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ALGEBRAIC MAXIMAL SEMILATTICES
J. W. StEPP

A topological semigroup S is maximal if it is closed in each
topological semigroup that contains it. The semigroup S is
called absolutely maximal if each continuous image is
maximal. In this paper we are concerned with those discrete
semilattices that are absolutely maximal. Thus we are con-
cerned with those algebraic conditions on a semilattice which
force it to be topologically closed.

In [9] Stralka studies those semigroups which have the congruence
extension property. The semilattices we are concerned with and all
their homomorphic images have this property. In fact, every congru-
ence on such a semilattice S is closed. Thus S admits a compact
Hausdorff topology #%(S) wunder which multiplication is
continuous. By [5] S admits a unique such topology. Also, since S
has the congruence extension property for finite subsemilattices, the
topology #(S) has a base which consists of subsemilattices [3].

In §1I we give definitions, and we give necessary and sufficient
conditions for a sublattice of a compact lattice to be closed. In §III we
characterize those discrete semilattices and lattices which are abso-
lutely maximal. Also, we show (S,%(S)) is stable and O-
dimensional. In §IV we indicate how absolutely maximal discrete
semilattices are constructed from a class of simple examples.

II. Definitions. Let S denote a topological semi-
lattice. The Bohr compactification of S is a pair (B(S), b,) where B(S)
is a compact semilattice, b,: S — B(S) is a continuous homomorphism
and if f: S— T is a continuous homomorphism with T a compact
semilattice, then there is a unique continuous homomorphism which
makes the following diagram commute:

B(S)
bs f
S—T

f

For the existence of the Bohr Compactification see either [1] or [2].
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For each U C S with U#@ let M(U)={y € S| thereisan x € U
with xy =x}, L(U)=U-S and CL(U) denotes the closure of
U. Define = onSbyx=yifandonlyif xy =x. Let{x,},cs beanet
in S. To say x, 1 x means the net converges to x and x, =x,
whenever « = 8. Wedefine x, | x is a similar manner. For a topolog-
ical semilattice T Hom(S, T) denotes the collection of continuous
homomorphisms from S to T. Let I denote the unit interval with
xy =min{x,y} and let I, ={0,1}C L

ProprosiTION 1. Let L be a compact topological semilattice with
identity element and let A be a sublattice of S. Then A is closed if and
only if A is complete.

Proof. Assume A is complete and let x € CL(A). Let % be the
collection of sequences of open sets about x having the following
property; {U,};-,€ U if and only if CL(U,.,)ACL(U,.,)C U, for
n=1,2,---. Partially order % by {U,};-,={V.}i-, if V, C U, for all
n. Then 4 with this partial order is a directed set. Now fix a =
{U,}s-1EU. Notethat N7, U, = N7, CL(U,) is a sublattice of L and
if (N, U,)NA#@,then (N, U,) N A is closed under taking inf s and
thus has a zero which will be denoted by z(a). Thus we show this
intersection exists.

Foreachn let b, € U, N A and let {a}};-, be the sequence given by
a, = A, b,.. Then{a}};.,C U, and is a decreasing sequence and thus
has a limit point ¢t in CL(U,)N A. Clearly, t € CL(U,) forall m >n
and thus (N7, U,) N A# . Itis clear that if a, 8 € U with a <3, then
z(a)=z(B). Thus{z(a)}.ca is anincreasing net in A which converges
to x. Sjnce A is complete, and | compact, x € CL(A).

In [5] Lawson defines B* for an ideal in a semilattice S to be {x |
there is a net {x,}.er C B with x, 1 x}. He shows for an ideal B in a
compact semilattice S is closed if and only if B* = B. Thus one has

PrROPOSITION 2. Let B be a subsemilattice of a compact semilattice
S. Then B is closed if and only if B contains arbitrary infsand B = B*.

We also need the following from [5].

ProprosITION 3. Let S and T be compact semilattices and lef f be a
homomorphism from S to T. Then f is continuous if and only if f has
the property that f(x,) 1 f(x) whenever x, 1 x and f(y.) | f(y) whenever
Ya 4 Y.

Comment 4. It is not the case that a complete lattice necessarily
admits a compact Hausdorff topology for which both operations are
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continuous. For consider the lattice on the integers with 0 the smallest
element, 1 the largest element and each maximal chain having three
elements. However, (Z, A) does admit a compact Hausdorff topology
with A continuous.

III. Maximal semilattices and lattices. Throughout this
section S will denote a discrete semilattice which is absolutely
maximal. Since S is a locally compact semilattice with a base for the
topology which consist of subsemilattices, Hom(S, I) separates points
[4]. Thus there exists a continuous injection « from S into a compact
semilattice. Since a(S) is closed it is compact and S therefore admits
a compact topology %(S) with multiplication continuous. By [5],
%(S) is unique, and therefore (a(S),a) is the Bohr compactification of
S. Note that «(S) is the Bohr compactification of a(S) with the
discrete topology. Therefore, we first characterize those compact
semilattices T which are the Bohr compactification of T with the
discrete topology.

For a semilattice T we let T, denote T with the discrete topology.

ProroSITION 5. Let T be a compact semilattice with T =
B(T,). Then

(@) Hom(T,I,) separates points.

(b) If U is a subsemilattice of T, then M(U) is both open and
closed.

(b') Each prime ideal of T is both open closed

(¢) dim S =0.

Proof. (a) Letx,y €T and assume x& M(y). Let¢: T—1I,be
given by ¢(s)=1 if s € M(y) and 0 otherwise. Since T = B(T,),
¢ EHom(T,1,), and ¢(y)=1#0=¢(x). It now follows that Hom
(T,I,) separates points.

