PACIFIC JOURNAL OF MATHEMATICS
Vol. 60, No. 1, 1975

THE B8 TOPOLOGY FOR W*-ALGEBRAS
J. N. HENrRY AND D. C. TAYLOR*

Let A be a W*.algebra and A. its unique predual. A new
locally convex topology B is developed for the study of the
algebra A. It is shown that if A is a type I W*-algebra, that is
either countably decomposable, commutative, or a factor, then 3
is the Mackey topology for the dual pair (A, A.). Consequently,
when A = L"(X, u), where X is completely regular and p is a
compact regular Borel measure on X, A$=L'(X,u) and B
convergence on uniformly bounded sets is equivalent to con-
vergence in measure.

Let X be a locally compact Hausdorff space, BX the Stone-Cech
compactification of X, and C(BX) the collection of all complex-valued
continuous functions on BX. In 1958, R. C. Buck [2] introduced a new
locally convex topology for C(BX) that gave new insight into the
intricate structure of C(BX). This locally convex topology for C(8X),
which Buck called the strict topology, is the topology generated by the
seminorms {A;};ecix), Where A;(g) =||fg|.. Here, C,(X) denotes those
functions in C(BX) that vanish on BX\X. Although Buck’s approach
is very useful in the study of C(BX), X locally compact, it does not lend
itself to the study of C(BX), X completely regular, since Cyo(X) may be
the {0} subspace in this setting. In [18], F. D. Sentilles was able to
overcome this possibility by introducing a new topology which, in the
locally compact setting, reduces to the strict topology. Sentilles’
topology, B, is defined as follows: for each Q C BX\X, let B, be the
strict topology on C(B8X) determined by Co(BX\Q). Then B is defined
as the inductive limit of the topologies B, as Q ranges over all compact
subsets of BX\X [18]. Note that B is determined by the collection of
open sets V, BX D V D X, whose Stone-Cech compactification is X
and is therefore not a unique topology, since it depends on the
underlying subspace X. Using this topology, substantial progress has
been made in the study of C(BX), X completely regular, by Sentilles,
Wheeler and others (see [8], [18], [24], [25]).

The purpose of this paper is to define and study a noncommutative
analogue of the topology introduced by Sentilles. Noncommutative
versions of Buck’s topology already exist in a Banach module setting
[19] and in the C*-algebra of double centralizers M(B) of the C*-
algebra B [3], [20], [22]. In the double centralizer setting, B is viewed
as a closed two-sided ideal in M (B), and the strict topology for M(B) is
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generated by the seminorms {A, p, }scs, Where A, (x) = || bx || and p, (x) =
|xb || for x € M(B). This topology has been very useful in the study of
the C*-algebra M(B). In general it would be desirable to use this
approach to study C*-algebras A with identity, that is, develop a
locally convex topology for A with the essential properties of the strict
topology. It would be natural to try to find a closed two-sided ideal
JCA such that M(J)= A, but this in general is difficult to
do. Consequently, we find it necessary to place additional restrictions
on our C*-algebra. Namely, we will require A to be a W#*-
algebra. Here we view a W*-algebra as a C*-algebra which is the
dual of a unique Banach space A.[14]. Ina W*-algebra A, it is known
that a closed two-sided ideal J C A has the property that M(J) = A if
and only if J is essential, that is, J°={x € A: xJ ={0}} = {0} (see
[22]). Since it is probable that more than one ideal with this property
exists, it seems natural to apply Sentilles’ method to our
setting. Consequently, we define the 8 topology for a W*-algebra A
as follows: for each essential closed two-sided ideal J C A, we define
the strict topology B, for A to be the locally convex topology generated
by the seminorms {A,p.}.e; as in the double centralizer setting
above. We then define the B topology to be the inductive limit of the B,
topologies [13]. The algebra A under the 3 topology will be denoted
by Az If A is topologically simple, then the 8 topology is the norm
topology, since A is the only ideal J C A such that M(J) = A. Note
that our B topology is space free and unique while Sentilles’ topology is
generated by a subclass of these ideals and, consequently, in Sentilles’
setting our topology is a weaker topology than his B topology. The
main question that we consider in this paper is the following: for a
countably decomposable W*-algebra (for example, A. separable), what
are necessary and sufficient conditions for the dual of A denoted Az*,
to be A.? We show that a sufficient condition is for A to be a type I
W*-algebra and we have evidence to suggest it is a necessary condition
as well. When A;* is A., then B is the Mackey topology 7(A, A.) as
studied by Sakai [14], Akemann [1] and others. In the special case
when A is L*(Q, p), B is the mixed topology of Dazord and Jourlin [4].

In §2 we discuss hyper-Stonean spaces as related to a W*-algebra
and §3 is devoted to the study of essential ideals. The general study of
the B topology is presented in §4 with our main results appearing in
§5. The reader is referred to [5], [6], and [14] for definitions and basic
concepts of C*-algebras and W *-algebras.

