzero limit ordinal. Furthermore, as
H=<K, ,<K,, then a,>a,—-1=«,,, (if «,+#0). We cannot
have an infinite strictly descending chain of ordinals and so o, = 0
for some m, whence [A4, ,X]E K, = H and [4, H"] S [4, H""] &
[4, ,..H] < H*. Thus for each m, [4, H"™"] & [4, ,..H] S H™" and
so[4, H ]S N, H*™" = H*. Wealsohave A4, H*™M<S[A, . H"™]
[H, H*™™] < H"™*™, whence [4, H“] S N, H"™ = H'. Since A
was arbitrarily chosen we see that H* <] L and H' <{| L. ( is the
first infinite ordinal.) This proves Proposition 4.5.

For the proof of (§) we take H, = 0 and note that F < .
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