ALMOST PERIODIC HOMEOMORPHISMS OF E^2 ARE PERIODIC

BEVERLY L. BRECHNER

In this paper we show that every almost periodic homeomorphism of the plane onto itself must be periodic. This improves well-known results.

1. Introduction. In [3] Foland showed that every almost periodic homeomorphism of a disk onto itself is topologically either a reflection in a diameter or a rotation. Hemmingsen [7] studies homeomorphisms on compact subsets of E^2 , with equicontinuous families of iterates, and shows that if such a compact set has an interior point of infinite order, then the compact set is a disk or annulus. If it is a disk, then the homeomorphism is a rotation or reflection. Kerékjártó [8, pp. 224-226] showed that every periodic homeomorphism of a disk onto itself is a conjugate of either a rotation or a reflection. It was brought to my attention by S. Kinoshita that Kerékjártó in [9] obtains a characterization of those homeomorphisms of S^2 onto itself which are regular; that is, homeomorphisms h such that $\{h^n\}_{n\in I}$ forms an equicontinuous family. It is known [4] that almost periodic homeomorphisms on compact metric spaces satisfy this property, so that our theorem for E^2 would follow from the theorem for S^2 .

However, our proof of the main theorem uses Bing's ε -growth technique [6] to obtain an invariant disk, and thus re-does a portion of [2], [7], and [9] in a particularly nice way.

Montgomery began a study of almost periodic transformation groups in [13], with the main results for E^3 . One very nice theorem states that if G is a one-parameter almost periodic transformation group (a.p.t.g.) of E^3 whose minimal closed invariant sets are one-dimensional, and whose orbits are uniformly bounded, then G is the identity. Our theorem may be regarded as something of an analogue to this theorem for E^2 . That is, our theorem shows that if $G = \{h^n\}_{n\in I}$ is an a.p.t.g. of E^2 , $h \neq e$, then the orbits are not uniformly bounded.

2. Preliminaries. The definitions used here of the following are as in [4] and [6]: Relatively dense subsets of the integers; homeomorphisms almost periodic at a point, pointwise almost periodic (p.a.p.), and almost periodic (a.p.) on the space; invariant set; and minimal set are defined in [4]. Property S, ε -growth, and ε -sequential growth are defined in [6]. The orbit of x in the space X is the set

 $\{h^n(x) \mid n \in I\}$, and is denoted by 0(x).

We will use the following known results.

PROPOSITION 2.1. [6, pg. 212]. Let K be a subset of a metric space X. If K has property S, then K is locally connected.

PROPOSITION 2.2. [6, pg. 215]. If K is a subset of a metric space X and K has property S, then \overline{K} has property S. Thus, if K has property S, then \overline{K} is locally connected.

PROPOSITION 2.3. [6, pg. 216]. Let X be a metric space with property S, H and K subsets of X, and $\varepsilon > 0$. If K is an ε -sequential growth of H, then K has property S and is open in X.

NOTE. The double arrow in $f: A \rightarrow B$ denotes an onto function.

- 3. Obtaining invariant disks. In this section we use the concept of an ε -sequential growth to enable us to obtain E^2 as the union of an increasing tower of invariant disks for any a.p. homeomorphism of the plane onto itself.
- LEMMA 3.1. Let X be a compact metric space and let $\{f_n\}$ be an equicontinuous collection of functions on X. Then for each $\varepsilon > 0$, there is a $\delta > 0$ such that diam $(f_n(\delta \operatorname{set})) < \varepsilon$, for all $n \in I$.
- *Proof.* Let $\varepsilon > 0$. For each $x \in X$, there exists $\gamma > 0$ such that diam $(f_n(\gamma nbd \text{ of } x)) < \varepsilon$ for all $n \in I$, since $\{f_n\}$ is equicontinuous. Choose such a neighborhood for each $x \in X$. This forms a cover of X and therefore some finite subcollection covers X. Let δ be a Lebesgue number for this subcover. Then diam $(f_n(\delta set)) < \varepsilon$ for all $n \in I$.
- LEMMA 3.2. Let h be a homeomorphism of S^2 onto itself such that h(p) = p where p is the north pole of S^2 , and let X be a locally connected continuum in S^2 , containing p, such that h(X) = X. Let $\varepsilon = \dim S^2$, and by uniform continuity of h, let $\delta > 0$ such that $\dim (h(\delta \text{set})) < \varepsilon/2$. Then if $\dim X < \delta$ and U is the component of $S^2 X$ containing the south pole, we have h(U) = U.
- *Proof.* We first show that each component of $S^2 X$ must go onto some component of $S^2 X$. Let V be a component of $S^2 X$, and suppose there exist points x and $y \in V$ such that $h(x) \in W_1$, $h(y) \in W_2$, where $W_1 \neq W_2$ are components of $S^2 X$. Let A be an arc