2. Hyper-Stonean topological spaces. Let () be a com-
pact Hausdorff space and C({}) the space of all complex-valued
continuous functions on ). The space  is called Stonean if the
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closure of every open set is open, or equivalently, C({) is a condition-
ally complete lattice [9, 3N. 6, p. 52]. Now suppose (1 is Stonean. A
finite positive regular Borel measure u on (Q is said to be normal if it
satisfies the following property: if {f, } is a uniformly bounded increasing
directed set of positive functions in C(£), then lLu.b. [of,.du = o l.u.b.
f.du. A finite complex regular Borel measure is called normal if it is a
linear combination of positive normal measures. We denote by M(Q))
the finite complex regular Borel measures on () and by N({Q) the closed
subspace of normal measures. The Stonean space (2 is said to be
hyper-Stonean if the union of the supports of the positive normal
measures is dense in (), or equivalently, C(Q)) is a W*-algebra [14, p.
46].

Throughout this section we shall assume that () is a hyper-Stonean
space. The restlts in this section are due to Dixmier [7] and we include

“them here for completeness.

2.1. ProrosiTioN. Let {f.} be an increasing net of continuous
functions in C () which is bounded above. If f is the lattice supremum
and f' the upper envelope (f'(x) = sup, f,(x), x EQ), then f and f' differ
on a set of first category.

Proof. For the proof, see [7, p. 154].

2.2. PROPOSITION. In order that the measure u in M () be normal
it is necessary and sufficient that u(A) =0 for all nowhere dense Borel
subsets A of Q.

Proof. For a proof, see [7, Proposition 1, p. 157].

2.3. PROPOSITION. Let u be a positive normal measure on ) and f
a pu-measurable complex-valued function. Then there exists a continu-
ous function f' on Q such that f = f' almost everywhere.

Proof. For a proof, see [7, Proposition 2, p. 157].

2.4, COROLLARY. If the support of u is , then C(Q) is *-
isomorphic to L=(Q, w).

We note that by [14, 1.2.6, p. 5] every *-isomorphism of C*-
algebras is an isometry.

2.5. PROPOSITION. Let u be a positive normal measure on ) and
A a pu-measurable subset of (). Then A coincides, except on a set of
w-measure zero, with the closure A, with the interior A', with the closure
of A', and with the interior of A.



126 J. N. HENRY AND D. C. TAYLOR

Proof. For a proof, see [7, Corollary, p. 158].
2.6. CoroLLARY. The support of u is both open and closed.

2.7. CorOLLARY. If the support of w is Q and A is a p-
measurable set such that u(A) =0, then A is nowhere dense.

A measure space (I', v) is said to be localizable if there exists a
family {(T,, v.)} of finite measure spaces such that I'= UT,, v = ZPv,,
and the family {I',} is pairwise disjoint. Note that L~(T,v)=
ZPBL*(I',,v,). The measure space (I',v) is called W*-localizable if
each T, is a hyper-Stonean space and v, is a positive normal measure on
I', with support I.,.

2.8. PROPOSITION. Let Z be a commutative W *-algebra. Then Z
is *-isomorphic to some L=(T,v), where (I',v) is a W*-localizable
measure space. Moreover, the Stone-Cech compactification of T is the
spectrum of Z.

Proof. Since Z is *-isomorphic to C(2), ) hyper-Stonean, the
result follows from the proof of [7, Theorem 1, p. 169].

3. Essential ideals in W *-algebras. Let A be a W*-
algebra and J a closed two-sided ideal of A. The ideal J is called
essential if J°={x € A: xJ ={0}} ={0}. The essential ideals of A will
be denoted by &,, or € is A is understood. We do not assume J is
proper.

A double centralizer of the ideal J is an ordered pair (S, T) of
functions from J to J such that xS(y) = T(x)y for all x,y in J. In [3]
Busby shows S and T are bounded linear maps with || S || =| T| and the
space of all double centralizers of J, denoted by M(J), is a C*-algebra
under the natural algebraic operations and norm ||(S, T)||=||S|. There
is a natural embedding of A into M(J), namely, the map x —(L,,R,)
where L,(y)=xy and R,(y) = yx for all y €J. Our next result con-
nects double centralizer algebras and essential ideals. For basic con-
cepts and definitions of double centralizers, we refer the reader to [3],
[20] and [22].

3.1. LeEMMA. LetJ be a closed two-sided ideal of the W *-algebra
A. Then the map x —(L,R,) is a *-homomorphism of A onto
M(J). Moreover, the map is a *-isomorphism if and only if J is
essential.
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Proof. Let A, be the W*-subalgebra of A generated by J. Itis
easy to show that J is essential in A. The conclusion follows from [22,
Theorem 2.1 and Corollary 2.2, p. 478].

