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COMPLETELY OUTER GALOIS THEORY
OF PERFECT RINGS

JAMES OSTERBURG

Let G be a finite completely outer group of automorphisms
of a perfect ring R. Let A be the crossed product of R with
G. Then A modules which are R projective are A projective
and A submodules which are R direct summands are A direct
summands.

Let R be a ring with identity. All modules and homomorphisms
are unital. Let G ={1,0, -, 7} be a finite group of automorphisms of
R.

By Ru,, o0 € G, we mean a bi-R module where r(r'u,) = (rr')u, and
(r'u,)r=(r'r’)u, forr,r' €R and r’ = a(r). Wecall G a completely
outer group of automorphisms of R, if for each pair o # 7 of automorph-
isms in G, the bi-R modules Ru, and Ru. have no nonzero isomorphic
subquotients. This notion was defined by T. Nakayama in [3, p. 203]
and Y. Miyashita in [2, p. 126].

Let S be the fixed ring of R under G, i.e. {r € R |o(r) = r for all
o €G}. If G is completely outer, then R over S is a G-Galois
extension and the center of R is the centralizer of S in R. See [2,
Proposition 6.4, p. 127]. Furthermore, if R is a commutative ring and R
over S is G-Galois, then G is a completely outer group of automorph-
isms of R. See [2, Theorem 6.6, p. 128]. If R is a simple ring and G
contains no inner automorphisms, then G is a completely outer group of
automorphisms of R and conversely. See [2, Corollary, p. 128].

The crossed product A of R with G is 2,c¢ D Ru, with (xu,) X
(yu,) = xy°u,, for any x and y in R. We can view R as a left A module
by defining (xu,)r = xr° for x and r in R. Thus R is a bi A-S module.

We now assume R is a left perfect ring. These rings were studied
by H. Bass [1].

Let J(A) (respectively J(R)) denote the Jaccbson radical of A
(respectively R).

LEMMA 1. J(A)=J(R)A=AJ(R). Thus for any left A module
M, J(R)M is a A submodule of M.

Proof. Because o(J(R))=J(R) for all oc€G, JR)A=
A-J(R). Thus for any simple, nonzero left A module M, J(R)M isa A
submodule. Now M is a finitely generated R module, since A is a
finitely generated R module. Nakayama’s Lemma then shows
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J(R)M =0. Since J(R) annihilates every simple left A module, J(R) C
J(4A).

Since J(A) is a bi-R submodule of A, J(A)=
JAYNRu,+J(A)NRu, +---+J(A)NRu,. See [2, Proposition 6.1, p.
126]. Letx =6 =ru, € J(A)N Ru, for & in J(A) and r € R. Assume
8 =2,c6Y-Uss, Y.ER, then x=yu,=ru, SO Fru,=y,u =
xu,- € J(A) N Ru,. It follows that 1 —y,s is right invertible in R for all
s in R; since u,— y,su, in J(A) all s in R. Thus y, €J(R); hence
x = yu, € J(R)u,. Therefore J(R)A = J(A).

REMARK. Lemma 1 is true even if R is not left perfect.

LEMMA 2. As aright S module, S is a direct summand of R;. Let
J(S) (respectively J(R)) denote the Jacobson radical of S (respectively
of R), thenJ(S)=S NJ(R) and J(R)=J(S)R =RJ(S). ThusifMis
a left A(R) module J(S)M is a left A(R) submodule.

Proof. LetA=A/J(A)and R = R/J(R). Because R is perfect, R
is a semisimple, Artinian ring, which makes A a semisimple, Artinian
ring. Thus R is a finitely generated, projective A module. By the
Dual Basis Lemma, there exists fi, - - -, f, € Homg(R,A) and %,,- - -, %, €
R such that ¥ =3, f,(X)%. Since Homs(R,A) C Homz(R,A) = A we
conclude Homg(R, A) = =, cu,R. Thus each f, i = 1,- - -, n, is of the form
2,cc U, T, for some suitable 7, ER. Let X ER, then % = 3/, (X)X, =
Sr (Soec XU F)X = X 30 Zoeq (FX)7. Thus  1=3,c6 S5, (FX)". Let
d=3,7%,thentrd =1; hencetr d —1E€J(R)N S.

Now J(R)YNS CJ(S), forlet x=j =35, jEJ(R) and s € S, then
1 — sy is right invertible in R for any y in S. Assume (1—sy)z =1,
zE€R,then(1—sy)z° =1foralloc € G;hencez €S. So - sy isright
invertible in S for all y in S, thus x € J(S) or J(R)N S CJ(S).

