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THE INVERSE OF A CONTINUOUS
ADDITIVE FUNCTIONAL

JEAN-MARIE ROLIN

Let X be a standard process and A be a continuous additive
functional of X. The inverse of A is defined by 7 =
inf{s-A; >t}. The aim of this paper is to prove that the
process 7 has conditionally independent increments with respect
to the o -algebra generated by the time changed process X, =
X.. However these increments are not necessarily
stationary. Another interesting result is derived: the contin-
ous part of the process 7 is a continuous additive functional of
the process X.

The existence of regular conditional probabilities permits to
consider the process 7 as an additive process and under a
necessary and sufficient condition, it is in fact a Levy process
with increasing paths. The general theory of such processes is
then used to obtain a Levy representation of the jumps of the
process T.

1. Introduction. Let us consider a standard process X =
Q,M;E, &AM, X,0,P") and a continuous additive functional
(C.AF) of X. We refer to [1] for all the notations and definitions of
such concepts.

It is well known in the theory of the Lebesgue-Stieltjes integral that
if we define

(1.1 T =inf{s: A, >t}

then for all nonnegative Borel functions f on [0,] vanishing at infinity,
the following formula holds

(1.2) L “f(t)dA, = L " f(n) dt.

The aim of this paper is to investigate some of the probabilistic
properties of this “inverse” of the continuous additive functional A.

It is easy to see that for each s, 7, is a stopping time for X and it is
known that under some additional assumptions, the time changed
process X, is a standard process (see [1]-V-2, 11, and [3]).

Some important results have been established by Blumenthal and
Getoor in the case where the fine support of A consists of a single point
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x,. That is the theory of local times that shows in particular that the
process (7, P*) is more or less equivalent to a subordinator. For a
precise statement of this theorem, refer to [1}-V-3.

We are now going to show that in the general case, the process 7
has conditionally independent increments with respect to the o -algebra
generated by the process X.

II. The conditioning. Let X =(Q, M, E, ¥4 A; X, M,6,P*)
be a standard process with lifetime ¢ and A be a continuous additive
functional of X. We will suppose that for all w in (, the functions
t > A,(w) are continuous on [0, ] and the paths functions ¢t = X;(w)
are right continuous on [0, «] and have left-hand limits on
[0,é(w)). Let us introduce some notations. We will write

>
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%° and %° will have their usual meanings relative to the process X and
%, and % will be their respective completions by the family P* as
sub-o-algebras of #. To make this precise, A will be in %A(PJ"?) if for
each finite measure u on (E,, &,) there exist sets B, in ¥}(%°) and N,
in #° such that P*(N,)=0and B, — N, CA CB, UN,. Letusremark
that Y in & will be in %, (%) if for each finite measure u on (E,, &,)
there exists Z, in % (%) such that Y = Z, almost surely P*.

It follows immediately from these definitions that %, is contained in
%, and % is contained in %. Since by definition, X, is in %°| &,, it is
clear that X, is in % | €% for each t, where €% denotes the o -algebra of
universally measurable sets over (E,, €,). It is also easy to see that 6,
is in %..| % for all ¢, s and in particular, 6, is in &|% for each t.

Now if we consider the lifetime £ of the process X, i.e. £ =
inf {t: X, = A} we note that

2.1 E=A;, = A. a.s.
since {X, =A}={r, = £} ={A, =t}.
We are now ready to state some lemmas. The simplicity of their

proofs will permit us to omit them.

LemMMA 2.1. Let T be a {%,} stopping time. Then 71 is a (%,}
stopping time and ¥r = %.,. Moreover for all t,

2.2) Trae =Tr+ T 0 ér a.s.
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and
(2.3) A,=Ton {T<§.
Lemma 22. Let T be a {%} stopping time. Then Ay is a {%.}
stopping time and % is contained in ¥,,. Moreover for all t,
(2.4) Tarpy =T 47100 as.on {A;r <o}
LemMMa 2.3. Let Ybein % and T be a {%,} stopping time. Then
(2.5) Yoy, =Yo0 as.on{Ar<w}.
In particular, if we take T =0, then
(2.6) Y=Y, as.
Let us turn now to some considerations related to the support of

the continuous additive functional A. We will denote it by F. By
definition

F={x€E:P(r,=0)= 1}

It is known (see [1]-V-3) that F is a nearly Borel set which is finely
perfect, i.e. the set of regular points for F is precisely F, and that is a
consequence of the fact that

2.7 T- =7, a.s.

where Tr is the hitting time of the set F. Moreover for all x in E,,

A

P (X, F forsome t<£]=0.