3.2. PropoSITION. Let A be a W*-algebra and I, J and K closed
two-sided ideals of A. The following statements are true:

(1) IfJCKand J€ ¥, then K € €.

Q) IfLJEE, then I +J € €.

(B) IfLJE% then INJ €.

Proof. The proof of (1) is trivial. It is well-known that I +J is a
closed two-sided ideal, so (2) follows immediately from (1). It is
straightforward to show, by utilizing 3.1, that || x | = sup{||xy ||: y €I N J,
[ylI=1}, since I and J are essential. Thus the map of 3.1 is an
isometry and (3) follows.

The next result shows that W*-algebras in general have an ample
supply of essential ideals.

3.3. ProprosITION. Let A be a W*-algebra. Then A can be
written as follows: A =Z,c,DA,, where each W*-algebra A, is either
topologically simple or each maximal two-sided ideal of A, is essential
with respect to A,.

Proof. Let F be the family of all sets {P,} of central projections
with the following properties: (1) P,P; =0 for a#B; (2) P.A is
topologically simple. It is easy to see, by using Zorn’s lemma, that
there is a maximal such family {P,}. Let A, = P,A and P =3P, Itis
straightforward to verify that A = (ZPA.)PH(1 - P)A. Now suppose
J is a maximal ideal of (1 — P)A that is not essential. It follows that J°
is a nonzero topologically simple two-sided ideal of (1— P)A which is
closed in the o (A, A.) topology. Therefore, there is a central projec-
tion Q such that QA = J[14, 1.10.5, p. 25]. But this contradicts the
fact that {P,} was maximal. Hence our proof is complete.

It is well known that a factor contains a smallest nonzero, not
necessarily proper, closed two-sided ideal [26, Remark 3, p. 61]. We
will use this fact in the following proposition.

3.4. PrOPOSITION. Suppose that the W#*-algebra A is a
factor. Then every nonzero closed two-sided ideal of A is essential.

Proof. Let J be the smallest nonzero closed two-sided ideal of
A. By virtue of 3.2, we need only show J is essential. If J°# {0}, then
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JCJ° But this is clearly a contradiction. Hence J°={0} and our
proof is complete.

Let (Q, u) be a localizable measure space and A a W *-algebra with
separable predual A.. We let L*(Q), u, A) denote the Banach space of
all A-valued essentially bounded weakly* u-locally measurable func-
tions on () (see [11, 3.5, p. 72]). In [14, 1.22.13, p. 68], Sakai shows
L*(Q,u,A) is a W*-algebra under pointwise multiplication and its
predual is L'(Q,u,A-), where L'(Q), u, A.) is the Banach space of all
A.-valued Bochner wu-integrable functions on . The next lemma
connects W*-tensor products with the space L*(Q,u,A). For basic
definitions and concepts of tensor products of C*-algebras, we refer the
reader to [14, 1.22, pp. 58-70]. For the definition of the s(A, A.) and
s*(A, A.) topologies see, [14, p. 20].

3.5. LEMMA. Let Z be a commutative W*-algebra and A a
W*.algebra with separable predual. Then ZXA is *-isomorphic to
e PL(Qyy oy A), where each (), is hyper-Stonean and ., is a
positive normal measure with support (..

Proof. The proof follows immediately from 2.8 and [14, 1.22.13, p.
68].

3.6. LeEmMMA. Let Zbe a commutative W*-algebra and A a factor
with A. separable. If J is a closed two-sided ideal of ZQA such that
JN(ZR.,A)={0}, then J ={0}.

Proof. By virtue of 3.5 we may assume Z&QA =L*(Q,u,A),
where ) is hyper-Stonean and u is a positive normal measure with
support (). Moreover, by virtue of 2.4 and [14, 1.22.3, p. 61], we may
assume ZX),, A = C({), A), where C(Q), A) is viewed as a subalgebra of
L=, n, A) in the natural way. Note that it follows from 2.4 that the
center of L*(Q,u,A) is C()) -1, where 1 denotes the identity of A.

First, suppose A is finite. Then, by [14, 2.6.1, p. 98], L*(Q, u, A) is
finite. The conclusion follows directly from Corollary 1 of Proposition
2 in [5, p. 256].

