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THE ISOMETRIES OF LP{X,K)

MICHAEL CAMBERN

Let (X, Σ, μ) be a finite measure space, and denote by
LP{X, K) the Banach space of measurable functions F defined
on X and taking values in a separable Hubert space K, such
that II F(x) \\p is integrable. In this article a characterization
is given of the linear isometries of LP(X, K) onto itself, for
1 ^ p < oo, p Φ 2. It is shown that T is such an isometry
iff T is of the form (T(F))(x) = U(x)h{x)(φ(F))(x), where φ is
a set isomorphism of Σ onto itself, U is a weakly measurable
operator-valued function such that U(x) is a.e. an isometry
of K onto itself, and h is a scalar function which is related
to φ via a formula involving Radon-Nikodym derivatives.

Throughout this paper the letter K will represent a separable
Hubert space which may be either real or complex. We denote by
< , •) the inner product in K, and by S the one-dimensional Hubert
space which is the scalar field associated with K.

A function F from X to K will be called measurable if the scalar
function (F, e) is measurable for each ee K. Then for 1 S V < °° >
we denote by LP(X, K) the Banach space of (equivalence classes of)
measurable functions F from X to K for which the norm

\\F\U = ess sup 11^0*01!

is finite. (Here || ||p denotes the norm in LP(X, K) and LP(X, S),
and || . || that in K.) If FeLp(X, K), we define the support of F
to be the set {x e X: F(x) Φ 0}.

Let {elf e2, •} be some orthonormal basis for K. For Fe LP(X, K),
we define the measurable coordinate functions fn by fjx) = (F(x), en).
Then almost everywhere we have Σ^ \fn(%) I2 < °°> &nd F^) =
Σ»/n(»)βΛ Moreover, it is easily seen that each fn belongs to
Lp(X, S).

Here we investigate the isometries of LP(X, K), for 1 ̂  p < oo,
p Φ 2. For the case in which X is the unit interval, μ Lebesgue
measure, and K — St the isometries were determined by Banach in
[1, p. 178]. In [4], Lamperti obtained a complete description of the
isometries of LP(X, S) for an arbitrary finite measure space (X, Σ, μ).

Following Lamperti's terminology, we will call a mapping Φ of
Σ onto itself, defined modulo null sets, a regular set isomorphism if
it satisfies the properties
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Φ(A') = [Φ(A)]' ,

φ(0 An) = U Φ(An) ,

and

μ[Φ(A)] = 0 if, and only if , μ(A) = 0 ,

for all sets A, An in Σ. (Throughout, A! will denote the complement
of A.) A regular set isomorphism induces a linear transformation,
also denoted by Φ, on the space of measurable scalar functions defined
on X, which is characterized by Φ(χA) — %*u), where χA is the char-
acteristic function of the measurable set A. This process is described
in [3, pp. 453-454]. The induced transformation, moreover, has the
property that it preserves a.e. convergence:

(1) if UmfM = f(x) a.e., then lim {Φ{fn)){x) = (Φ(f))(x) a.e.
n n

Now given a regular set isomorphism Φ of Σ onto itself, and
F = Σ*f«en G LP(X, K), we define Φ(F) by the equation

(2) (Φ(F))(x) = Σ(Φ(Λ))(*K .
n

For the case in which K is infinite dimensional, one must, of course,
verify that the series on the right in (2) is indeed convergent in K
for almost all x. But, for all scalar simple functions, we have
(Φ(\f\2))(x) = \Φ{f)\\x) and hence, by (1), this identity holds for all
measurable scalar functions. Thus, as || F(x) ||2 = Σ» \fJ&) I2 —

ΣίU \fn(x)\2> again using (1), we have

\Φ(\\F\\)\\x) = (Φ(\\F\mx) = Km(<p(Σ \fn\2))(x)
(3) N

 N K U l ^
N

Σ i (Φ(Λ))(a) I2 = Σ I (Φ(fn))(x) I2 - II (Φ(F))(x) ||2 .
N n=l n

Moreover, it is readily verified that the definition of Φ(F) is inde-
pendent of the choice of orthonormal basis for K.

For the case in which K is one-dimensional, Lamperti has shown
that if T is an isometry of LV(X, S) onto itself, l^p < °°, P ^ 2,
then there exists a regular set isomorphism Φ, and a measurable
scalar function h(x) such that for feLp(X, S)

( 4 ) (T(f))(x) - h(x)(Φ(f))(x) .