Using this result, we can and we will from now on, suppose that the
process X lives on F U{A}. It is also easy to prove that for all {%}
stopping times T,

2.8) {Xr € F}={r,00; =0} a.s.

In the sequel, we will have to deal with expressions of the form
E"(ZJQA?,)(w) where Z is in b%. It is not difficult to see, using the fact
that %! is countably generated and the martingale convergence theorem,
that we can choose a version which is jointly measurable in x and
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. Moge precisely: if Zisin b% and t =, tt)en there exists ZHw) in
b€XQ® % such that for all x in E,, E*(Z|%) =2} as. P*. Since
E*(Z|%,) is only defined a.s. P*, we will always suppose when writing
expressions such as E*(Z l%)(w) that it is jointly measurable in x and
.

We now come to an important lemma.

LEMMA 24. Let Z{(w), Z3(w) be in b%f@? and such that, for
each x in FU{A}, Zi=Z} a.s. P*. Then

Z%=7% as.

Proof. Clearly Z*% is in b% and by the preceding lemma, for all
finite measures u on (E,, &,) and for all A in ¥

E*(1,Z%) = E*E*(1,Z%) = f FU(A}E‘(IAZ’,?“)P"(XOE dx).
Now if X isin F, 7o=0 a.s. P* and Xo=xas. P~ fx=A, 1=
a.s. P* and X,=A a.s. P°. Hence for all x in F U{A},
E*(1,Z%) = E*(1,Z) = E*(1,23) = E*(1.Z¥)
and
E*(1,Z%) = E*(1.Z%).
That implies that
Zbk=Z% as. P
and the conclusion holds since u is arbitrary.
In the sequel, we will usually omit the @ ’s when writing expressions
such as E*(Z|%,1(0,w). We will write
E*[Z|%,]°0,(0) = E**[Z| %,] (§w)
E*[Z|%.)(6.)() = EX*[Z| %] (bw).
For instance, we have almost surely
E*(Z|%,)°0, = E*+[Z|%.1(6,).

We are now ready to state the main theorem of this section.
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THEOREM 2.5. Let u be a finite measure on (E,,%,) and let Y be
in b%, and Z be in b%. Then

(2.9) E“(YZ<0,|%)=E*(Y|%)EXZ|%)-6,
a.s. P* forall t.

This theorem has several immediate corollaries.
COROLLARY 2.6. Let w and Z be as in 2.5. Then
(2.10) E*(Z°6,|%)=E*Z|%)°6, as. P* for all t.

If we take u = €, and if we apply Lemma 2.4, we get the following
results.

COROLLARY 2.7.  Let Ybeinb%, and Zbeinb%. Then, for all
t, almost surely

(2.11) E*(YZ6,|%)=E*Y|%)E*Z|%)6..
In particular, if we set Y =1,
2.12) E*(Z6,|F)=E*Z|%)o6, a.s. forallt.
Proof. Let us consider the following random variable
W =I1£(X),
where f; are in b¥%, forAI =i=nand0=t, <t < -oe <t AClearly we
can write W = W, W,° 0, a.s. where W,isin ¥%and W,isin ¥°. Now

E*(WYZ<6,) = E*[W,YEX*(W,2Z)].

We know that ):(, isin F almost surelyon {t <£}. On{t=§}r, = © and
consequently X, = A. On the other hand, we already saw that X, = x
a.s. P* for all x in F U{A}. Therefore for all x in F U{A},

E*([W,EX(Z | %) = E*[W,E*(Z| %)] = EX(W,2).