Next, suppose A is semi-finite. By [14, p. 157] there exists an
increasing net of projections {e,} which are finite and such that sup
e,=1. Set A, =L"(Q,u,e,Ae,). Then A, is a W*-subalgebra of
L*(Q,u,A). SupposeJ is aclosed two-sided ideal of L *({2, «, A) such
that JNC(Q,A)={0}. Then JNC(Q,e,Ae,)={0} and therefore
J N A, ={0}, since e.Ae, is a finite factor and the above applies. Now
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let x €J* and set E,(t) =e, forallt €. Itfollowsthat ExE, €J*N
A, and consequently E,xE, =0. Since {E,} converges to the identity
of L*(Q, n,A)inthe s(L*(Q, u, A), L'(Q, u, Av)) topology [14, 1.13.4, p.
30] and multiplication is jointly s(L (), u, A), L'(Q), u, A.)) continuous
on uniformly bounded spheres [14, 1.8.12, p. 21], it follows that E,xE,,
convergestox. Hence x =0. Since x was chosen arbitrarily, J = {0}.

Finally, suppose A is purely infinite. Since A. is separable, A is
countably decomposable [14, 2.1.9, p. 80]. Moreover, since the support
of w is Q, it follows from [7, Proposition 7, p. 161] that C(Q) is
countably decomposable. Hence L*(Q),u,A) is a countably decom-
posable type III (purely infinite) W*-algebra [14, 2.6.6, p. 101]. Now,
if J is a closed two-sided ideal of L*(QQ, u, A) such that JNC(Q,A) =
{0}, then it follows directly from [14, 4.1.5, p. 155] that J = {0}.

Since A must be either finite, semi-finite or purely infinite, our
proof is complete.

3.7. CorOLLARY. Let Q be a hyper-Stonean space, u a positive
normal measure with support Q, and A a factor with separable predual
A.. If J is a closed two-sided ideal of L*(Q,u,A) such that JN
C(Q,A)={0}, then J ={0}.

3.8. THEOREM. Let Z be a commutative W*-algebra and A a
factor with separable predual A.. If J is an essential ideal of ZQA,
then J N(Z&R).,A) is an essential ideal of ZRX..A.

Proof. Just as in 3.6, we may assume Z®A = L*(Q, u, A), where
Q is hyper-Stonean and w is a positive normal measure with support
Q. Moreover, we may assume Z&.,A = C({2, A). Now suppose J is
an essential ideal of L*(Q,u,A) such that J,=C(Q,A)NJ is not
essential in C(Q2, A).

First, we will show that there exists an open and closed subset G of
Q such that x(t) =0 foreach x €J,and t € G. Since J? # {0}, we may
choose a nonzero y € J]. Because t — | y(t)| is a continuous map, it is
clear that there is an open and closed set G for which | y(¢)[>0 for
each t € G. Now suppose there is a t, in G and an x in J, such that
x(ty) #0. Then K, ={x(t,): x € J,} is a nonzero closed two-sided ideal
of A and moreover, by 3.4, K, is essential in A. Since y€J},
y(to)x(ty) =0 for each x €J,. Thus, y(t,) =0 since K,, is essential in
A. But this is a contradiction because y(t,) #0. So, x(t) =0 for each
x€J,and t €G.

Due to the fact that J is essential in L*({2, u, A), it is straightfor-
ward to show that y.J is a nonzero ideal of L*({2,u, A). Thus, by 3.7,
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xeJ NC(Q,A)#{0}. It follows that there must be an x € J, for which
x(t)#0for some t € G. But this contradicts the defining properties of
G. Consequently, J, must be essential in C(Q, A) and our proof is
complete.

3.9. CoroLLARY. Let Q,u, and A be defined asin 3.7. IfJisan
essential ideal of L*(Q, u, A), then J N C(£), A) is an essential ideal of
C(Q,A).

3.10. ProposITION. Let Q,u, and A be defined as in 3.7. IfK s
an essential closed two-sided ideal in A, then L*(Q, u, K) is an essential
closed two-sided ideal of L"({), u, A).

Proof. Let J=L*Q,pu,K) and suppose J°#{0}. Since J°is a
closed two-sided ideal, there exists by 3.6 a nonzero x in J°N
C(Q,A). In particular, we have xy =0 for all y € C(Q,K). Since
C(Q, K) is essential in C(2, A) it follows that x = 0, contradicting that
x#0. Thus J is essential and our proof is complete.

Let H be a separable Hilbert space, B(H) the bounded linear
operators on H, B,(H) the compact operators, and T(H) the trace class
operators. It is well known that the dual of B«(H) is T(H) [14, 1.19.1,
p. 471 and that the predual of B(H) is T(H) [14, 1.15.3, p.
39]. Furthermore, T(H) is separable whenever H is separable [14,
2.1.10, p. 81]. These facts will be used in the following examples.

3.11. ExamprLeE. Let ) and u be defined as in 3.7 and H as
above. Then L*(Q), u. Bo(H)) isan essential ideal of L *((), u, B(H)).