(b), (b') Same as (a).

(c) Since Hom(S,I,) separates points and S is compact, S can be
embedded in a 0-dimensional semilattice and is therefore 0-dimensional.

LemMMA 6. Let T be a compauci semilattice with M(U) both open
and closed for each subsemilattice U of S. If Cis achainin T, then Cis
finite.

Proof. Assume T has an infinite chain C. Then CL(C) is a chain
and must have a limit point z. Since M (z) is open, there is net {x, },cr in
C with x, | z and x,# z for each « €ET. Let N = N, M(xa); then
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M(U) is closed with z& M(U) with is a contradiction. Thus C must
be finite.

ProposiTioN 7. Let T be a compact semilattice. Then the follow -
ing are equivalent

(@ T=B(T).

(b) M(U) is both open and closed for each subsemilattice U of S.

(c) Each chain in T is finite.

(d) Hom(T,I,)=Hom(T,I,).

(¢) There is a compact semilattice R with |R|>1 with
Hom(T,R) = Hom(T,,R).

Proof. (a) > (b) > (e) trivial, (¢) = (b) by proof Proposition 5,
(b) = (¢) by Lemma 6. Thus we show (c) = (a).

Let f € Hom(T,,R) where R is a compact semilattice and each
chain in T is finite. Let {x,}.cr be a net in T with x, | x. Since each
chain is finite, eventually x, = x and f(x,) | f(x). Similarly, if y, Ty
then f(y,) 1 f(y). By Proposition 4, f € Hom(T,R) and thus T =
B(T)).

LeEmMA 8. Let T be a tgpological semilattice and let R be a
subsemilattice of T with each chain finite. Then R is closed.

Proof. Let x €CL(R). Let U be the collection of sequences of
open sets about x satisfying; {U,}:-, € % if and only if U,.U,.,= U,
for all n. Partially order % by {U,};-, ={V,};-if and only if V, C U,
for all n. Then % with this partial order is a directed set. Fix
{U,}i-i=a €U. Then N7, U, is a subsemilattice of T and if (N
. U)NR#H, then (N, U,)NR has a zero. For each positive
integer n let b, € U, N R, and for each positive integer p let a, =
b,i1bysr - b,.,. Asbefore, a, € U, forall p. Since each chainin R is
finite, there is a g such that if p >gq then a} =aj Thus {a;};-,
converges to a” in U,. Clearly,if m >n then a™ = a". Thus there is
a m, such that if n=m, then a"=a™. It now follows that
ame(N_,U,)NR. Let z(a) be the zero of (N, U,)NR. Thus
{z(a)}.ea converges to x. Thus r =x €R and R is closed.

We now summarize our results in the form of a theorem.

THEOREM 9. Let T be a discrete semilattice. Then T is absolutely
maximal if and only if each maximal chain in T is finite.

It is clear that we also have
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CorOLLARY 10. Let L be a discrete lattice with each chain
finite. Then each lattice homomorphic image of L is closed.

We close this section with some additional properties a semilattice
T with T = B(T;) must have. The proofs are all straightforward and
will be omitted.

ProposITION 11. Let T be a compact semilattice with T =
B(T,;). Then

(@) Each semilattice of T is closed.

(b) If R is a sublattice of T, then R = B(R,).

(¢) If R is a homomorphic image of T, then R = B(R;).

(d T is stable (that is, there are no dimension raising
homomorphisms on T).

IV. Examples. Throughout this section S, is assumed to be a
discrete absolutely maximal semilattice and S will denote B(S,;). For
eachx €S, let A(x)={y € S:|x<y and M(x)NL(y)=1{x,y}.

LemMA 12. For each x € S, A(x) is infinite if and only if x is a
limit point of S. Further, if A(x) is infinite, then CLs(A(x))=
A(x)U{x}.

Proof. Assume A (x) is infinite and let {y.}.er be a net in A(x)
which converges (in S)toy. Assumeeachy,#y. Letz € A(x);then
zy, =x if y,#z. Thus zy =x. It now follows that y = y>=limyy, =
limx =x. Thus CL;(A(x))=A(x)U{x} and x is a limit point of S.

Now assume x is a limit point of S and let {z,}.cr be a net in S
which converges to x and z,#x. For each a €T let x, EA(x)N
L(Z,). Such x,’s exist since each chain in T is finite. Thus {x,}.er is
a net in A(x) which converges to x. It now follows that A(x) is
infinite.

ExampLE 13. Let X be a compact well-ordered space and let B
be the set of limit points of X. Let p be defined on X by xpy if and
only if x=y or x,y€B. Then X/p is a compact Hausdorff
space. Define multiplication on X/p by [x] [y]=[x]if [x]=[y] and B
otherwise. Then X/p with this multiplication is a compact semilattice
with each chain finite. Thus (X/p), is an absolutely maximal semilat-
tice.
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ExampLE 14. Let T ={((1/n),(1/p))|n,p positive integers, n =
p =2n}U{(0,0)} with multiplication defined by

0,00 if n#m

1 1) /1 1)_
(n’P)<m’CI) (1 mm{_l;_};}) if n=m.

Then each chain in Tj is finite and thus T} is absolutely maximal. Note
that although chain in T is finite there is no upper bound on the length of
chains.

Observation 15. Let x be a limit point of S. Then CLs(A(x)) is
isomorphic to X/p for a suitable compact well-ordered space X (see
example 13).

Observation 16. There is a discrete semilattice T, which is
absolutely maximal and the set of limit points of T is S.

Question 17. If S is a maximal semilattice is it absolutely
maximal?

Question 18. Are these reasonable conditions one can impose on
a locally compact semilattice to guarantee that it be maximal?
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