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STRONGLY SUPERFICIAL ELEMENTS
V. MERRILINE SMITH

The concepts of a strongly superficial element and a very
strongly superficial element are introduced. A number of their
properties are established and three applications are given.

1. Introduction. Superficial elements have proved to be a
useful and important concept in a number of problems in commutative
algebra, for example, the study of characteristic functions and
multiplicities. This paper is concerned with two special kinds of such
elements: a very strongly superficial (v.s.s.) element of degree k for an
ideal A in a ring R; and, a strongly superficial (s.s.) element for
A*.  After listing a number of properties of s.s. and v.s.s. elements, we
present in Theorem (2.5) and (2.6) a number of characterizations of such
elements. In §3 we give three applications of the theorems. Namely,
we first show that a known result about s.s. elements for an ideal
generated by an R-sequence in a locally Macaulay ring holds in every
Noetherian ring (3.2). Next we show that if A is an ideal in a
Noetherian ring R, then the zero ideal in the A -form ring of R has no
irrelevant prime divisor if and only if there exists a v.s.s. element of
some positive degree for A (3.5). The final application is concerned
with certain ideals in Rees rings of R ((3.8) and (3.9)).

2. s.s. and v.s.s. elements. All rings in this paper are
assumed to be commutative with a unit element.

DEeFINITION. 2.1. Let A be an ideal in a ring R, and let k be a
positive integer. A superficial element of degree k for A is an element
x € A* for which there exists a nonnegative integer ¢ such that
(A™*:xR)NA° = A" for all integers n =c. If ¢ =0 (where A°=R),
then x is said to be a very strongly superficial (v.s.s.) element of degree k
fora. If A™: xR = A™* for all integers n = 1, then x is said to be a
strongly superficial (s.s) element for A*.

It is easily seen that, if A"# A"*' (for each integer n =0)and x is a
superficial element of degree k for A, then x& A**'. (In particular, a
v.s.s. element of degree k for A is not in A**')) It is also clear that a
v.s.s. element of degree k for A is a s.s. element for A*. Some further
properties of such elements are given in the following remark.

REMARK 2.2. Let A be an ideal in a Noetherian ring R, let k be a
positive integer, and assume x is a s.s. element for A"
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(2.2.1) If k =1, then x is a v.s.s. element of degree 1 for A, so the
concepts of a s.s. element for A and of a v.s.s. element of degree 1 for A
are the same.

(2.2.2) If y isav.s.s. element of degree n for A, where n = mk, for
some positive integer m, then it is readily seen that xy is a s.s. element
for A***  Also, x" is a s.s. element for A™, for each integer n = 1.

(223) If xy=0, for some y ER, then yE N,z (A™:xR)=
N,=,A™*  Therefore, if M,.,A" =(0), then a s.s. element is not a
zero-divisor.

(2.2.4) If x is a v.s.s. element of degree k for A, then statements
analogous to (2.2.2)—(2.2.3) hold.

Theorems (2.5) and (2.6) below give several necessary and sufficient
conditions for x to be a v.s.s. element of degree k for A (respectively, a
s.s. element for A*). To prove these results, the following lemma and
definitions are needed.

LemMA 2.3. Let A beanidealinaring R, letx € A*, and assume x
is a nonzero-divisor in R. Then A™: xR = A™* for all n = 1, if and
only if x"R[A*/x]NR =A™, for all integers n = 1.

Proof. Let R’=R[A*/x]. To show the “only if” part, fix an
integer n=1. Since x"R'"NR DA, let rEx"R'NR. Then r=
x"r', for some r' = a/x’, where a € AY, so rx! =x"a € A% There-
fore, re A" : xIR =A™ To see the “if” part, let r€ A™: xR.

Then rx =a € A™. Hence r=x""al/x")Ex"'R'"NR =
A® " The opposite containment is always true, because x € A*.

DerFINITION. 2.4. Let A =(a,, - -, a,) be an ideal in a Noetherian

ring R, let u be an indeterminate, and let t = u~".

(2.4.1) The graded Noetherian ring R=RR,A)=
R(ta,,- -, ta,, u] is the Rees ring of R with respect to A. The elements
of R in t’A" are said to be homogeneous elements of degree r
(—o<r<ow, where A"=R if r =0) and a homogeneous ideal is an
ideal which can be generated by homogeneous elements. A homogene-
ous ideal H in R is said to be irrelevant in case it contains every
homogeneous element of sufficiently large degree. Otherwise, H is
said to be relevant.