Thus tr R +J(S) =S, so by Nakayama’s Lemma tr R = S. Thus
there is a ¢ in R such that tr c = 1. Hence tr: R — S; is onto and so
splits. Thus Ss is a direct summand of R;.

The conclusion concerning the Jacobson radical of S follows from
[2, Theorem 7.10, p. 132].

ProposITION 1. A left A module is completely reducible as a A
module if and only if it is completely reducible as an R
module. Moreover, a module is completely reducible as a left R-module
if and only if it is completely reducible as an S module.

Proof. A A module is annihilated by J(A) if and only if it is
annihilated by J(R) if and only if it is annihilated by J(S).
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PrOPOSITION 2. Let R be a left perfect ring and G a completely
outer group of automorphisms acting on R. Then S, the fixed ring of R
under G, and A, the crossed product of R with G are left perfect.

Proof. Since R is left perfect its Jacobson radical J(R), is left T
nilpotent. So the Jacobson radical of S,J(S), which is contained in
J(R) (by Lemma 2) is left T nilpotent.

Also S/J(S) is an Artinian ring since Ss is a direct summand of
Rs. See Lemma 2 and [2, Proposition 7.3, p. 130]. Thus S is a left
perfect; hence, S is semiperfect.

Now R as a right S module is finitely generated and projective;
moreover, A is isomorphic to End Rs [2, p. 116]. Since S is a direct
summand of R, as aright S module (Lemma 2) R is an S generator.

Let e, ---,e, be completely primitive idempotents orthogonal
idempotents of S suchthat 1 =¢,+---+e¢, Furthermore,lete,,---,e
be a maximal family of mutually nonisomorphic idempotents. Then
R =R/J(S)R is isomorphic, as a right S module, to S+ (e - §)"‘
where ¢ = ¢, +J(S), S = S/J(S) and m; < «, since R is ﬁmtely gener-
ated right S module. Thus R as a right S module, is isomorphic to
S, P, P P, where P; is right S isomorphic to e.S, since idempo-
tents can be lifted.

Let f; be the projection of R onto P;, then f; € End Rs = A and the
fi’s are orthogonal idempotents such that

k m,
=> 3 f. AlsoeSe = Ends(e.S) = Ends(P;) = f; Af;.

i=1 j=1

Since e,Se; is a local ring, f; Af; is alocal ring. Hence f; is a completely
primitive idempotent; therefore A is semiperfect.

We know that A modulo its Jacobson radical, J(A), is semisimple
and idempotents can be lifted modulo J(A). Let M be a left A module,
by [1, Lemma 2.6, p. 473] in order that M have a projective cover it
suffices that for any left A module B requiring no more generators than
M,B = J(A)B implies B=0. But B=J(A)B =J(R)B and R being
left perfect implies B =0. Thus every left A module M has a projec-
tive cover and A is then left perfect.

Let T be an arbitrary left perfect ring and let J(T) denote the
Jacobson radical of T. Then for any nonzero left T module M, J(T)M
is a proper submodule. See [1, p. 473]. Hence the natural map
m:M—> M/J(T)M is a minimal epimorphism.

Let M and N be left T modules and f a left T epimorphism from M
to N. By f, we mean the induced map from M/J(T)M — N/J(T)N
given by f(m + J(T)M) = f(m)+J(T)N for m € M.
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LEMMA 3. The following are equivalent :

(1) f:M — N is a minimal T epimorphism.

(2) f:M/J(T)M — N/J(T)N is an isomorphism. See [4, Prop-
osition 8, p. 713].

PropPOSITION 3. Let M and N be left A modules and f a minimal A
epimorphism form M to N. Then fis a minimal R epimorphism and f is
a minimal S epimorphism.

Proof. Certainly f is an R and an S epimorphism. Since
J(A)M =J(R)M = J(S)M and J(A)N = J(R)N = J(S)N, then f, which
is a A isomorphism, is an R and an S isomorphism.

PrROPOSITION 4. Let M be a left A module which is projective as an
S module, then M is projective as a A module.

Proof. Let P be the A cover of M and f:P— M a minimal A
epimorphism. Since M is S projective, f splits as an S
epimorphism. Thus P as an S module is isomorphic to ker f + X, for
some S submodule X of P. But f is a minimal S epimorphism
(Proposition 3), therefore ker f =0. So f is a A isomorphism and M is
A projective.