So, we have
E*(WYZo6,) = E*[W,YE*(W,EXZ | %))
=E*[WYEXZ | %)°6,]
= E*[WE*(Y | $)EXZ | %)-4,],
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if we recall that by convention E*(Z | %) is in #, and 6, is in
3 I.J"’A* Using the monotone class theorem, we see that the last equality
is true for all W in b%°. If W isin b% there exists W, in b%° such that
W = W, as. P*. Hence the equality holds for every W in b% and the
theorem is proven. Using the corollary 2.6, we see that the formula of
the Theorem 2.5 may be written

(2.13) E*(YZ<6,|%)=E*(Y|%) E*(Z-6,|%)a.s. P* forall t.
The intuitive meaning of the Theorem 2.5, is now clear. What
happened before and after the time 7, are conditionally independent

given the process in the support of the continuous additive functional.

We will end this section by a proposition which is closely related to
Theorem 2.5.

ProposiTION 2.8. Let u be a finite measure on (E,, €,) and let Y
be in b%,. Then

(2.14) E*(Y|%¥)=E*(Y|%.)a.s. P*.
Proof. Let us prove first that for all Z in b,
(2.15) E*(Z|%.,) = E*(Z|%,) a.s. P*.

If we consider Z = lﬂ[fi()‘(,i) where f; arein b€,and0=t,<t, < --- <t{,,
1

then as before, we can write Z = Z,Z,° 6, a.s. where Z, is in b%° and Z,
is in b%°. Hence

E*(Z|%)=Z,E*Z, as. P*,
and since the right hand side is in %, (2.8) holds. By the monotone
class theorem and the properties of the completion, (2.8) is clearly true
for all Z in b%.
Now, for Z in b% and Y in b%,

E*(YZ)= E*[YE*(Z|%)]
= E*[YE*(Z|%)]
= E*[ZE*(Y| %)),

Hence E*(Y|%)=E*(Y|%) a.s. P*.
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If we use Lemma 2.4, this proposition has a straightforward
corollary.

COROLLARY 2.9. Let Y be in b%. Then E*(Y|%) is in %.

In the following chapter we will be mainly concerned with the
operator T:bF — b% defined by

(2.16) TZ = EX(Z | %),

Even if this operator is not a conditional expectation, it has all its
important properties. For instance

2.17) T(aZ) = aTZ.

(2.18) T(Z,+ Z)) = TZ, + TZ..
(2.19) TZz0 if Z=0.
(2.20) TZ, 1 TZ if Z, 1 Z

(2.21) If Yisin bﬁhand Zisinb% then T(YZ)=YTZ.
In particular, Y is in b% if an only if TY =Y.

(2.22) T1=1,

all these statements being true almost surely. They are easy to verify
by applying Lemma 2.4 to the corresponding properties of the condi-
tional expectations with respect to the measures P*. For instance, if
Z=0,let B={(x,0): E*[Z|%](0)=0}. Then 1, is in b¥%*® % and
15(x,-)=1 a.s. P* for all x in E,. So 13[Xsw),w]=1 a.s. Hence
TZ =0 a.s. Also if Z, increases to Z,

sup E*(Z,| %)= E*(Z|%) as. P*

for all x in E,. Hence supTZ, = TZ a.s.

It is also useful to remark that if Z =0 a.s. P* for all x in F U{A},
then TZ =0 a.s.

Moreover the main theorem of this section and its corollaries may
be expressed in terms of T by the following statement:



592 JEAN MARIE ROLIN

Let Y bein b%, and Z be in b then TY isin b%,
(2.23) T(YZ<6,)=(TY)(TZ)°6, as.
and in particular
(2.24) T(Z6,)=(TZ)6, as.

The aim of the next chapter will be to prove that under certain
conditions T may be considered as an integral operator.

III. The regularization. In this section, we will suppose
that X is a standard process with the property that the measurable space
(Q, #°) is a standard Borel space. This is the case if the process X is of
function space type, i.e., if () consists of all the functions from [0, «]
into E, which are right continuous on [0, «) and have left-hand limits on
[0,©) and if the random variables X, are the coordinate functions
[X.(w)=w (t)]. In this situation (2, %°) is a Polish space and then a
standard Borel space. See for instance [6] and {7].