(2.4.2) The graded subring ¥ = ¥(R,A) = R[ta,," - -, ta,] of R is
the restricted Rees ring of R with respect to A.
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(2.4.3) The form ring of R with respect to A (or, A-form ring of R),
F(R,A), is the graded ring P,A'/A™*". It is known [3, Theorem 2.1]
that = F(R, A) = R [uR, where R = R(R, A), and in this isomorph-
ism the A-form of an element x in R corresponds to the coset xt* + u®
in R/uR. (The assumption in [3] that R be local is not essential.)

THEOREM. 2.5. Let A be an ideal in a Noetherian ring R, let
R=RR,A),andlet ¥ = P(R,A). Fix apositive integerk, fixx € A*,
and consider the following statements:

@) X is a v.s.s. element of degree k for A.

(i) x is a v.s.s. element of degree k for AY in &.

(ili) x is a v.s.s. element of degree k for u®R in R.

(iv)  xt* is not in any prime divisor of A'Y, for all i = 1.

(v)  u,xt*is an R-sequence.

(vij A" NxR =xA", for every integer n = 1.

(vii) A" NxF =xA"Y, for every integer n = 1.

(viii) u""*R N xR = (xu")R, for every integer n = 1.

(ix)  x is a nonzero-divisor and x"R’' N R = A™, for every integer
n =1, where R' = R[A*/x].

Then the following hold:

(2.5.1) (i)-(v) are equivalent and each implies (vi)-(viii).

(2.5.2) (vi)-(viii) are equivalent and, if x is a nonzero-divisor, then
each implies (i)-(v) and (ix).

(2.5.3) If k =1, then (ix) implies (i)-(viii).

Proof. (1)—(iil)). x =u*(xt*) € u*R, and U R xR =
u'R: xt*R Ju"R. For the opposite inclusion, let yt'€E€
u""*R: x®. Then, with m = n + k +r, there exists a € A™ such that
xyt"=u""*at™. Therefore, xy=a € A™; hence yEA""*: xR =
A" by (i). Therefore, yt"*" € R, so yt’ €u"R. Hence, since
u"®: xR is homogeneous, (iii) holds.

(iii) implies UR =u "R xR = u*"'R: u*(xt")R =
U R u*R): xt*R = uR: xt*R. Hence (iii) implies (v), since u is not
a zero-divisor in .

(vV)—>(@v). Let i=1 and let at"€ A'¥: xt*¥. Then at"xt*€
A =u'R N (this can be seen much as in the remainder of this
paragraph). Hence at" € u'R: xt*® = (by (v)) u‘R, and so at"*' € R,
thusa € A"*'. Therefore a = = b,c,, where b, € A’ and ¢, € A", hence
at" =X b,(c,t") E A'Y, and so (iv) holds.

(iv)—(ii). Since A'F: x¥ D A*Y, for all i =k, and both ideals
are homogeneous, let yt” be an arbitrary homogeneous element in
AP x¥. Then xyt' € AT*A*SF, say xyt" =3 ,a,;b,i(c,it"), where
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each a,; EA'™ b,; € A* and ¢,it" € &, s0 xt*yt" =3 ,a,;(b,t*) (cuit”),
where each q,; €A™ and b,c,it™** €. Hence xt‘'yt’ € A™*¥, so
that yt" € A"™*%, by (iv), and so (ii) holds.

Since ¥ C R[t], (ii) implies, for all i=k, A"™*=A"*NR =
AP x)NR=(A'PNR): x¥NR)=A'R: xR, hence (ii) implies
(i). Therefore, (i)-(v) are equivalent, and if (i) holds, then

*) A" NxR =x(A"*:xR)=xA", for all n =1, hence (i) im-
plies (vi). Similarly (ii) implies (vii) and (iii) implies (viii). Therefore,
(2.5.1) holds.

(2.5.2) (viii)—(vii) much as in the proof that (v)—(iv); and
(vil)— (vi), since ¥ C R[t]. For (vi)— (viii), let at' Eu""*R N xR =
x(U"H*R: xR), ) at' = xbt' € u"*R, for some bti e
u"*R: xR. Therefore, with g=n+i+k, a=bx€E A% so
b e A% xR, hence xb €x(A%: xR)=A® NxR = (by (vi))
xA"*. Therefore xb =X xcd;, where xc; €ExA" and d; € A', hence
at' = xbt' ExA"R Cxu"R, and so uU"*RNxR=x(u"*R: xR)C
xu"R, since u"*® N xR is homogeneous. Hence (viii) holds, since
Xu"R C u"R and since x € A* implies u"*R: xR D u"R. Further,if x
is a nonzero-divisor, then (vi) implies (i), by (*), and so (ix) holds, by
(2.3).

