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ALMOST PERIODIC HOMEOMORPHISMS OF E?
ARE PERIODIC

BEVERLY L. BRECHNER

In this paper we show that every almost periodic homeo-
morphism of the plane onto itself must be periodic. This
improves well-known results.

1. Introduction. In[3]Folandshowed that every almost periodic
homeomorphism of a disk onto itself is topologically either a reflection
in a diameter or a rotation. Hemmingsen [7] studies homeomorphisms
on compact subsets of E? with equicontinuous families of iterates,
and shows that if such a compact set has an interior point of infinite
order, then the compact set is a disk or annulus. If it is a disk,
then the homeomorphism is a rotation or reflection. Kerékjarto [8,
pp. 224-226] showed that every periodic homeomorphism of a disk
onto itself is a conjugate of either a rotation or a reflection. It was
brought to my attention by S. Kinoshita that Kerékjirto in [9]
obtains a characterization of those homeomorphisms of S? onto itself
which are regular; that is, homeomorphisms 4 such that {A"},., forms
an equicontinuous family. It is known [4] that almost periodic homeo-
morphisms on compact metric spaces satisfy this property, so that
our theorem for E* would follow from the theorem for S®.

However, our proof of the main theorem uses Bing’s e-growth
technique [6] to obtain an invariant disk, and thus re-does a portion
of [2],[7], and [9] in a particularly nice way.

Montgomery began a study of almost periodic transformation
groups in [13], with the main results for E®. One very nice theorem
states that if G is a one-parameter almost periodic transformation
group (a.p.t.g.) of E® whose minimal closed invariant sets are one-
dimensional, and whose orbits are uniformly bounded, then G is the
identity. Our theorem may be regarded as something of an analogue
to this theorem for E®. That is, our theorem shows that if G =
{h"},cr 18 an a.p.t.g. of E? h +# e, then the orbits are not uniformly
bounded.

2. Preliminaries. The definitions used here of the following
are as in [4] and [6]: Relatively dense subsets of the integers;
homeomorphisms almost periodic at a point, pointwise almost periodic
(p.a.p.), and almost periodic (a.p.) on the space; invariant set; and
minimal set are defined in [4]. Property S, e-growth, and e-sequential
growth are defined in [6]. The orbit of x in the space X is the set
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{h"(x)!m e I}, and is denoted by 0(x).

We will use the following known results.

ProrosiTiON 2.1. [6, pg. 212]. Let K be a subset of a metric
space X. If K has property S, then K is locally connected.

ProposiTioN 2.2. [6, pg. 215]. If K 1is a subset of a metric
space X and K has property S, then K has property S. Thus, if
K has property S, then K is locally connected.

ProposiTION 2.3. [6, pg. 216]. Let X be a metric space with
property S, H and K subsets of X, and ¢ > 0. If K is an &-sequential
growth of H, then K has property S and is open in X.

Note. The double arrow in f: A - B denotes an onto function.

3. Obtaining invariant disks. In this section we use the concept
of an e-sequential growth to enable us to obtain E* as the union of
an increasing tower of invariant disks for any a.p. homeomorphism
of the plane onto itself.

LEmmMA 3.1. Let X be a compact metric space and let {f,} be
an equicontinuous collection of functions on X. Then for each &>
0, there is @ 6 > 0 such that diam (f,(6-set)) < ¢, for all nel.

Proof. Let ¢ > 0. For each ze X, there exists ¥ > 0 such that
diam (f,(v-nbd of z)) < e for all nel, since {f,} is equicontinuous.
Choose such a neighborhood for each x< X. This forms a cover of
X and therefore some finite subcollection covers X. Let d be a
Lebesgue number for this subcover. Then diam (f,(6-set)) < & for
all nel.

LEMMA 8.2. Let h be a homeomorphism of S* onto itself such
that h(p) = p where p is the north pole of S?, and let X be a locally
connected continuum in S?, containing p, such that h(X) = X. Let
e = diam 8%, and by wuniform continuity of h, let 0 >0 such that
diam (h(d-set)) < /2. Then if diam X < o0 and U is the component
of S* — X containing the south pole, we have h(U) = U.