Under this hypothesis, we can prove the following theorem.
THEOREM 3.1. There exists a function
P*(A): QX%°—>R

such that, for each o in Q, P*(-) is a probability measure on ¥°, for
each set A in F°, P-(A)is in b% and for all Z in b%°, the following
relation holds almost surely in w.

(3.1 TZ(w) = E*[Z|%](w)
=E“Z = J' Z(w") P*(dw").

Proof. Let Q be the rational numbers. Since (2, %°) is a stan-
dard Borel space, there exists an increasing right continuous sequence
of sets in #°, A,, r in Q, such that

NA=¢ and UA, =Q.

reQ reQ

F° is the o-algebra generated by this collection. Moreover, if F is a
probability distribution function on this sequence, i.e., an increasing
right continuous set function on this sequence with the property that
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inf,coF(A,)=0 and sup,coF(A,)=1, then F can be extended in a
unique way to a probability measure on #°. Indeed, this statement
becomes evident if we take A, = ¢ '[(— =, r]] where ¢ is a bijective
measurable function from () into a Borel subset of the real line such that
¢ ' is measurable, and such a function exists by the definition of a

standard Borel space.

Now let Q“(A,) be versions of T1, (w). Let us define

reQ s>r
s

N,= U {w:ig(f)Q"’(As) # Q“’(A,)}

N,= {w: srteng“’(Ar) # 1}

Ny ={w:int @*(4)) #0}
reQ
N = Nl UN2UN3.

Clearly, N is in %. Moreover for all finite measures w on (E,, €,),
P*(N)=0. Indeed, T1, =inf,.,T1,, a.s. and if s, decreases tor, 1,,,
decreases to 1,, and consequently T1,, decreases to T1, a.s. This
implies that T1, =inf,.,T1,, a.s. Similarly sup,coT14 =1 a.s. and
inf,eoT1s =0 a.s. '

Now let F be any probability distribution function on the sequence
{A,:rin Q} and let us define

Pe(A;) = Q“(A)) Iy-(w) + F(A,) In(w).

clearly P-(A,) is in b% for all r in Q and for all w in QP” is a
probability distribution function on the sequence A,. Let us also
denote by P“, the unique extension of P* to a probability measure on
F°. If we define € ={A € F P-(A)E %} then % is a o-algebra
containing A, for all r in Q. Hence for all A in %° P-(A) is in
% Now let H={Z€bF* TZ=E-Z as). H is a linear space
containing 1,, for all r in Q. Moreover if Z, in H* increases to Z
bounded, then Z is in H. By the monotone class theorem, the proof is
complete if we remark that the collection {A, — A,: s <r,s,r €EQ}is a
m-system generating °.

From now on, we will restrict our attention to the stochastic
process 7 = {7, :0=t <x}. Unhappily, the measures P* we have just
constructed can only be defined on %° and in the general case, 7 is not
%° measurable. However, if we suppose that there exists a reference
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measure for X (see [1] V-1), then the C.A.F. A is equivalent to a perfect
C.A.F. B such that each B, is in %°(see [1] V-2.1 and 2.10). So without
loss of generality, we may and we will assume that A is a perfect C.A.F.
and each A, is %° measurable.

Since {r, <s}={A.>t}, that implies that the process 7 is %°
measurable. Moreover in this situation the support of the C.A.F. is a
Borel set for P*(7,=0) is in b&,.

One 1..ore remark: Later we will have to consider the increments
of the process 7, i.e., 7., — 7, and this is not defined on the set
{r. =»}. However if we set 7.,—7 = on {r, =}, this random
variable is in #° and 7., — 7. = 7,06, a.s. Indeed

Px[Ts oét <°°9 Tt = w] = EX[PR‘(T.S <w); Tl =°°]
= P(r, <®)P*(1, = %) =0
for 7o = a.s. P2

We are now ready to state the main theorem of this section.

TuHEOREM 3.2. There exists a set N in ¥ with P* (N)=0 for all
finite measures p on (E,, €,), such that for all » in {£ >0}— N, the
process

{r,:0=t < {(w)}

is an additive process on (Q, #°, P*) (i.e., a process with independent
increments such that 7,=0 a.s. P*).