from x to y in V. Since A misses X, and h(X) = X, h(A) misses X. But h(A) is connected and contains points of different components of $S^2 - X$, and therefore must contain a point of X. This is a contradiction. Therefore h(V) is a subset of a component of $S^2 - X$. The same argument applied to h^{-1} , shows h^{-1} (componet) \subseteq some component of $S^2 - X$, so that h(V) is a component of $S^2 - X$. We next show that h(U) = U. Suppose $h(U) \neq U$. Then there is a component $W(\neq U)$ of $S^2 - X$, such that h(W) = U. Now diam $W < \delta$, and therefore diam $h(W) < \varepsilon/2$. Therefore $h(W) \neq U$. This is a contradiction. Thus h(U) = U.

LEMMA 3.3. Let h be an almost periodic homeomorphism of E^2 onto E^2 and let $\varphi\colon E^2\to S^2$ be the inverse of the stereographic projection. Let p be the north pole of S^2 . Let $g\colon S^2\to S^2$ be defined by $g(x)=\begin{cases} \varphi h \varphi^{-1}(x), & \text{for } x\in S^2-\{p\}\\ p, & \text{for } x=p \end{cases}$. Then g is an a.p. homeomorphism of S^2 onto S^2 .

Proof. Let $\varepsilon > 0$. We must show that there exists a relatively dense subset A of I such that $d(x, g^n(x)) < \varepsilon$ for all $x \in S^2$ and all $n \in A$. Now we know there exists a relatively dense subset A of I such that $d(x, h^n(x)) < \varepsilon$ for all $x \in E^2$ and all $n \in A$. Also, it follows from pg. 20 of [1] that φ has the property that $d(y, y') \ge d(\varphi(y), \varphi(y'))$ for all $y, y' \in E^2$. Now since $d(y, h^n(y)) < \varepsilon$ for all $y \in E^2$ and all $n \in A$, $d(\varphi^{-1}(x), h^n \varphi^{-1}(x)) < \varepsilon$ for all $x \neq p \in S^2$, all $n \in A$. Thus $d(\varphi \varphi^{-1}(x), \varphi h^n \varphi^{-1}(x)) < \varepsilon$ and $d(x, \varphi h^n \varphi^{-1}(x)) < \varepsilon$ for all $x \in S^2$, all $n \in A$. It follows that $d(x, g(x)) < \varepsilon$ for all $x \in S^2$, all $n \in A$, and g is a.p.

THEOREM 3.1. Let h be an a.p. homeomorphism on S^2 such that h keeps the north pole p fixed. Then for each $\eta > 0$, there exists an η -disk E which is invariant under h (in fact h(E) = E), and contains p in its interior.

Proof. Let γ be the diameter of S^2 . Then there exists $\delta > 0$ such that diam $(h(\delta \text{-set})) < \gamma/2$, by uniform continuity of h. Let $0 < \varepsilon < \min\{\eta, \delta, \gamma\}$, and let $\{\varepsilon_i\}$ be a decreasing sequence of positive numbers such that $\sum \varepsilon_i < \varepsilon \le \eta$. We will obtain E as an ε -sequential growth of the set $\{p\}$.

Let $D_1 = \{p\}$. The set $\{h^n\}_{n \in I}$ is equicontinuous [4, pg. 341], and $\varepsilon_1 > 0$. Thus by Lemma 3.1, there exists $\delta_1 > 0$ such that diam $(h^n(\delta_1 - \sec)) < \varepsilon_1$ for all $n \in I$. Let $\mathcal{U}_1 = \{U_{11}\}$ be a cover of D_1 by an open connected set of S^2 such that $\mu(\mathcal{U}_1) < \min\{\delta_1, \varepsilon_1\}$. Let $D_2 = \bigcup_{n \in I} h^n(U_{11})$ and note that D_2 is invariant. We show that D_2 is an ε_1 -growth of D_1 . We must show parts (i) and (ii) of the definition of ε -growth.