Proof. We first show that each component of S*— X must go
onto some component of S* — X. Let V be a component of S* — X,
and suppose there exist points x and y € V such that h(x) e W, h(y) €
W,, where W, = W, are components of S? — X. Let A be an arc
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from z to y in V. Since A misses X, and #(X) = X, h(A) misses X.
But h(A) is connected and contains points of different components of
S? — X, and therefore must contain a point of X. This is a contra-
diction. Therefore A(V) is a subset of a component of S* — X. The
same argument applied to 2™, shows h~* (componet) & some component
of S§* — X, so that (V) is a component of S® — X. We next show
that h(U) = U. Suppose h(U) = U. Then there is a component W(== U)
of §* — X, such that A(W) =U. Now diam W < 4, and therefore
diam #(W) < ¢/2. Therefore h(W) = U. This is a contradiction. Thus
r(U) =

LEMMA 3.3. Let h be an almost periodic homeomorphism of E*
onto E* and let @: E*— S* be the inverse of the stereographic pro-

jection. Let p be the morth pole of S®. Let g: S?—> S* be defined by
9(x) = <Ph<P“1(x) for xeS* — {p}

 for m=p Then g 1s an a.p. homeomorphism
of S* onto Se.

Proof. Let ¢ > 0. We must show that there exists a relatively
dense subset A of I such that d(x, g"(x)) < ¢ for all xe S* and all
neA. Now we know there exists a relatively dense subset A of [
such that d(x, h"(x)) < ¢ for all xc E* and all ne A. Also, it follows
from pg. 20 of [1] that # has the property that d(y, ¥') = d(®®¥), #(¥"))
for all y, ¥’ € E*. Now since d(y, h"(y)) < ¢ for all ye E*and all ne
A, d(p™'(x), h"p(x)) < e for all x = pe S% all ne A. Thus d(ep™'(x),
oh*p~'(x)) < ¢ and d(x, ph e~ (x)) < ¢ for all xeS? all ncA. It
follows that d(x, g(x)) < ¢ for all xe S?, all ne 4, and ¢ is a.p.

THEOREM 3.1. Let h be an a.p. homeomorphism on S* such that
h keeps the morth pole p fixed. Then for each 1 > 0, there exists
an N-disk E which is invariant under h (in fact h(E) = E), and
contains p in its interior.

Proof. Let 7 be the diameter of S®. Then there exists 0 >0
such that diam (h(d-set)) < 7/2, by uniform continuity of 2. Let 0 <
e < min{n, 4,7}, and let {¢} be a decreasing sequence of positive
numbers such that 3¢, < ¢ < 7. We will obtain E as an ¢-sequential
growth of the set {p}.

Let D, = {p}. The set {h"},.; is equicontinuous [4, pg. 341], and
& > 0. Thus by Lemma 3.1, there exists 6, > 0 such that diam (h"(9-
set)) < ¢, for all nel. Let %, = {U,) be a cover of D, by an open
connected set of S®such that #(%,) < min{d,, ¢,}. Let D,= U,: (V1)
and note that D, is invariant. We show that D, is an ¢-growth of
D,. We must show parts (i) and (ii) of the definition of e-growth.
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Proof of (i). If xe D, — D,, then there exists an integer n such
that x € k*(U,). But h*(U,,) is connected and diam (h*(U,;)) < &,. Also,
h"(U,) contains p and so meets D,.

Proof of (ii). U, is an open set containing the compact set D,.
S? — U, is compact, and disjoint from D, which is compact. Thus
d(D,, S8* —U,)) = 2a, for some a, > 0, and it follows that the a,-nbd. of
D, is a subset of D,. Thus (i) and (ii) hold and D, is an ¢-growth of D,.

We now wish to obtain an ¢,-growth of D,. We note that since
D, is invariant, so is D,. Now for &, > 0, there exists d, > 0 such
that diam (h"(d,-set)) < ¢, for all ». Again this is possible by Lemma
8.1. Let %y U,,, Usy, - -+, Uy, be a finite cover of D, by open con-
nected subsets of S* of diameter < min {d,, ¢,} and let

ko
D=y (U 0)
Then D, is invariant.

We show that D, is an e,-growth of D,. We prove parts (i) and
(ii) of the definitions of e-growth.

Proof of (1). Let xe D, — D,., Then zeh™(U,; for some pair
n, . But A"(U,,) is connected, meets D,, and has diameter < &,.

Proof of (ii). D, and S* — U,.; h"(U:%U,,) are disjoint compact
subsets of S? and thus are a positive distance apart, say 2a,. Then
the a,-nbd. of D,, and therefore the a,-nbd. of D,, is a subset of D,.

Thus (i) and (ii) hold, and D, is an &,-growth of D,.

It is clear that we may continue the process inductively, obtaining
at the ith stage, a connected open set D, which is an ¢,_,-growth of
D, ,. Let E' =2 D;.. Then by Proposition 2.3, E' is open and
has property S. Thus £’ is a locally connected continuum, by Pro-
position 2.2. Further E’ is invariant. We show that £’ has no cut
points. Note that E’ has no cut points since it is open (and connected).
Thus any cut point of E’ would be in E' — E’, so that there would
exist a component of E’ containing points of E’ — E' only. But
these are all limit points of E’. This is a contradiction, and it follows
that £’ has no cut points.