Proof. Let us prove first that for all t = 0 the o-algebras
H,=0{r,:0=s =t}
and
gg = 0-{7}-'.5 —Tg :O<S <w}
are independent with respect to P for almost all . Indeed the right
continuity of 7, implies that #, and %, are generated by countable
m-systems containing ), let us say ¥ and £ respectively. On the

other hand, ¥, is contained in %, and %, is contained in 6;'(%). Using
Corollary 2.7, this implies that
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P°(ANB)=P°(A)P“(B) a.s.
for A in ¥, and B in %.

Let us define

N=U, U {w: P (ANB)#P*(A)P*(B)}.

AEXS BESLY

Clearly N, is in % and P*(N,) =0 for all u. Using twice the monotone
class theorem, it is easy to see that for all @ in N7,

P°(A NB)=P“(A)P°(B)
for all A in #,, B in %.

Now let Ny = U,co*N,. Thenforall w in N§,t 20,5 >0, 7., — 7
is independent of ¥, with respect to P*. Forif A isin ¥, and u 20, let
us choose r, in Q* such that r, | t and r, <t +s. Then, by the right
continuity of =, we have

P[AN{r,—n=v}l= lil;n P°[A N{rs — 7. = v}]

=1lim P*(A) P*(714s — T, = V)

mlt

= PM(A)PE(T'q,S - T § v).
Now since {£ =t}={X, = A}, £ is in ¥ and so

(3.2) Pe[é# E(w)]=0

for almost all . Also e ™ = 1.(X,) a.s. P* forall x in F U{A}. Hence
by Lemma 2.4

(3.3) E*(e ™) = 15[ Xo(w)]

for almost all . Let N, be the set of w’s for which either (3.2) or (3.3)
is not satisfied and letAN =N,UN,. Clearly N isin % and P*(N)=0
forallpu. If wisin{& > 0} ~ N, 7,=0a.s. P* and the process 7 is finite
a.s. P:’ on [0, é(w)) since € = é (w) a.s. P°. Alsoforallt < f (w) and s
in (0, ¢ (w) — t) 745 — 7, is independent of o {r,:0= U = t} with respect
to P°. That concludes the proof of the theorem.
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Let us remark that there is no interest in considering the process 7
with respect to P* for w in {£ = 0} because (3.3) implies that 7, = a.s.
P* for almost all w in {£ = 0}.

Let us also note that the process 7 is not homogeneous. Indeed

3.4) P*(7,, — 7, € B) = P%)(7, € B)

for almost all  in Q.
If we consider the particular case where the support of the C.A.F.
is a single point x,, then

F'=0(A.)

for {X, =x,}= {A.>t}. Moreover there exists y =0, such that
Po(A.>t)=e™. If y=0, A.=» a.s. P> and it follows easily that

© = P*for almost all w in (). In this situation, we have as a corollary
of Theorem 3.2, that the process 7 ={r, :0 =t <=} is a homogeneous
additive process with increasing paths on (Q, #°, P).

It is now clear that Theorem 3.2 generalizes the theorem which
appears in [1]-V-3.21.

In order to obtain a Levy’s decomposition of the process 7,
Theorem 3.2 is not sufficient. We also need the fact that the process T
is continuous in probability with respect to P* for almost all » in {£ > 0}
or equivalently the functions t - E“(e ™) are continuous on [0,{(w))
for almost all ® in {£>0}. Indeed, since E°“(e™)=
E“(e™+)E“(e ") if we let s decrease to zero, we have E“(e™) =
E“(e ") E®[e "] and then if t < £ (w) 7,- = 7, a.s. P* if and only if
E“(e™)=E“(e ™).

It is easy to see that in the general case, this condition will not be
satisfied. However we have the following theorem.

THEOREM 3.3. There exists N in ¥ with P*(N)=0 for all finite
measures . on (E,, €,), such that for all w in {£ >0}— N, the function
t - E*“(e™™) is continuous on [0,£ (w)) if and only if the following
assumption holds.