3.12. ExamprLe. Let J be a closed two-sided ideal of
L*(Q, u, B(H)). Then J is essential if and only if there exists a closed
nowhere dense, possibly empty, subset E of (1 with the property that
for each x €J and € >0, there is an open neighborhood V of E such
that ||x | V| =e We will denote by J; the essential ideal consisting of
all those elements of L*(Q, u, B((H)) which satisfy this property. If
B(H) is the complex number system, this essential ideal of L~*(2, )
will be denoted by I.

4. The 3 topology. In this section, A will always denote a
W*-algebra and A. its predual. Let J be an essential ideal of
A. Recall that the B, topology for A is the locally convex topology
generated by the family of seminorms {A,, p,}.c;» Where A,(x) = ax ||
and p,(x) =||xa || for all x € A, and the B8 topology for A is the inductive
limit [13, p. 79] of all the B, topologies. As before, let €,, or € if A is
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understood, denote the family of all essential ideals of A. In this
section we study the algebra A under the 8 topology.

The proofs of 4.1 through 4.5 are by virtue of [20, Corollary 2.7, p.
638], simple adaptations of arguments given by Sentilles. Conseq-
uently, we do not include them, but rather refer the reader to [18, pp.
317-318] and [20, pp. 636-638].

4.1. THeEOREM. Let W be a convex, balanced and absorbing
subset of A. Then W is a B neighborhood of zero if and only if, for each
r>0 and J € ¥, there is a B, neighborhood of zero V, such that
Vin{x:[[x||=r}C W. Consequently, the strongest locally convex to-
pology for A that agrees with the B topology on uniformly bounded
subsets of A is the B topology.

4.2. CorOLLARY. The continuity of linear maps on A; is deter-
mined on the uniformly bounded subsets of A.

4.3. CoroLLARY. Let B be a locally convex space and T: A —> B
a linear or conjugate linear map. Then T is B continuous if and only if
T is B, continuous for each J € &.

4.4. CoroLLARY. The mappings x — ax, x — xa and x — x* are
B continuous for x, a € A.

4.5. ProprosITION. The following statements are true: (1) as sub-
sets of A*, A$= N,ceA%,; (2) if, for each J € €, B, is the Mackey
topology of the dual pair (A, A%,), then B is the Mackey topology of the
dual pair (A,A%).

Note that A. is a uniformly closed subspace of A *.
4.6. THEOREM. For the dual pair (A, A.), we have (A, A.) = E,
where 1(A, A.) denotes the Mackey topology of the dual pair (A, A.).

Proof. By virtue of [14, 1.16.7, p. 41], A can be viewed as a
weakly closed self-adjoint subalgebra of B(H), where H is some
Hilbert space with the property H ={T(h): TE A,h € H}. LetJ be
an essential ideal in A. By the Cohen-Hewitt factorization theorem
[10, Theorem 2.5, p. 1511, Hy={T(h): TEJ,h € H} is a closed sub-
space of H. Furthermore, since J is essential, H = H,. It follows that
the B, topology is stronger than the strong operator topology and
therefore stronger than the s(A, A.) topology on uniformly bounded
spheres [14, 1.15.2, p. 35]. Moreover, due to the fact that the map
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x —x* is B, continuous and multiplication is jointly 8, continuous on
uniformly bounded spheres, the B, topology is stronger than the
s*(A, A.) topology on uniformly bounded spheres. But, Akemann has
shown that on uniformly bounded spheres the (A, A.) and s*(A, A-)
topologies agree [1, Theorem I1.7, p. 292]. The conclusion now follows
from 4.1.

_4.7. CoroLLARY. The Banach space A. is equal to A% if and only
if B=1(AA).

4.8. COROLLARY. A set V C A is B bounded if and only if V is
uniformly bounded.

4.9. CorROLLARY. The unit ball of A is closed in the  topology.

4.10. ProrosITION. The following statements are equivalent
() €={A}

(2) B is normable

(3) B is metrizable

(4) B is bornological

(5) B is barrelled.

Proof. ltis clear that (1) implies (2), (2) implies (3), and (3) implies
(4). Assume (4) holds, that is, B is bornological. Then B is the
strongest locally convex topology on A with the same class of bounded
sets. Thus, by 48 B is the norm topology and therefore
barrelled. Now assume B is barrelled. It follows that the unit ball B,
of A is a B neighborhood of zero. Thus the norm and B, topologies
agree on A for all J€&. From [8, 3.2.4, p. 78] we have, for J € &,
A = M(J)=1J and our proof is complete.

4.11. ProPOSITION. Suppose {A.} is a family of W*-algebras
such that A =2%,.,PA.. Then A$=(Z,.B(A)D, (14, 1.1.5, p.
2]. Consequently, A% = A.if and only if (A,)% = (A,)- foreach a € .

Proof. Note that essential ideals of A of the form Z.c, B J. )o,
where J, is essential in A,, generate the B topology for A. By
(Zee-PJ.)o Wwe mean those {x,} in A such that x, €J, and a —||x, ||
vanishes at infinity. By using this fact together with 4.3 and 4.13, the
proof becomes straightforward.