Moreover, if the measure v is defined by v(A) — μ[Φ"\A)\f AeΣ,
then

(5 ) I h(x) \p = dv/dμ a.e. on X .
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Conversely, given any regular set isomorphism Φ of Σ onto itself,
and a function h(x) satisfying (5), the operator T defined by (4) is
an isometry of LP(X, S) onto itself. Here we establish that the
isometries of Lp(Xf if), for any separable Hubert space if, closely
resemble those of LP(X, S), except for the emergence of a measurable
operator-valued function.

2. The isometries* We begin with a lemma whose proof exactly
parallels that of Lemma 14, [5, p. 331], with the real numbers ζ and
7] in that lemma replaced by vectors in if.

Lemma 1. Let φ and ψ be two elements of K. If 1 ^ p ^ 2,
then

and if 2 ^ p < oo,

\\ ψ + ψ \\p + || φ — ψ \\p ̂ > 2(11 φ \\p + || ψ \\p) .

If p Φ 2, equality can hold only if φ or ψ is zero.

By integration, we then obtain the following:

Lemma 2. // 1 ^ p < <χ> and p Φ 2, and if F and G are in
LP(X, if), then

if and only if F and G have a.e. disjoint supports.
Throughout the remainder of this article we assume that p is

a given real number with l ^ p < ° ° , p Φ 2. We define q to be that
extended real number such that 1/p + 1/q = 1. (The usual conven-
tions are in effect.) T will denote a fixed isometry of LP(X, K) onto
itself.

We will repeatedly use the map T* ~ι defined on Lq(X, K) by

\(F(x), {T*~ι{G)){x))dμ = [((T^iFMx), G(x))dμ ,

for FeLp(X, K), GeLq{X,K), which is, almost, the Banach space
adjoint of T~\ For the dual space of LP{X, K) is L\X, if*), where
if* is the dual of K, [2, p. 282]. And if σ is the usual conjugate-
linear isometry of K* onto K, σ induces a conjugate-linear isometric
mapping of Lq(Xt K*) onto Lq{X, K), which we shall also denote by
σ, and which is determined by (tf(G*))(aO = σ(G*(x)), G* e Lq(X, if*).
Our map Γ*^1 is then actually σoT^^oσ"1, where T^1 is the true
Banach space adjoint.
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For any element e e K, we denote by e that element of LP(X, K)
which is constantly equal to e. If e Φ 0, it is an easy consequence
of (6), and of the fact that T is onto, that the support of T(e) must
be equal to X a.e.

LEMMA 3. Let e be any vector in K. If A is any measurable
subset of X, then T(χAe) is equal to T(e) on the support of T(χAe).

Proof. The functions χAe and χA,e have disjoint supports, and
thus (6) holds if F and G are replaced, respectively, by χAe and χA>e.
Since T is isometric, it follows that (6) also holds for T(χAe) and
T(χΛ^)f and hence that these latter two functions have disjoint sup-
ports. Since T(e) = T(χAe) + T(χA,e), the desired conclusion follows.

LEMMA 4. Let e be an element of K with \\e\\ = 1, and let F =
T(e). If E is the vector function defined a.e. by E{%) - F(x)/\\ F(x) ||,
then T*-\e) is that element of Lq(X, K) determined by {T*~ι(e)){x) =
\\F(x)\\*-ιE(x) for almost all xeX.

Proof. We have \\F\\P = || e \\P - [μ(X)]llP. Moreover, as Γ*"1 is
an isometry of Lq(X, K) onto itself, we also have || T*-X(e) \\q = [μ{Xψ\
this latter equality holding even in the limiting case q = co, since
| | e | L = l .

Let G = ^""'(e), and define the vector function H by H(x) =
G(^)/|| G(α ) || if & belongs to the support of G, and ίφ;) = 0 otherwise.
(If q — oo, we do not yet know that the support of G is equal to
X a.e., although this fact can readily be established by a separate
argument involving extreme points.) We then have

μ(X) =

= \ (F(x), G(x))dμ

( 7 )

= γ\F(x)\\\\G(x)\\(E(x),H(x))dμ

S \ II F{x) || || G(x) || dμ£\\F\ \, \G ||, =

Hence we must have equality throughout in (7). Thus, by a known
result for scalar functions, [5, p. 113], for p > 1 the equality

G(x)\\dμ=\\F\\P\\G\\q implies that^\\F(x)

a.e., so that || G(x) || = \\F(x) \\'~x a.e. If p = 1, the equality
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F(x) !| II G(x) || dμ = μ(X) = \\F\\, implies that ||G(a?)|| - 1 = | | 2 W ~ ι

a.e. in this case too. Finally, the equality

F(x) || || G(x) || <E(x), H(x))dμ = J || F(x) || || G{x) \\ dμ

yields the fact that H(x) = i?(#) a.e., which completes the proof of
the lemma.