Assumption 3.4. For all {%} stopping times T,
Tr- = Tr a.S. On {0< T< é}
Proof. Let Qy=Q—N where N is the set of measure zero
appearing in the statement of Theorem 3.2. Let us set C,(w) = e ™’

and C,(w)=E*“(e™™) if w is in O and C,(w) = 0 otherwise. Then we
define for € >0,
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=inf{t >0:C-—C, = €}

and T, = £ if the set in braces is empty. Now if we prove that for all
finite measures u on (E,, €.),P* (T <£)=0, the sufficiency is
established. Indeed if N'= U, {Ti< §} P*(N’)=0 and for all w in
{£>0}-N", C (w)=0C (w) for all t <£(w). This implies the con-
tinuity of E (e™™) on [0, §(w)] for all w in {f >0} — (N UN").

Letus write T, = T. Since C, =0on{é=t}, T= § Moreover T
is a {#} stopping time for {T=t}={T=t,é >t}U{é =t} and if Q
denotes the rationals in (0,¢)

0<r—s<i.
m

Hence {T éﬂt} is in % since € is clearly in %. Also if T (0)< (o),
éT(w)—(w) — Crew)(@w)Ze.

Now if G (0, 0') is in b# ® F° and if G(w) = G(w,w) it is easy to see that
for almost all w,

E*“[G | #)(w) = L G(w,0")P*(dw")

Since for all {%} stopping times T, Trw)€®') and 7rw,(@') are clearly in
% ® #°, we have

é‘r = E&(C‘r ' @) a.s. and
é‘r- = E&(Cr_l g) a.s.

Hence

P“(T<£)§€15"[C‘T-—C‘T;T<g]

—

< —E*{E%[(Cr- — Cr)lir<g | F1; £ >0}

— M

=— E*{E®[(Cr- — Cr)lir<g| F]o bo; € >0}

m

= E*{EMCr-— Crs T<£1:€>0)

A

0

for Cr-=Cr a.s. on {0< T < £}.
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For the necessity of Assumption 3.4, note that for all {#,} stopping times
T, Cr-=Cr as. on {0< T <£}. Then for all x in F,

0=E*[Cr-—Cr;0<T <&
= E*[E*(Cr-—Cr|%);0< T < £

=EX[CT-—CT;0<T<£]

andsorr-=7ras. P*on{0< T < £} forall x in F. Now since 7. = To+ 7, © 0y,
for all t almost surely, it is clear that 7, = 7o+ 7,— ¢ 6, for all ¢ almost surely and
then 7r — 77— = (7 — 1r_)° 6o a.s. on {9 < T < £}. Hence for all finite measures
p on  (Ex8),P(rr—1r-=0, 0<T<§)=P*[(rr—1r)°60=0,
0<Tobo<Eocby, £>0]=E*[P(rr —1r-=0,0<T < §); £>0]=0 since X,
is in F on {£ >0}.

This finishes the proof of Theorem 3.3 and we have this straightforward
corollary.

COROLLARY 3.5. Under the Assumption 3.4, there exists N in ¥
with P*(N) = 0 for all finite measures u on (E,, &,), such that for all w in
{£ >0}— N, the process {r,:0=t <& (w)} is a Levy process with
increasing paths on (Q, %°, P*).

IV. The decomposition. Since 7 is an increasing right
continuous process, we can decompose it into its continuous and purely
discontinuous parts. Let

4.1) =T+ 7S¢+ 7

be this decomposition. If we denote by K(w) the set of discontinuity
points of the function t — 7,(w) for t >0, then

4.2) T$ =I lg-(s)dr,.
©1]

“3) = 3 (-,

0<s=t
Let us first restrict our attention to the continuous part of 7.

LemMMA 4.1. Let 75 be the continuous part of 7. Then, almost
surely,

(4.4) o= f "1,(X.)ds forallt.
0
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Proof. Let wus recall the following change of variables
formula. If a (¢) is a nonnegative increasing right continuous function
on [0,%] and

a@)=inf{s:a(s)>t},

then for all nonnegative Borel functions g on [0, »)
a(®) _
[ swaaw=["giaena,
0,) a(0)

where a ((©) = li{na (t). Applying this formula to (4.2), we have

re = f Tou(As) 1k (A,) ds.