4.12. PROPOSITION. Let f be a hermitian B continuous linear
functional onA. Then there exists a unique decomposition f = f,— f,,
where f, and f, are positive B continuous linear functionals such that

IFIE= A+



THE 8 TOPOLOGY FOR W*-ALGEBRAS 133

Proof. The proof follows directly from [6, 12.3.4, p. 245], [21,
Corollary 2.6, p. 164] and 4.3.

4.13. CorOLLARY. The space A% is the linear span of its positive
elements.

For fEA* and x,y € A we define the elements of A* x - f, f-x
and X'f'y by (x 'f)(a)Zf(ax)’ (f.x)(a)zf(Xa) and (x-f-y)(a)
= f(yax) for all a € A.

4.14. ProPOSITION. Suppose J is an essential ideal of A. Then
A% is the linear span of all linear functionals in A% of the form x - g - x,
where x € J* and g is a positive B continuous linear functional on A.

Proof. Letf&€ A%. Suppose {e,} is a positive approximate iden-
tity for J. Since f is also 8, continuous, it follows from [20, Corollary
2.2,p.635]thatlime, - f =limf-e, =f Due to the fact that A% is both
a left and right J-module, we see that f =a -h -b by virtue of [19,
Theorem 2.1, p. 142], where h € A%. By a variant of [19, Theorem 2.1,
p. 142] there exist elements x, y,z in J such that x =20 and a = xy and
b=2zx. Thus f=x-g-x, where g =y -h-z. The remainder of the
proof follows immediately from 4.13.

4.15. PROPOSITION. Suppose A is a factor and J is the smallest
closed two-sided ideal of A. Then A% = A%,

Proof. The proof is trivial.

4.16. PROPOSITION. Suppose A is a factor. Then A% = A.ifand
only if A is of type L

Proof. If A is a type I factor, then A = B(H) for some Hilbert
space H. For this case A.= T(H), the trace class operators, and
A%= A%, where J = B(H). But T(H)= By(H)*= A%, [20, Corollary
2.3, p. 635]. So, the first part of our proof is complete.

Now suppose A% = A.. By 4.15 and [20, Corollary 2.3, p. 635],
A¥=A% =J*=A.. So A;=A and by [23, Theorem 5.1, p. 533], A
is of type L

5. The main results. In this section, A will denote a
W*-algebra, A. its unique predual, €, the essential ideals of A, or & if
A is understood, and A % the dual of A under the 3 topology. We will
now state one of the main results of the section.
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TueoreM 1. If A is a countably decomposable type I W*-algebra,
then A%= A.. Consequently, the B topology is the Mackey topology of
the dual pair (A, A.).

Before we proceed with the proof of Theorem I, we will need the
following three lemmas.

5.1. LeEMMA. If A is a countably decomposable type I, W*-
algebra (n a cardinal number), then n =N,. Consequently, A is *-
isomorphic to 2,crPL“(Q,, w., B(H)), where Q. is hyper-Stonean, w, is
a finite positive normal measure with support (., and the dimension of
the Hilbert space H is n.

Proof. The proof follows from [14, 2.3.3, p. 89] and 3.5.

In the next two lemmas we will assume () is hyper-Stonean, u is a
finite positive normal measure with support (2, and H is a separable
Hilbert space.

5.2. LEMMA. Let B, be the set of all finitely-valued functions x in
C(Q,By(H))" with ||x||=1. Then U ,.«Cls(B,) is equal to D,, the set
of all x in L™(Q, u, B(H))* with ||x|=1. Here, Cl,,(B,) denotes the
closure of B, in the B, topology.

Proof. By 4.9, U ,..Cl,(B))CD,. Let x €D,. By (11, Corol-
lary 1 and Corollary 2, p. 73], there exists a sequence {x,};-, in D, of
countably-valued functions such that ||x, — x||—0. Thus, it suffices to
assume that x is countably-valued. Let {T;};-, be the values in B,(H)*
assumed by x. Then set E; ={t: x(t) = T;}. By virtue of 2.2, 2.5 and
2.7, we may assume x = 2, Txg, where E; NE; =, i#], and E; is
open and closed. Let E = U5_, E;\U7_,E; and suppose E# . Then
E is closed and, by 2.5 and 2.7, nowhere dense. Let J; be the ideal of
L*(Q), u, B(H)) defined in 3.12. We shall show that x, — x in the B,,
topology where x, =27, T; xe. Given z € J; and € > 0, there exists an
open set V. D E such that ||z(¢)|| < €/2||x || for almost all t € V.. Since
x is continuous on V., the complement of V., the functions t — ||x,(t) —
x(t)|| form a decreasing sequence of positive continuous functions that
converge pointwise to 0 on the compact set V.. Consequently, by
Dini’s Theorem there exists an integer N such that |x,(t)—x(t)[ <
€/|z| for all t €V, and n = N. 1t easily follows that ||zx, —zx || <€
and ||x,z —xz|[<e for n = N. Thus, x, = x in the 8,. topology. If
E =, then by Dini’s theorem x, — x uniformly on Q. Therefore
X € U,ee (g, (B)) and our proof is complete.