LEMMA 5. Let e and φ be two orthogonal elements of K, each
with norm one, and let Fe — T(e) and Fψ = T(ψ). If Ee and Eφ are
the vector functions defined a.e. by Ee(x) = Fe(x)/\\ Fe(x) \\ and Eψ(x) =
Fφ(x)l\\Fφ(x)\\, then (Ee(x), Eφ(x)) = 0 a.e.

Proof. Let A be any measurable subset of X. Then Fe =
χAFe + χA'Fe, and since the two functions on the right have disjoint
supports, (6) holds when F and G are replaced, respectively, by χAFe

and χAFe. Hence (6) also holds for T~ι{χAFe) and T~ι{χA,Fe)y and
these latter functions thus have disjoint supports. Since e =
T~\χAFe) + T-ι(χA,F.)9 if we let B denote the support of T~\χAFe),
it follows that T(χBe) = χAFe.

We then have, using Lemma 4,

0 = j <XBe, 9>dμ =

= \<XA\\ F.(X) |ί E.(x), || Fv{x) \Y~ι Eφ{x))dμ

|| F.(x) || || Fφ(x) [I""1 (Ee(x), Eφ(x))dμ .

Since || Fe(x) \\ \\Fφ(x) H2'"1 is an a.e. positive element of Lι(X, S), and A
is an arbitrary measurable subset of X, we must have (Ee(x), Eφ(x)} =
0 a.e. on X.

LEMMA 6. For any element e of K with norm one, let Fe and
Ee be defined as in the previous lemma. Then for feLp(X,S),
(T(fe))(x) = f(x)Ee(x) for some scalar function / , and the mapping
f{%)-*({T{fe)){x), Ee(x)) is an isometry of LP(X, S) onto itself.

Proof. If A is any measurable subset of X, we know from
Lemma 3 that (T(χAe))(x) is equal to 11 Fe(x) \\ Ee{x) on the support of
T(χAe). It thus follows that for any simple function feLp(X,S),
(T(fe))(x) = f(x)Eβ(x), where / is a function in LP(X, S) with the
same norm as /. For arbitrary feLp(X, S), let {fk} be a sequence
of simple functions converging to / in the norm of LP(X, S). Then



14 MICHAEL CAMBERN

lim j || (T(fke))(x) - (T(fe))(x) ||* dμ = 0 .

Hence \\{T{fke)){x) — (T(fe))(x)\\p tends to zero in measure, and so a
subsequence tends to zero a.e. That is, (T(fk.e))(x) tends to (T(fe))(x)
almost everywhere.

Now, for almost all x, the elements of K given by (T(fkje))(x),
j = 1, 2, lie in the one-dimensional (hence closed) subspace of K
spanned by Ee(x), and thus (T(fe))(x) must lie in this subspace. That
is, (T(fe))(x) = f(x)Ee(x), for some feLp(X, S) with | | / | | P = | | / | | , ,
and the given mapping is an isometry of LP(X, S) into itself.

It is readily seen that the map is, in fact, onto LP(X, S). For
suppose we are given a function of the form f(x)Ee(x), where
fe LP(X, S). Incorporate e into an orthonormal basis for K — say
e = eιy where {en: n = 1, 2, •} is such a basis. Let F(x) — Σnfn{x)en

be the element of LP(X, K) which maps onto f(x)Ee(x) under T.

Now F0(x) = Σ . « / . ( Φ . belongs to LP(X, K), where K is the
Hubert space which is the closed linear span of {en: n ^ 2}, and vector-
valued simple functions of the form G = Σj=i XA^ ΨS e %> a r e dense
in L*(X, K). By Lemmas 3 and 5, for all such G, <(Γ(G))(α?), Ee(x)) = 0
a.e., from which it follows that ((T(F0))(x), Ee(x)) = 0 a.e. Thus as
f(x)Ee(x) = (T{fγe))(x) + (T(F0))(x), with (Tif^ix) pointwise a scalar
multiple of Ee(x) and (T(F0))(x) a.e. orthogonal to Eβ(x), we conclude
that T(F0), and hence FOf are both equal to the zero element of
LP(X, K). It follows that the mapping given by the lemma is indeed
onto LP(X, S).