Proof of (i). If $x \in D_2 - D_1$, then there exists an integer n such that $x \in h^n(U_{11})$. But $h^n(U_{11})$ is connected and diam $(h^n(U_{11})) < \varepsilon_1$. Also, $h^n(U_{11})$ contains p and so meets D_1 .

Proof of (ii). U_{11} is an open set containing the compact set D_1 . S^2-U_{11} is compact, and disjoint from D_1 which is compact. Thus $d(D_1, S^2-U_{11})=2\alpha_1$ for some $\alpha_1>0$, and it follows that the α_1 -nbd. of D_1 is a subset of D_2 . Thus (i) and (ii) hold and D_2 is an ϵ_1 -growth of D_1 .

We now wish to obtain an ε_2 -growth of D_2 . We note that since D_2 is invariant, so is \bar{D}_2 . Now for $\varepsilon_2 > 0$, there exists $\delta_2 > 0$ such that diam $(h^n(\delta_2\text{-set})) < \varepsilon_2$ for all n. Again this is possible by Lemma 3.1. Let \mathcal{U}_2 : $U_{2,1}$, $U_{2,2}$, \cdots , U_{2,k_2} be a finite cover of \bar{D}_2 by open connected subsets of S^2 of diameter $< \min{\{\delta_2, \varepsilon_2\}}$ and let

$$D_3 = igcup_{n \in I} h^n \left(igcup_{i=1}^{k_2} \ U_{2,i}
ight)$$
 .

Then D_3 is invariant.

We show that D_3 is an ε_2 -growth of D_2 . We prove parts (i) and (ii) of the definitions of ε -growth.

Proof of (i). Let $x \in D_3 - D_2$. Then $x \in h^n(U_{2,i})$ for some pair n, i. But $h^n(U_{2,i})$ is connected, meets D_2 , and has diameter $< \varepsilon_2$.

Proof of (ii). \bar{D}_2 and $S^2 - \bigcup_{n \in I} h^n(\bigcup_{i=1}^{k_2} U_{2,i})$ are disjoint compact subsets of S^2 and thus are a positive distance apart, say $2\alpha_2$. Then the α_2 -nbd. of \bar{D}_2 , and therefore the α_2 -nbd. of D_2 , is a subset of D_3 .

Thus (i) and (ii) hold, and D_3 is an ε_2 -growth of D_2 .

It is clear that we may continue the process inductively, obtaining at the *i*th stage, a connected open set D_i which is an ε_{i-1} -growth of D_{i-1} . Let $E' = \bigcup_{i=1}^{\infty} D_i$. Then by Proposition 2.3, E' is open and has property S. Thus \bar{E}' is a locally connected continuum, by Proposition 2.2. Further \bar{E}' is invariant. We show that \bar{E}' has no cut points. Note that E' has no cut points since it is open (and connected). Thus any cut point of \bar{E}' would be in $\bar{E}' - E'$, so that there would exist a component of \bar{E}' containing points of $\bar{E}' - E'$ only. But these are all limit points of E'. This is a contradiction, and it follows that \bar{E}' has no cut points.

Thus \overline{E}' is a locally connected continuum with no cut points, and from Theorem 9 of [11] it follows that the boundary of each of its complementary domains is a simple closed curve. Now one of its complementary domains, say F, contains the open southern hemisphere, and therefore has diameter $\geq \gamma$, while each of the other complementary domains has diameter less than ε , since diam $\overline{E}' < \varepsilon$. Thus by Lemma 3.2, F is invariant, and h(F) = F. Let $E = S^2 - F$.

Then diam $E < \varepsilon$, h(E) = E, and E is a disk, by the Jordan-Schoenflies theorem [6, pg. 257], since it's a continuum not separating S^2 and has a simple closed curve as its boundary. Clearly E contains p in its interior. Then E is the desired 2-cell.

COROLLARY 3.1.1. Let h be an a.p. homeomorphism of E^2 onto itself. Then E^2 is the union of an increasing sequence of disks $\{B_i\}_{i=1}^n$ such that

- (1) $B_1 \subseteq B_2^0 \subseteq B_2 \subseteq B_3^0 \subseteq B_3 \subseteq \cdots \subseteq B_n^0 \subseteq B_n \subseteq \cdots$ and
- (2) $h(B_n) = B_n$ for all n.