In the following lemma let A denote the W*-algebra
L*(Q, u, B(H)).
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53. LeMMA. If FE A% and x is a finitely valued function in
C(Q,By(H)), then x - F € A..

Proof. 1t is straightforward to verify, by utilizing the spectral
theorem for compact operators, 4.13, and 2.5, that we can make the
following assumptions: (1) x = P, where G is an open and closed
subset of ) and P is a one-dimensional projection on H; (2) F is
positive. First, we will show that x - F-x € A., or equivalently,
x - F-x isnormal [14, 1.13.2, p. 28]. Let{z,}be an increasing netin A*
with z =supz,. Since x - F - x(z,) = F(xz,x) and F is 8 continuous, it
will suffice to show xz,x — xzx in the B topology.

Let E C Q be a closed nowhere dense set, Iz the ideal of L“(Q, )
as defined in 3.12 and J; the corresponding ideal of L (2, u, B{(H)) (see
3.12). For y €J: we have

[ly@®)x(®)[z(t) = z.(D)]x ()]
= sup{]ly(®)x()[z(t) - z.(t)Ix(t)h||: h €H, |h|| =1}

= sup{|(h, ho){(z(t) — 2.(1))(ho), ho) | [y (t)(ho)||: h € H, ||k [ = 1}
= [{(z(t) = z. (1))(ho), ko) [y (D],

where P(ho) = h, and | ho||=1. By [11, Theorem 2.8.5, p. 34] and [11,
Theorem 3.5.2, p. 72], the map t — ||y (t)| is measurable and thus equal
to, almost everywhere, a continuous function that vanishes on
E. Therefore, it sufficies to find a closed nowhere dense set E for
which ¢, (t) =(z,(t) (ho), ho) converges to ¢ (t) =(z(t)(ho), ho) in the B,
topology, for then xz.x will converge to xzx in the B,. topology, and
hence, in the 8 topology.

Since xz,x — xzx in the o (A, A.) topology [14, 1.7.4, p. 15] and the
predual of L*(Q,u,B(H)) is L'(Q,u, T(H)), it is easy to show that
Jad.(t)du — fad(t)du. By virtue of 2.4 we can choose functions f,, f
in C(Q) such that f, = ¢, and f = ¢ almost everywhere. Note thatf, is
an increasing net with f = f,, so f = supf, =f'. Since w is a positive
normal measure, [of.du — [of'du. Hence, [o(f —f)du =0, or equi-
valently, f = f'. Now, let E be the closure of {t: f(t) >supf,(t)}. By
2.1,2.2,2.5and 2.7, E is nowhere dense. By virtue of Dini’s theorem,
it is straightforward to show that f, — f in the B,, topology for C({2) and
consequently xz,x — xzx in the B;, topology for L*(Q, u, B(H)). Thus
x-F-x€A.

Finally, we must show x:-F &€ A.. Suppose x,—0 for the
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s*(A,A.) topology where ||x,||=1. Then x*—0 for the s*(A,A.)
topology and by [14, 1.8.9, p. 20] and [14, 1.8.12, p. 21] it follows that
x*x, — 0 for the s(A, A.) topology. By utilizing the Schwartz inequal-
ity [14, p. 9], [14, 1.8.10, p. 21] and the above result for x - F - x it is easy
to show that (x - F) (x,)—0. Thus x - F € A. and our proof is com-

plete.

Proof of Theorem 1. By [14, 2.3.2, p. 89], A =2, A, where
each A, is a type I, W*-algebra. By virtue of 4.11 we may assume A
is of type I, and consequently by 5.1 and 4.11 we may assume
A = L*(Q, u, B(H)) where () is hyper-Stonean, w is a positive normal
measure with support ), and H is a separable Hilbert space.

Let FE€ L“(Q,u,B(H))% such that F=0. By 4.14 and 3.11 we
may assume F=x-G-x for some x € L™(Q,u, B(H))" and G a
positive B continuous linear functional on L~*(Q, u, B(H)). Clearly,
we may assume |[x||=1. By 5.2 there exists an essential ideal J in
L*(Q, u, B(H)) such that x € Cl,,(B;). Consequently, there exists a
net {x,} in B, that converges to x in the B, topology. By 4.14 we may
assume G =y -G, -y for some y €J* and G, a positive 8 continuous
linear functional on L~(Q,u,B(H)). Therefore x,:-G-x,—F
uniformly. Hence, by virtue of 5.3, F € A.. Since A% is the linear
span of its positive linear functionals, A% = A.. That 8 is the Mackey
topology of the dual pair (A, A.), is an immediate consequence of 4.7
and our proof is now complete.