LEMMA 7. Let {en: n = 1, 2, •} be some fixed orthonormal
basis for K, and for each n define Fnj En by Fn = T(en), En{x) =
Fn(x)l\\Fn(x)\\. Then there exists a regular set isomorphism Φ and
a fixed scalar function h(x) defined on X and satisfying (5), such
that for all n = 1, 2, and for all feLp(X,S), (T(fen))(x) =
h(x)(Φ(f))(x)En(x)>

Proof. By Lemma 6 and Lamperti's result for scalar functions,
we know that if em and en are two elements of the given orthonormal
basis and if feLp(X, S), then (T(fem))(x) = hm(x)(Φm(f))(x)Em(x) and
(T(feMx) = K(x)(ΦΛf))(x)En(x), where λj») and hn(x) are scalar
functions defined on X, and ΦTO, Φw are linear transformations induced
by regular set isomorphisms. We wish to show that hm — hn and
Φm = Φn modulo sets of measure zero.

If A is any measurable subset of X, we have

(8) (T0Uβm))(x) = K(x)χΦmU)(x)Em{x) ,
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and

( 9 ) (T(χAen))(x) = M * » W

Consider χA(em + en)/VΊϊ. If we let Fm,n = T[(em + eJ/VΊΪ], and define
J E ^ by ^^(α?) = Fmιn(x)/\\Fm,n(x)\\, again by using Lemma 6 and
Lamperti's result, we conclude that there exists a scalar function
hmtn and a regular set isomorphism ΦW ι Λ such that

(10) (T[χA(em + en)/vΎ])(x) = hmJx)χΦm>nU)(x)Em>M .

Now, using the linearity of T, we have

(11) - (Fm(x) + F.(a?))/|| ί ^ s ) + Fn(x) \\

= (|| Fm(z) II Em(x) + || i^(aθ || En(x))/\\ Fm(x) Hh

And, combining (11) with Lemma 4, we have

(T*- ι[(β. + Ύ

(12) - || (Fm(x) +

+ || FM || JS?.(a?))/|| F,(α) + Fn(x) \\ .

Also, using Lemma 4 and the linearity of ϊ7*"1, we find that

U3) ( Γ *" ι Kβ- + O A ^ ] ) ( « ) = || Fm(x)

+ \\FJi

Since Lemma 5 shows that 2£w(α0 and JE (̂O?) are a.e. linearly inde-
pendent, we conclude from (12) and (13) that

2'1-'"" || Fm{x) + FM | | - 2 1 ! Fm(x) || = || F,(aj) H ^ V ^ T , a.e.,

from which it follows that \\FJp) + FM II = V"2~|| Fm(α?)|| a.e. Simi-

larly, ||jPm(a?) + i^(a?) || = V~2\\FM\\ a.e., so that (11) then gives

Em.M = EMt^Z + EMfi/~2 . _
Thus from (10) we conclude that (T[χ^(em + eH)/τ/2 ])(«) =

hmtMχφM(A)(x)Em(x)/V~2 + hUtMXφM,nu>(x)En(x)/vΎ. But the line-
arity of T, together with (8) and (9), implies tha,t(T[χΛ(em+en)/V 2 ])(x) =
hMχΦmu)(x)Em(x)/VΎ + hn(x)Xφnu)(x)EM/VΎ. Hence, once again
employing the a.e. linear independence of EJx) and En(x)f we find

that hm(x)X mu)(x) = hm,MXφMu)(v) = Λ»(»)Z W(̂ >(«) a e S i n c e t h i s

equality holds for every measurable set A, we can conclude that
hn = hm and Φn — Φm, modulo sets of measure zero.

Thus, if we let Φ = Φ, and h = fcx, then for all / e LP(X, S) and
all n, we have (Γ(/βΛ))(a?) = h(x)(Φ(f))(x)En(x) a.e., and fc = ht satisfies
(5) by Lemma 6. This concludes the proof of lemma.
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A function U defined on X and taking values in the space of
bounded operators on K is called weakly measurable if (U(x)e, φ) is
measurable for all e, φeK.