Proof. Let $\{\varepsilon_i\}$ be a decreasing sequence of positive numbers. By Theorem 3.1, there exist disks K'_i on S^2 such that (1) diam $K'_i < \varepsilon_i$, (2) $h(K'_i) = K'_i$ and (3) K'_i contains p, the north pole of S^2 . Let $K_1 = K'_1$, $K_2 = \text{first } K'_i$ such that $K'_i \subseteq (K_1)^0$, $K_3 = \text{first } K'_i$ such that $K'_i \subseteq (K_2)^0$, etc. Let $\varphi \colon S^2 \to E^2$ be the stereographic projection. Then $\{B_i\} = \{\varphi(K_i)\}$ is the desired sequence.

4. The main theorem. In this section we prove the main theorem of this paper.

LEMMA 4.1. Let B_1 and B_2 be 2-cells in E^2 such that $B_1 \subseteq B_2^0$. Let h be a homeomorphism of B_2 onto itself such that

- $(1) \quad h(B_1) = B_1,$
- (2) $h = \varphi^{-1}r\varphi$ for some rotation r on the disk D_2 with center at the origin and radius 2, where $\varphi \colon B_2 \twoheadrightarrow D_2$ is a homeomorphism, and
- (3) $\varphi(Bd B_1)$ is a circle centered at the origin. Then there exists a homeomorphism $g: B_2 \to D_2$ such that
 - (1) $g(Bd B_1)$ is the unit circle, and
 - (2) $h = g^{-1}rg$.

Proof. We first make a definition. We call a homeomorphism $f: D_2 \rightarrow D_2$ radial iff f takes each radius onto itself, and is such that circles centered at the origin go onto circles centered at the origin.

Now let $\Psi: D_2 \to D_2$ be a radial homeomorphism of D_2 onto itself such that $\Psi(\varphi(\operatorname{Bd} B_1))$ is the unit circle. Then $\Psi\varphi$ is a homeomorphism of B_2 onto D_2 such that $\Psi\varphi(\operatorname{Bd} B_1)$ is the unit circle. Further, for any rotation r, since $\Psi^{-1}r\Psi = r$, $\varphi^{-1}r\varphi = \varphi^{-1}(\Psi^{-1}r\Psi)\varphi = \varphi^{-1}\Psi^{-1}r\Psi\varphi = (\Psi\varphi)^{-1}r(\Psi\varphi)$. Thus we let $g = \Psi\varphi$ and g is the desired homeomorphism.

LEMMA 4.2. Let B_1 and B_2 be 2-cells in E^2 such that $B_1 \subseteq B_2^0$. Let $h: B_2 \to B_2$ be a homeomorphism such that

- (1) $h(B_1) = B_1$
- (2) there exists a homeomorphism $\varphi_1: B_1 \to unit \ disk \ such \ that$ $h | B_1 = \varphi_1^{-1} r_1 \varphi_1$, for some rotation $r_1: E^2 \to E^2$, and
- (3) there exists a homeomorphism $\varphi_2: B_2 \to D_2$, where D_2 is the disk of radius 2 about the origin, such that
 - (a) $h = \varphi_2^{-1} r_2 \varphi_2$, for some rotation r_2 of E^2 onto itself, and
 - (b) $\varphi_2(\text{Bd }B_1) = unit \ circle.$

Then there exists a homeomorphism $g: B_2 \rightarrow D_2$ such that

- $(1) \quad g | B_1 = \varphi_1,$
- (2) $g(Bd B_1) = unit \ circle, \ and$
- (3) $h = g^{-1}r_1g$.

Proof. Let the annulus between Bd D_1 and Bd D_2 be decomposed into the continuous collection \mathscr{A} of arcs which are the intersections of the radii of D_2 with the annulus. Note that $\varphi_1\varphi_2^{-1}\colon D_1 \to D_1$ is a homeomorphism that takes $\varphi_2(x)$ to $\varphi_1(x)$ for each $x \in B_1$. We extend $\varphi_1\varphi_2^{-1}$ to a homeomorphism $\Psi\colon D_2 \to D_2$ by taking each element $A \in \mathscr{A}$ with endpoint $\varphi_2(x) \in \operatorname{Bd} D_1$ to the element $A' \in \mathscr{A}$ with endpoint $\varphi_1(x)$ in Bd D_1 , in such a way that distance along the segments A and A' are preserved. Thus Ψ is a homeomorphism of D_2 onto itself such that $\Psi \mid D_1 = \varphi_1\varphi_2^{-1}$.