Finally, for (2.5.3), if k = 1, then (ix) implies (i), by (2.3).

THEOREM 2.6. Let R, A, x and k be as in (2.5), let # = R(R,A"),
let ¥ = F(R,A*), and consider the following statements:

() x is a s.s. element for A*.

(i) xis a s.s. element for A*S.

(iii) x is a s.s. element for uR.

(iv)  xt is not in any prime divisor of A*¥, for each i Z 1.

w) u,xt is an R-sequence.

(viy A" NxR =xA"* for all integers n = 1.

(vii) A™FNxFL =xA" S, for all integers n = 1.

(viii) u"R N xR =xu""'R, for all integers n = 1.

(ix) x is a nonzero divisor and x"R' N R = A™, for all integers
n =1, where R’ = R[A"/x].

Then the following statements hold :

(2.6.1) (i)-(v) are equivalent and each implies (vi)-(viii).

(2.6.2) (vi)-(viii) are equivalent and, if x is not a zero divisor, then
each implies (i)-(v) and (ix).

(2.6.3) (ix) implies (i)-(viii).

Proof. This follows from (2.2.1) and (2.5).
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3. Applications. In this section we give three applications
of Theorems (2.5) and (2.6).

REMARK. 3.1. Let a,,- -+, a. be an R-sequence in a Noetherian
ring R, and let A =(a,,- -+, a,)R.

(3.1.1) [2, Corollary 3.7]. If R is locally Macaulay, then a, is a
s.s. element for A.

(3.1.2) If R is a Macaulay local ring, then each of the following
statements hold:

(i) (5, Lemma 6, p. 402] and [1, Theorem 119].) Each q; is a s.s.
element for A.

(i) [5,Lemmas, p.401]. The prime divisors of A"(n = 1) are the
prime divisors of A and each has height m.

We note that it follows from (3.1.2) that parts (i) and (ii) of (3.1.2)
also hold for an ideal generated by an R-sequence in a locally Macaulay
ring. However, it follows from (3.2) below that (3.1.2) (i) holds even if
R is not locally Macaulay.

ProPOSITION' 3.2. Let R be a Noetherian ring, let a,,- - -, a. be an
R-sequence, and let A =(a,, - -,an,)R. Then A": aR = A", for every
integer n =1 and for every i =1,---,m.

' Iam grateful to the referee for mentioning that this result was proved in D. Taylor, “Ideals

generated by monomials in an R-sequence,” Thesis, University of Chicago, 1966. Since her thesis
isn’t readily available, the referee kindly provided the following proof of a generalization of (3.2):
Let R be a commutative ring with identity, M an R-module, a,,- - -, a, an M-sequence in R, and
A =(a,,-*,a.)R. Then, for all positive integers n and for i =1,---,m, A"M:aR =A""'M.

Proof. Let S=2Z[x,," -, xn), =(X1,"**,Xm)S, ¢: S—R by ¢(x;) =a, (so that R, M be-
come S-modules) and consider the commutative diagram:

s—s SKI™ +xS)

U

0 S/I"' S S/I" > E—0

In order that A"M: a,R = A""'M it suffices that the bottom row remain exact upon applying @zM.

Hence, it suffices that Torj(E, M) =0. But E is easily seen to have a filtration all of whose
factors are =F =S/(x\," -, x.)S (F=Z, of course). Thus, a sufficient condition for
A"M: aR = A""'M, all n, is that Tor{(F, M) =0, which is immediate if a,,- -, an is a regaular
sequence on M.
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Proof. Let® = R(R,A). By][4, Theorem 3.5.1], a;t is not in any
prime divisor of u®, for every i =1,---,m. Hence, we are done by
(2.5) (1) and (v).

Clearly, (3.2) and (2.5) show that, with R, a,,"**,a, and A as in
(3.2), each q; is a s.s. element for AY in ¥ = (R, A) and for uR in
R=R(R,A).

DerFiNiTION 3.3. Let A be anideal in a Noetherianring R.  For all
integers s, the s-component H, of a homogeneous ideal H in ® =
R(R,A) is the ideal in R, H, ={b €ER|t°b € H}.

It is easy to see that a homogeneous ideal H in % is irrelevant if
and only if H,=A°* for all (or, for some) sufficiently large
s. Equivalently, H is irrelevant if and only if H D (A*)* =(A*)*, for
all (or, for some) sufficiently large s, where B* = BR[u,t] N &, for each
ideal B in R. (2.5) (v) shows that a sufficient condition for u% to have
no irrelevant prime divisors is the existence of a v.s.s. element x of
some degree k for A. That is, if xt* is not in any prime divisor P of
u®R, then clearly no power of xt* can belong to P. (3.4) below shows
that the converse also holds.