It is easy to see that

l(O,tl(As ) = l(m,rtl(s )‘

Moreover A; isin K if and only if s isin R U L, where R (L) denotes
the set of points of right (left) increase of A. Indeed, since 7,,-=s =
T4, if A, isin K there exists v # s such that 7,, < v <7,. Butthen

A, =inf{u:7, >v}=A.
On the other hand, if A,=A, for v#s, T..=vAs and 74, =
vvs. Hence A, is in K.
But we also know that almost surely

RcC{s: X, €EF}CRUL

(see [1]-V-3.8). Moreover R UL -RNL is a countable
set. Therefore 1x-(A,) = 1:(X,) for almost all s, and

7 =f'1p(x)ds a.s.

Moreover, since 7= T a.s. X, is in F¢ for all s <7, a.s. and so the
result.
Using this representation, we have the following theorem.
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THEOREM 4.2. Let 7° be the continuous part of . Then v° is a
continuous additive functional of the process X. In particular, 75 is in
%, for all t and
4.5) Tea=Ti+ 1500,

almost surely for all t, s.

Proof. 1t is clear that the function ¢t — 7} is nondecreasing and
continuous and 7§ = 0 almost surely. Moreover forall t =& =A.

ri=n = [ 1 (X)ds,
0

and 7§ =0 for all ¢t a.s. P2,

Now, let us consider
B [1:x)ds.
0

B is a perfect continuous additive functional of X and by its strong
additivity property we have

Tf+s = B'ﬂ*s
= Bf(+fx°6!
= BT‘ + Bfwé:[ét]

=B, +B, 6,

=7+ 700, a.s.

All that remains to be proved is the measurability of 7. Let
D =suppB. Since B,=0 a.s., Tp =7, a.s. and

D={x:P*[T, =0]=1}CF.

Furthermore

ug(x)=fe-°‘P*(x. €F)dt =

R |=—

.

In this situation, for each finite measure u on (E,, &.), there exists a
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t
sequence g, in b€, such that B" = f g.(X;)dA, converges to B, on
0

[0, ) almost surely P*, the convergence being uniform on each compact
subinterval (see [3]). Hence

B’ 1(1—.<m}_‘> TS 1(,,<m} a.s. P~
But

B:. 1{1-,<m) = L ‘ gn (Xs)dAs l(n<°°}
= fo 8n (Xs)ds Log(2).

S0 B2 e is in &, for {r, <o} ={X, € F}={t <£}. Then 7 lps(t) is
in %, for all t. Now since 7¢ is continuous and constant on {t = ¢},

TS =L log(s)drs.

Hence
. & k
75 =1m X [7nm— Ti-vnmd los (27 t) :

But
c c k
(&= Ta-vemd log 2—,,t

isin Fupm C % andso 7¢ isin &, forallt. This completes the proof of
Theorem 4.2.

Let us turn now to the purely discontinuous part of the process 7.

If B is the collection of Borel sets on (0, «), let us define for B in &
and ¢ in [0, ),

(4.6) M,(B)=|{s €(0,t]: 7, — 7.- € B}|,

i.e., the number of points s in (0, t] such that 7, — 7,_is in B. Clearly
for each @ in Q) and B in 8 bounded away from zero [i.e., B C(1/n, «)
for some n <] the paths t - M,(B)(w) are right continuous step
functions with jumps of size 1. Also My(B)=0 and M;(B)=
M.(B). Now we have the following lemma.

LeEmMA 4.3. For each win {£ >0} and t in [0, £(»)), M,(B)(®) is
a o-finite measure on B.  Moreover for all positive Borel functions g on
[0, ] such that g(0) =0 and for all t <§,
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@7 S gr-n)=]  gMdu).