Now let $g = \Psi \varphi_2$. We show that g is the required homeomorphism. Since $\Psi = \varphi_1 \varphi_2^{-1}$ on D_1 , $\Psi \varphi_2 = (\varphi_1 \varphi_2^{-1}) \varphi_2 = \varphi_1$ on B_1 , so g is an extension of φ_1 . Also $g(\operatorname{Bd} B_1) = \operatorname{unit}$ circle. It remains to show that $h = g^{-1}r_1g$ on $B_2 - B_1$.

It is sufficient to show that $r_2 = r_1$ on Bd D_1 . Now $\varphi_1^{-1}r_1\varphi_1 = \varphi_2^{-1}r_2\varphi_2$ on Bd B_1 , so $r_2 = (\varphi_1\varphi_2^{-1})^{-1}r_1(\varphi_1\varphi_2^{-1})$ is a conjugate of a rotation. But it follows from [12] that the rotations are characterized by numbers in 1-1 correspondence with $0 \le x < 1$, and any conjugate $f^{-1}rf$ of a rotation is characterized (even though not necessarily a rotation) by the same number as the number for the rotation r. Thus the characterizing number for a conjugate of r_1 is the same as for r_1 . It follows that $r_1 = r_2$, and $r_2 = r_3$ on $r_4 = r_4$.

THEOREM 4.1. Let h be an almost periodic homeomorphism of E^2 onto itself. Then h is periodic.

Proof. Let $\{B_i\}$ be an increasing tower of 2-cells of E^2 such that $B_1 \subseteq B_2^0 \subseteq B_2 \subseteq B_3^0 \subseteq B_3 \subseteq \cdots \subseteq B_n^0 \subseteq B_n \subseteq \cdots$, $\bigcup B_i = E^2$, and $h(B_i) = B_i$. This sequence exists by Corollary 3.1.1.

Case (i). h is orientation preserving. Since B_i is invariant, $h|B_i$ is a.p. on B_i and orientation preserving, and therefore is a conjugate of a rotation on the 2-cell D_i centered at the origin and

of radius *i*. (This follows from [3].) That is, there exists a rotation $r_i: D_i \to D_i$ and a homeomorphism $\varphi_i: B_i \to D_i$ such that $h \mid B_i = \varphi_i^{-1} r_i \varphi_i$.

We will show that each r_i must be rational. Suppose by way of contradiction that r_i is an irrational rotation, for some i (the first such i). Then since $r_i = \varphi_i(h \mid B_i)\varphi_i^{-1}$ and B_{i-1} is invariant, $\varphi_i(B_{i-1})$ is invariant under r_i and in fact Bd $(\varphi_i(B_{i-1}))$ is invariant under r_i . Let x be any point in Bd $(\varphi_i(B_{i-1}))$. Since r_i is an invariant rotation $\overline{O(x)}$ under r_i will contain the circle C_x of radius |x|. Thus $C_x \subseteq \varphi_i(\text{Bd }(B_{i-1}))$. But $\varphi_i(\text{Bd }(B_{i-1}))$ is a simple closed curve, and it follows that $C_x = \varphi_i(\text{Bd }(B_{i-1}))$. By Lemma 4.1, we may assume that $\varphi_i(B_{i-1}) = \text{radius } (i-1)$ disk, and by Lemma 4.2, we may assume that $\varphi_i(B_{i-1}) = \varphi_{i-1}$, (that is φ_i is an extension of φ_{i-1}) and further that $r_i = r_{i-1}$. Thus since r_i is the first irrational rotation, i=1.

Clearly this process may be continued inductively, obtaining $r_i = r_{i-1}$, for all i. But then h would be the conjugate of an irrational rotation on E^2 . However, such a rotation is not a.p. since $d(x, h^n(x)) \to \infty$ as $x \to \infty$ (for fixed n). This is a contradiction. It follows that each r_i is a rational rotation.