THEOREM 3.4. Let A be an ideal in a Noetherian ring R, and let
R =R(R,A). A necessary and sufficient condition for uR to have no
irrelevant prime divisor is that there exists a v.s.s. element of some
positive degree for A.

Proof. By the preceding discussion, it suffices to prove the
“necessary part.” Let A*= AR([u,t]N R, let P,,---, P, be the prime
divisors of u®, and let N, ={c,t"; c,t” € P, and r = 1} be the set of all
homogeneous elements of positive degree contained in P,, for each
g =1,---,h. If we can find a homogeneous element of positive degree
in # and not in any of the N,, then we are done by (2.5) (i) and (v).

Since P, is relevant by hypothesis, P, 2 A *; therefore, there exists
some a € A such that at& N,. If at& G = U N,, we are done. If
at € G, then, say, at €I =MN",N; and atgJ=U!,.,N. We can
assume there are no containment relations among the N, ; thus J' Z I,
where I'=Um™ N, and J'=MN., ., N. To see this, note that each
homogeneous element in N, - - - N, is in J’, because the N, are subsets
of ideals. Therefore, if J'CI', then (N,.., - N,)® C U™, P;; hence
there existsan i (1=i=m)andaj (m+1=j=h) such that N; C N,
which contradicts the assumption. Therefore, let bt be a homogene-
ous element of positive degree such that bt* €J' and bt*&I'. Then
xt¢ = (at)® + bt* satisfies (2.5) (v).
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CorOLLARY 3.5. Let A be an ideal in a Noetherian ring R, and let
F be the form ring of R with respect to A. Then a necessary and
sufficient condition for there to exist a v.s.s. element of some positive
ddegree for A is that the zero ideal in F has no irrelevant prime divisor.

(An irrelevant (homogeneous) ideal in % is defined in an analogous
manner to (2.4.1).)

Proof. This follows immediately from (3.4) and the fact that
F=R[uR [3, Theorem 2.1], where R = R(R, A).

COROLLARY 3.6. Let A be an ideal in a Noetherian ring R, and
assume there exists an element x in A such that A™: xR = A", for all
integers m = r, where r is some fixed positive integer. Then the follow -
ing statements hold, for each integer i Zr:

(3.6.1) x‘is a v.s.s. element of degree one for A'.

(3.6.2) If M is a maximal ideal in R such that A CM, then
UuRY: M; = uR?, where RY=R(R,AY), and M; =
(MR[u, t1N RO, u)R®.

Proof. (3.6.1) is clear, because (A')"*": x'/R = (A"*: xR): x"'R =
(A")", for all integers n =1. (3.6.2) follows from (3.6.1) and (3.4).

We conclude this paper with the following three observations.

LeMMA 3.7. Let A be an ideal in a ring R, and assume x is an
element in R such that A": xR = A", for every integer n=1. If
(A,x)R#R, then x is a v.s.s. element of degree one for (A, x)R.

Proof.
(A, x)"R: xR =(A",x(A,x)"YR: xR

=A": xR+(A,x)"'R=A"+(A,x)"'=(A,x)"",
for every integer n = 1.

CoroLLARY 3.8. Assume A is an ideal in a Noetherian ring R
containing a v.s.s. element x of degree k. Then xt* is a v.s.s. element of
degree one for both (u,xt*)R in R = R(R,A) and (A, xt*)¥ in ¥ =
P(R,A).

Proof. Clear by (3.7) and the equivalence of (2.5) (i), (iv), and (v).



650 W. MERRILINE SMITH

Let A be an ideal in a Noetherian ring R, and let Z# = Z(R, A). It
is easily shown (cf. [3]) that for every ideal B in R, B*= BR[u,t1N R
is such that B*: u® = B*, and B*'R[u,t] = B"R[u,t], but it is not in
general true that B*" = (B")*. However, it follows from considering
homogeneous elements that A*" = (A")*, for each n = 1.

COROLLARY 3.9. Let A and B be ideals in a Noetherian ring R
such that A+ B# R, and let R = R(R,A). If (B*)" =(B")*, for each
n =1, then u is a v.s.s. element of degree one for (B*,u)®R.

Proof. (B*,u)R# R, since A+ B# R. Therefore (3.9) follows
from (3.7), because (B*)": uR = (B")*: u® = (B")* =(B*)", for each

n=1.

It is also clear, by the preceding discussion, that (3.9) holds, in
particular, whenever B = A.
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