0<s=t

In particular,
(4.8) i =J' uM,(du).
(0,%)

Proof. Clearly M,(B) is a counting measure such that
M,[(1/n,®)] <o since 7, <. Now if g =15 for B in %, both sides of
the equality (4.7) are equal to M,(B) and so by the monotone class
theorem, (4.7) holds for all positive Borel functions g on [0, ®) with
g(0) = 0, the latter condition preserving the countability of the sum of
the left-hand side.

From now on let us fix  in {£ >0}— N, where N is the set of
measure zero appearing in the statement of Corollary 3.5. It follows
from the proof of Theorem 3.2, that we can suppose without loss of
generality that 7,=0 and £ = £ (w) since we are now only concerned
with the measure P°. From the general theory of Levy processes we
have the following theorem.

THEOREM 4.4. Under the Assumption 3.4, there exists N in 3
with P*(N) =0 for all finite measures p. on (E,, €,), such tha{ for all
in {£ >0}~ N, for all sets B in B, the process M,(B),0=t < (w), is a
Levy process of Poisson type (possibly with infinite parameter) on
Q, F°, P°). In particular,

4.9) E“[e *M®)] = g~ (-e DE“N®)

Proof. We will only sketch the proof since this result is well
known (see, for instance, [5]-I where it is treated in full detail). It is not
too difficult to see that M,(B) is measurable with respect to ¥, =
o{r,:0<s=t}forall Bin B and t <& (w). And so this process has
independent increments by Theorem 3.2. It is also continuous in
probability since

P*[M,(B) <M,(B)]=P*(r-<7)=0

by Theorem 3.3.
Therefore if B in & is bounded away from zero, by the Poisson law
of rare events, there exists A <o such that
Ew [e—aM,(B)] — e—/\(l—e“').

Hence A = E°M,(B).
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If B is arbitrary, let B, = B N(1/n,). Then M,(B,) increases to
M,(B) and E“M,(B,) increases to E“M,(B). Hence

E“[e —aM,(B)] = @ U-eTIE=M,(B)

Using this result it is easy to see that if we define

(4.10) v(B)(w) = E°M.(B),

then for all ® in {£€ >0}— N, for all t <{(w), n(-)(®) is a o-finite
measure on % which is finite on the sets in 8 bounded away from zero.
Moreover for each w in {£ >0}— N and for each B in # bounded
away from zero, the function t — »,(B) (w) is increasing and continuous
on [0, {(w)).
Regrouping all the results we have about the structure of the
process 7, we can state the following theorem.

THEOREM 4.5. Under the Assumption 3.4, there exists N in &
wjth P*(N) =0 for all finite measures p on (E,, &.,) such that for all » in
{€ >0}— N, and for all t in [0, (w)),

4.12) T =7 +I uM,(du) as. P,
0.2

where ¢ is a continuous additive functional of X and M,(B) is a Levy
process of Poisson type for each set B in R.

Moreover if v,(B)(w) = E°M,(B), then v,(-)(w) is a Levy measure
and

4.13) E“’(e“'")=exp[—a1-f(w)—f( (l—e‘““)v,(du)(w)].

0,2)

Proof. All we have to prove is (4.13). Since 7¢ is %, measurable,
we have

Ew (e —ar, ) =e —af‘,‘(w)E ) [e -af(.,‘,)uM,(du)] a.s.

Since both sides of the equality are continuous in ¢t and «, by subtracting
another set of measure zero, the equality holds for all ¢ and a almost
surely in .

Now it follows from the general theory of Levy processes that for
B,, 1=k =n, disjoint sets in 8 bounded away from zero, M,(Bi)
1=k =n are independent random variables and so,
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n2"-1 + 1
E'"exp[—af uM,(du)]=limE“’exp —a ), i’iM[(ik—kz H
0,®) k=1

n—o

. n2"-1 N _ k £k+1
_!‘]_Eekl:ll E exp a'Z'TM[(zn’ " ]]

=lim exp [ - ngl (1 ~ e"’“‘”"’) v, [(2—’:- , %t—l]] (w)]

= exp[ —-J:o‘w) (1—-e™) v,(du)(w)].

From this equation, we see that

fm’w) (1 - e-au> v, (du) (w) <o,

and this implies that »,(-)(w) is a Levy measure.
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