Thus E’ is a locally connected continuum with no cut points, and
from Theorem 9 of [11] it follows that the boundary of each of its
complementary domains is a simple closed curve. Now one of its
complementary domains, say F, contains the open southern hemisphere,
and therefore has diameter > v, while each of the other comple-
mentary domains has diameter less than e, since diam £’ < e. Thus
by Lemma 8.2, F is invariant, and h(F) =F. Let E=S8*— F.
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Then diam E < ¢, h(E) = E, and E is a disk, by the Jordan-Schoenflies
theorem [6, pg. 257], since it’s a continuum not separating S® and
has a simple closed curve as its boundary. Clearly E contains » in
its interior. Then F is the desired 2-cell.

COROLLARY 3.1.1. Let h be an a.p. homeomorphism of E* onto
itself. Then E* is the union of an increasing sequence of disks
{B;}, such that

(1) B1;Bg;BngggB3;"';B;z;Bn;"' and

(2) n(B,) = B, for all n.

Proof. Let {¢;} be a decreasing sequence of positive numbers.
By Theorem 3.1, there exist disks K; on S* such that (1) diam K <
&, (2) M(K?) = K and (3) K| contains p, the north pole of S®. Let
K, = K}, K, = first K} such that K; < (K)', K; = first K; such that
K; & (K))’, ete. Let @: S?— E? be the stereographic projection. Then
{B;} = {®(K,)} is the desired sequence.

4. The main theorem. In this section we prove the main
theorem of this paper.

LemMMA 4.1. Let B, and B, be 2-cells in E* such that B, & B;.
Let h be a homeomorphism of B, onto itself such that

(1) h'(B1 = B,

(2) h =@ 're for some rotation r on the disk D, with center
at the origin and radius 2, where @: B, D, is a homeomorphism,
and

(3) ®(BdB) ts a circle centered at the origin. Then there
exists a homeomorphism g:. B, > D, such that

(1) 9(Bd B,) is the unit circle, and

(2) h=g'rg.

Proof. We first make a definition. We call a homeomorphism
f:D,» D, radial iff f takes each radius onto itself, and is such
that circles centered at the origin go onto circles centered -at the
origin.

Now let ¥: D, D, be a radial homeomorphism of D, onto itself
such that ¥'(¢(Bd B,)) is the unit circle. Then ¥® is a homeomorphism
of B, onto D, such that ¥o(Bd B,) is the unit circle. Further, for
any rotation r, since ¥ ¥ =7, 7 'rp = @7 (U )P = "W 4 ¥p =
Tp)'r(Tp). Thus we let g = ¥p and g is the desired homeomorphism.

LemMmA 4.2. Let B, and B, be 2-cells in E* such that B, S B;.
Let h: B, > B, be a homeomorphism such that
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(1) W(B) =B,

(2) there exists a homeomorphism @,: B, - unit disk such that
h|B, = @7'r.p,, for some rotation r: E*-> E? and

(8) there exists a homeomorphism P, B, > D,, where D, is the
disk of radius 2 about the origin, such that

(@) h = p7'r.p,, for some rotation r, of E* onto itself, and

(b) ®.(Bd B) = unit circle.

Then there exists a homeomorphism g: B, » D, such that

( 1 ) g ! Bl = Py

(2) 9(Bd B,)) = unit circle, and

(3) h=g"'rg.

Proof. Let the annulus between Bd D, and Bd D, be decomposed
into the continuous collection . of arcs which are the intersections
of the radii of D, with the annulus. Note that @,p;": D, > D, is a
homeomorphism that takes @,(x) to @,(x) for each xc B,. We extend
@97 to a homeomorphism ¥: D, » D, by taking each element Ae
7 with endpoint ®@,(x) € Bd D, to the element A’'e .o with endpoint
@(x) in Bd D, in such a way that distance along the segments A and
A’ are preserved. Thus ¥ is a homeomorphism of D, onto itself
such that ¥'|D, = ¢,9;".

Now let g = ¥p,. We show that ¢ is the required homeomorphism.
Since ¥ = ;" on D, ¥p, = (P.@,)P, = @, on B, 80 ¢ is an extension
of @,. Also g(Bd B) = unit circle. It remains to show that i =
g 'r.,g on B, — B,.