For a type I W*-algebra, the condition of being countably decom-
posable is not necessary for Theorem I to hold. In fact, Theorem I
holds for A = B(H), H not separable (see 4.16), and for any commuta-
tive W*-algebra Z. Moreover, it is easy to see from our proof, that
Theorem I holds for ZQB(H) where H is a separable Hilbert
space. It is of interest to note that for the W*-algebra L~ = L*(X, v),
where X completely regular and v is a compact regular Borel measure
on X, we have 8 =7(L", L") where L'=L'(X,v). Thus, 8 is the
mixed topology considered by Dazord and Jourlin [4]. These results
lead us to the following two related questions.

5.4. Question. Suppose A is a type I W*-algebra that is not
countably decomposable. Must A% be equal to A.?

5.5. Question. Let A be a countably decomposable W*-algebra
such that A¥= A.. Must A be a type I W*-algebra? In other words,
does the converse of Theorem I hold?
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Our next result suggests that the converse of Theorem I may indeed
be true. We will now view A as a W*-algebra on a separable Hilbert
space.

THEOREM II. Let A = [fA(t)n(dt) be the direct integral decom-
position of A into factors [17, Corollary 10, p. 53]. Let B be a factor
and define A to be the set of all t €T for which A(t) is spatially
isomorphic to B. If A¥= A. and w(A)>0, then B must be a type I
factor.

Proof. By virtue of [17, Theorem 2, p. 228)], 4.11, and 3.5, we need
only consider the case A = L*({), u, B), where () is hyper-Stonean, u is
a positive normal measure with support €2, and ©(Q) =1. Now, let D
be the set of all elements in C (2, B) of the form X, x; xg., where x, € B
and {E.}i., are pairwise disjoint sets that are both open and
closed. Since D is a *-subalgebra of C({2, B) that separates points and
contains the identity, we have by [6, 11.5.3, p. 234] that D is uniformly
dense in C(£), B). Consequently, it follows from [14, 1.22.3, p. 61] and
[14, p. 67] that D is o(A, A+) dense in L*(}, u, B). Now, for f € (B%,)*
define f on D as follows: for x =3, xixg, set fx)=3u,
f(x)u(E;). We will now show that f is continuous on the unit ball of
D for the relative B, topology. By 4.1 and 4.3, it will suffice to show
that f is continuous on the unit ball of D in the relative B, topology for
each J € &,.

Let J be a closed two-sided essential ideal of A, I, the smallest
closed two-sided ideal of B, and € >0. Since f is 8z continuous on B,
there exists a b € I, such that |f(x)|=e€/2 whenever |bx|+|xb|=
1. NowsetJ;=JNC(,B). By3.9,J,isessential in C({}, B), so the
set E={t €Q: x(t) =0 for all x € J,} is a closed nowhere dense subset
of Q. Since u is normal, there exists an open and closed set G D E
such that 4 (G) < e€/2||f|. For each t, € G, the complement of G, the
set {x(t,): x € J,} contains I,. Therefore, it is straightforward to show
that there exists a subset V, of G and an element a, in J, that satisfy the
following:

(1) t,eV, and V, is both open and closed;

(2) |laft)—b|<1/8 for t € V, and ay(t) =0 otherwise. Since G
is compact and {V,},c¢ is an open cover, there exists a finite collection
{V.,}7_, that covers G. Due to the fact that each set V, is both open and
closed, we can construct an element a in J, such that |la(t)—b|/<1/4
forteGanda(t)=0,t €G. Now let x be an element of the unit ball
of D, where x ==}_, X; xz, and suppose |xa|+|ax|=1/2. We may
assume that, for some positive integer k, E,, E,, - - -, E, «are subsets of G
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and E,.,, - -, E, are subsets of G. Since ||x|=1 and |ax ||+|xa|=1/2,
itis easy to show that ||xb ||+ ||bx;||= 1 fori =k +1,---,n. Therefore

n

Nf@I=3 i@ E+ 3 fwE)

i=k+1

=|Iflln(G)+(€2)u(G)<el2+e/2=e.

Thus, f is B, continuous on the unit ball of D. Since A%, = A., the 3,
topology is the Mackey topology of the dual pair (A, A.). Consequently,
it follows from [14, 1.9.1, p. 22] and [14, 1.8.10, p. 21] that f can be
extended uniquely to a B, continuous positive linear functional on
A. Hence f € A. and this implies f € B.. But, by 4.16 this can only
happen when B is a type I factor and our proof is complete.
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