THEOREM. Let T be an isometry of LP(X, K) onto itself, and
let {en: n = 1, 2, } be some fixed orthonormal basis for K. Then
there exists a regular set isomorphism Φ of the σ-algebra Σ of measur-
able sets onto itself (defined modulo null sets), a scalar function h
defined on X satisfying (5), and a weakly measurable operator-
valued function U defined on X, where U(x) is an isometry of K
onto itself for almost all xeX, such that for FeLp(X, K),

(T(F))(x) = U(x)h(x)(Φ(F))(x) ,

where Φ(F) is defined by (2). Conversely, every map T of this
form is an isometry of LV(X, K) onto itself.

Proof. If T is of this form, then it follows from (3) and the
fact that U(x) is almost everywhere an isometry, that

\\U(x)h(x)(Φ(F))(x)\\ = \h(x)\\Φ(\\F\\)\(x), for FeLp(X,K),

so that T is norm-preserving by Lamperti's result for the scalar
case. The fact that T maps LP(X, K) onto itself can readily be
established, for example, by noting that since Φ is onto, and U(x)
is a.e. an isometry of K onto K, no nonzero element of Lg(X, K)
can annihilate the range of T.

Now suppose that T is any isometry of LV(X, K) onto itself. We
define U(x) on the basis vectors en of K by U(x)en = En(x), where
the En are determined as in Lemma 7, and then extend U(x) linearly
to K. Since by Lemma 5, {En(x): n — 1,2, •} is almost everywhere
an orthonormal set in K, U(x) is an isometry of K into itself a.e.,
and if K is of finite dimension, the remaining assertions of the
theorem then follow immediately from Lemma 7.

Thus we may as well assume that K is infinite dimensional. Let
F(x) = YAnfn{x)en belong to LP(X, K). Then the sequence {FN}, where
FN{x) = Σ»=i/n0*0eΛ, converges a.e. to F and is dominated by | | ί Ί | .
Hence by the dominated convergence theorem, || FN — F\\p —>0. We
thus have T(F) = lim^ T(FN) in LP(X, K), and so at least a subse-
quence of the T(FN) converges a.e. to T(F). But we know from (3)
and the fact that U(x) is almost everywhere norm-preserving that
U(x)h(x)(Φ(F))(x) = \imNU(x)h(x)(Φ(FN))(x) = limN(T(FN))(x) exists in
K for almost all xeX, and thus it follows that (T(F))(x) =
U(x)h(x)(Φ(F))(x), as claimed. Finally, since the elements of
T(LP(X, K)) take their values a.e. in the range of U(x), and since
T is onto, U(x) must map K onto K for almost all xeX.
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3* Remarks and problems* ( i ) Throughout we have assumed
that the measure space is finite, but the theorem is also valid for
tf-finite measure spaces, and the generalization to this latter case is
largely straightforward. We say "largely" only because there are
a few modifications (other than the obvious ones) of statements and
proofs necessary for the σ-finite case, whose necessity might easily
be overlooked. For example, if the space is σ-finite, a suitable
reformulation of Lemma 4 is the following:

Let A be a measurable subset of X with finite positive measure
and let e be an element of K with \\e \\ — 1. If T(χAe) = F, and if
E is that vector function defined by E(x) = F(x)/\\F(x)\\ if x belongs
to the support of F, and E(x) == 0 otherwise, then T*~ι(χAe) is de-
termined by (T^iχ^Xx) = \\F(x)\\p-Έ(x), for almost all xeX.

The proof of this fact is analogous to that given for Lemma 4,
provided p > 1. However, in the case p = 1, additional arguments,
unnecessary if μ{X) is finite, have to be introduced.

(ii) For a certain class of measure spaces, the set isomorphism
Φ may, of course, be repleaced by a measurable point mapping
[5, Chap. 15].

(iii) In [4], Lamperti provides a description of all isometries of
LP(X, S) into itself, not just the surjective ones. One may ask if
such a description is attainable in the vector case. The type of
argument needed would presumably differ substantially from that
used here, since we often rely on the existence of the mapping T*"1

from Lg(X, K) to itself.
(iv) Can a reasonable description of the isometries be obtained

if the Hubert space K is replaced by a suitable class of Banach spaces?
In particular, it might be of interest to see if K can be replaced by
an arbitrary finite dimensional Banach space.
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