It is sufficient to show that », =, on Bd D,. Now o 'r@, =
@;'ry@, on Bd B, so r, = (p,@7") " 'r(®.®7") is a conjugate of a rotation.
But it follows from [12] that the rotations are characterized by
numbers in 1 — 1 correspondence with 0 < ¢ < 1, and any conjugate
S'rf of a rotation is characterized (even though not necessarily a
rotation) by the same number as the number for the rotation r.
Thus the characterizing number for a conjugate of r, is the same
as for .. It follows that », =7,, and h = ¢~'r,g on B,.

THEOREM 4.1. Let h be an almost periodic homeomorphism of
E*® onto itself. Then h is periodic.

Proof. Let {B;} be an increasing tower of 2-cells of E? such that
B CBCBCBiCB,C.--CBCB,Z -+, UB, = E* and h(B;) =
B,. This sequence exists by Corollary 3.1.1.

Case (). h 1is orientation preserving. Sinece B, is invariant,
h|B; is a.p. on B; and orientation preserving, and therefore is a
conjugate of a rotation on the 2-cell D, centered at the origin and
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of radius 7. (This follows from [3].) That is, there exists a rotation
72 D; > D; and a homeomorphism @,: B, - D, such that k| B, = ¢;'r,®;.

We will show that each 7, must be rational. Suppose by way
of contradiction that #; is an irrational rotation, for some 4 (the first
such 7). Then since r;, = @,(h|B;)®:* and B,_, is invariant, @,(B;_)
is invariant under »; and in fact Bd (®;(B,_,) is invariant under r,.
Let  be any point in Bd (@4(B;_,)). Since r; is an invariant rotation
0(x) under », will contain the circle C, of radius |2|. Thus C, <
?,(Bd (B;_))). But #,(Bd (B,_,) is a simple closed curve, and it follows
that C, = ¢,(Bd (B;-)). By Lemma 4.1, we may assume that @,(B;_,) =
radius (i — 1) disk, and by Lemma 4.2, we may assume that @;|B;_, =
®,_,, (that is @, is an extension of @, ,) and further that », =r,_,.
Thus since r; is the first irrational rotation, 7+ = 1.

Clearly this process may be continued inductively, obtaining 7, =
r,_,, for all 7. But then A would be the conjugate of an irrational
rotation on E?. However, such a rotation is not a.p. since d(z,
h*(x))— « as & — o (for fixed »). This is a contradiction. It follows
that each r; is a rational rotation.

Now since each 7, is a rational rotation, it is of finite order, say
n;. But since h|B; is a conjugate of a periodic homeomorphism of
order n, on the disk D,, each point of B; (except the “center”) has
the same order, namely %,. Thus each point of B,_, has order =,
under h|B; and therefore under h|B;_,. We may backtrack induc-
tively until ¢ = 2, so that each of {k|B,, &|B,, ---, h|B;} makes each
point of B, (except the “center”) a point of order =, that is, the
orbit consists of 7, points. It follows that for any j > 4, the points
of B; must all have order n; and therefore n; = n,. Thus & must be
periodic on U B; = E*. But a periodic orientation preserving homeo-
morphism on E* is a conjugate of a rotation on E* [8, 2,14]. Thus
h is a conjugate of a rotation.

Case (ii). h is orientation reversing. Since B, is invariant,
h|B; is a.p. on B, and orientation reversing, and hence a conjugate
of a reflection [3]. Thus the fixed point set of h|B, is a “diameter”
of B;, and every other point of B; has order 2 (its orbit consists of
2 points). Thus %k|B; is of order 2, also. By induction {k|B, h|B,,
h|Bs, -+, h|B;} are each of order 2. For any j > ¢, the order of
h|B; = order of h|B;, by the same argument. Thus %4 is of period
2 on U B, = E? and also is orientation reversing. It follows that
h is a conjugate of a reflection [8, 2].

REMARK. It is clear that we have also proved that if & is an
almost periodic homeomorphism of S? onto itself which is orientation
preserving, and therefore keeps at least one point fixed [1, pg. 237],
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then % is a conjugate of a rotation. How are arbitrary almost
periodic homeomorphisms of S* onto itself characterized? There are
many nonconjugate fixed point free, almost periodic homeomorphisms
of S? onto itself. For example, let f be a reflection of S* thru the
equator, and let » be any rotation of S? thru the axis containing
the north and south poles. Then »f is fixed point free, no two are
conjugate, and each of these is almost periodic. (Note that if » is
the 180° rotation, then rf is the antipodal map.) Are conjugates
of these maps the only fixed point free homeomorphisms on S??
Gerhard Ritter has just informed me that he will answer this
question in the affirmative, in a forthcoming paper.
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