PROPOSITION 5. Let M be a left A module which is projective as an
R module. Then M is projective as a A module.

Proof. Let P be the A projective cover of M and f a minimal A
epimorphism. Now f splits as an R map, and f is a minimal R
epimorphism, so ker f =0.

ProPoSITION 6. Let M and N be left A modules such that
M/[J(A)M and N/[J(A)N are isomorphic as R modules. If M is R
projective there exists a A epimorphism ¢ : M — N. Moreover, if N is
R projective, then M and N are A isomorphic. See [3, Lemma 5, p.
212].

Proof. We assume that M and N are completely reducible A
modules. Hence they are completely reducible R -modules, by Propos-
ition 1.

Now Nakayama in [3, p. 214] has shown that if M and N are
isomorphic as R modules, then they are isomorphic as A modules.

If M and N are arbitrary left A modules, then M/J(A)M and
N/J(A)N are nonzero, completely reducible left A modules. We have
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assumed they are isomorphic as left R modules; hence by the above
argument, they are isomorphic as left A modules. Call the isomor-
phisms from M/J(A)M to N/J(A)N, f.

Let 7. M—>M/[J(AM and #':N — N/J(A)N be the natural
maps. Since M is R projective, it is A projective. Thus we can find a
A homomorphism g from M to N such that #'g = f=. Now g is an
epimorphism since =’ is a minimal A map.

If N is also R projective, it is A projective. Thus g is an
isomorphism.

ProposITION 7. Let M and N be left A modules and f a A
epimorphism from M to N. If f is a minimal epimorphism as an R map,
then f is a minimal epimorphism as a A map. Furthermore, if M and N
are R projective, then f is an isomorphism.

Proof. We know that M/J(R)M and N/J(R)N are isomorphic as
R modules and completely reducible. Hence they are isomorphic as A
modules. Thus f is a minimal A map.

If M and N are R projective, then they are projective as A
modules. Thus f splits; let g : N— M be a A map such that fg is the
identity on N. Since the natural map = : M — M /J(A)M is minimal g
is an isomorphism.

ProprosITION 8. Let M, N be left A modules such that M is a
projective R module. If N is an R direct summand of M, then Nisa A
direct summand of M.

Proof. Since M is R projective and N is a direct summand, then
N is R projective. Hence M and N are A projective.

If N is an R direct summand of M, then J(R)YM NN =J(R)N so
JAAYM NN =J(A)N. Thus N/J(A)N is a A submodule of the com-
pletely reducible A module M/J(A)M.

Thus N/J(A)N is a A direct summand of M/J(A)M, so thereisa A
epimorphism ¢ : M — N/J(A)N. Let =':N— N/J(A)N, be the
natural map. Since M is A projective there existsa A map ¢ : M — N
such that #w'¢y=¢. Now ¢ is an epimorphism since =’ is
minimal. Thus ¢ splits as a A map and N is then a A direct summand
of M.

ProOPOSITION 9. Let M and N be left A modules such that
N/J(R)N is an R homomorphic image of M|J(R)M and M is projective
as an R module. Then N is a A homomorphic image of M. Moreover,
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if N is R projective, then N is a A direct summand of M.

Proof. Let f be an R epimorphism from M/J(R)M to
N/J(R)N. Since R/J(R) is a semisimple, Artinian ring, f splits; hence
N/J(R)N is a R direct summand of M/J(R)M.

Now G is a completely outer group of automorphisms of
R/J(R). The crossed product of R/J(R) and G is A/J(A).

Applying Proposition 8 we see that N/J(R)N is a A direct
summand of M/J(R)M. Thus there is a A map ¢ from M to
N/J(R)N. Letn':N— N/J(R)N be the natural map. Since M is R
projective, thereisaAmap g : M — N suchthat 7'g = ¢. Now g isan
epimorphism, since 7' is a minimal A map.

If N is R projective, then N is A projective. So g splits.

ProposITION 10. Let g =|G|, then R® is A isomorphic to A.
Proof. (R/J(R))* is R isomorphic to A/J(R)A.

Thus Proposition 6 implies R¢ and A are isomorphic.
ProposITION 11. R has a normal basis.

Proof. Proposition 10 imples S¢ is S isomorphic to R so R has a
normal basis by [2, Theorem 1.7, p. 118].
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