Now since each r_i is a rational rotation, it is of finite order, say n_i . But since $h|B_i$ is a conjugate of a periodic homeomorphism of order n_i on the disk D_i , each point of B_i (except the "center") has the same order, namely n_i . Thus each point of B_{i-1} has order n_i under $h|B_i$ and therefore under $h|B_{i-1}$. We may backtrack inductively until i=2, so that each of $\{h|B_1, h|B_2, \cdots, h|B_i\}$ makes each point of B_i (except the "center") a point of order n_i ; that is, the orbit consists of n_i points. It follows that for any j>i, the points of B_j must all have order n_j and therefore $n_j=n_i$. Thus h must be periodic on $\bigcup B_i=E^2$. But a periodic orientation preserving homeomorphism on E^2 is a conjugate of a rotation on E^2 [8, 2, 14]. Thus h is a conjugate of a rotation.

Case (ii). h is orientation reversing. Since B_i is invariant, $h|B_i$ is a.p. on B_i and orientation reversing, and hence a conjugate of a reflection [3]. Thus the fixed point set of $h|B_i$ is a "diameter" of B_i , and every other point of B_i has order 2 (its orbit consists of 2 points). Thus $h|B_i$ is of order 2, also. By induction $\{h|B_1, h|B_2, h|B_3, \dots, h|B_i\}$ are each of order 2. For any j > i, the order of $h|B_i$ eorder of $h|B_i$, by the same argument. Thus h is of period 2 on $\bigcup B_i = E^2$, and also is orientation reversing. It follows that h is a conjugate of a reflection [8, 2].

REMARK. It is clear that we have also proved that if h is an almost periodic homeomorphism of S^2 onto itself which is orientation preserving, and therefore keeps at least one point fixed [1, pg. 237],

then h is a conjugate of a rotation. How are arbitrary almost periodic homeomorphisms of S^2 onto itself characterized? There are many nonconjugate fixed point free, almost periodic homeomorphisms of S^2 onto itself. For example, let f be a reflection of S^2 thru the equator, and let r be any rotation of S^2 thru the axis containing the north and south poles. Then rf is fixed point free, no two are conjugate, and each of these is almost periodic. (Note that if r is the 180° rotation, then rf is the antipodal map.) Are conjugates of these maps the only fixed point free homeomorphisms on S^2 ? Gerhard Ritter has just informed me that he will answer this question in the affirmative, in a forthcoming paper.

REFERENCES

- Lars V. Ahlfors, Complex Analysis, 2nd edition, 1966, McGraw-Hill Book Co., N.Y.
 Samuel Eilenberg, Sur les transformations périodiques de la surface de sphere, Fund. Math., 22 (1934), 28-41.
- 3. N. E. Foland, A characterization of the almost periodic homeomorphisms on the closed 2-cell, Proc. of Amer. Math. Soc., 16 (1965), 1031-1034.
- 4. W. H. Gottschalk, Minimal Sets: An introduction to topological dynamics, Bull. of Amer. Math. Soc., 64 (1958), 336-351.
- 5. Gottschalk and Hedlund, *Topological Dynamics*, American Mathematical Society Colloquium Publication, Vol. **36**, 1955.
- 6. Hall and Spencer, *Elementary Topology*, John Wiley and Sons, Inc., New York, London, 1955, 6th Printing 1964.
- 7. E. Hemmingsen, Plane continua admitting non-periodic autohomeomorphisms with equicontinuous iterates, Math. Scand., 2 (1954), 119-141.
- 8. B. v. Kerékjártó, Vorlesungen über Topologie, Verlag von Julius Springer, Berlin, 1923
- 9. B. v. Kerékjártó, Topologische Characterisierung der linearen Abbildungen, Acta Sci. Math. Szeged, 6 (1934), 235-262.
- 10. K. Kuratowski, *Topologie*, vol. I, Academic Press, New York and London, 1966. (Theorem 3, pg. 185).
- 11. R. L. Moore, Concerning the common boundary of two domains, Fund. Math., 6 (1924), 203-213.
- 12. E. van Kampen, The topological transformations of a simple closed curve into itself, American J. Math., 57 (1935), 142-152.
- 13. Deane Montgomery, Almost periodic transformation groups, TAMS, 42 (1937), 322-332.
- 14. A. P. Wu, Orientation Preserving Periodic Homeomorphisms on the Plane, Masters' Thesis, University of Fla., Aug. 1971.

Received September 20, 1974.

University of Florida