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ENDOMORPHISM RINGS OF SELF-GENERATORS

BlRGE ZlMMERMANN-HUISGEN

The group of i?-homomorphisms Horn* (ikf, A), where Λf, A
are modules over a ring R, is, in a natural way, a module
over the endomorphism ring S of M. Under certain weak
assumptions on M, the following is true: HomΛ (M, —) carries
injective envelopes of ϋN modules into injective envelopes of
&-modules iff M generates all its submodules. Modules of
the latter type are called self-generators. For M a self-
generator, Horn* (ikf, —) has additional properties concerning
chain conditions and the socle. Many of the known results
in this area, in particular those for M projective, are special
cases of our main theorems.

Introduction* The question of how properties of a unitary right
i2-module M = MB are related to properties of its endomorphism ring
S has been answered completely by the Morita theorems in case M
is a progenerator. Then the functors F = ΈLomR(M, —):%JlR-+$Jls

and H — M®R —: BWl-+ SM are equivalences and hence preserve and
reflect all categorical properties of objects (%JlR denotes the category
of unitary right jβ-modules).

Anderson [1] determined the finitely generated and projective
modules M, for which H preserves injective envelopes and called them
perfect injectors. Inspired by his paper, we investigate the analogous
problem for F and introduce the notion of a "perfect coinjector"
along the model of [1] (without restrictions on M). When R is a
Dedekind domain, we have a structure theorem for perfect coinjectors
(2.1). It yields a characterization of torsion modules flat over their
endomorphism ring which generalizes that for R = Z in [13, Th. 2].
In particular, the perfect coinjectors coincide with those modules
generating all their submodules (self-generators) fors for the special
choice of R. This is false for arbitrary R, but it is true (2.4) if
certain assumptions, weaker than either "projective" or "generator",
are made on 'M (e.g., M = MT where T is the trace ideal of M).

Large classes of self-generators (§3) justify a closer look: The
lattices of jB-submodules of A e TtR and S-submodules of Horn (M, A)
are intimately related, and so, as a consequence, are the chain con-
ditions and Goldie dimension of A and Horn (M, A). These corre-
spondences arise as a natural continuation of Sandomierski's results
in [15]. Moreover, the self-generators M — MT are exactly those
modules, for which F preserves the properties "simple" and "essential"
just as in the optimal case, i.e. M a vector space (resulting socle-
formula: 4.5).
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Another application of § 2 clarifies Anderson's characterization of
perfect injectors by means of an equivalence of categories (§5). At
one and the same time, the main result extends results of [1] and
supplies additional information about the functor H.

This paper is part of the author's doctoral dissertation which
was written under the direction of Professor Fr. Kasch at the Ludwig-
Maximilians Universitat of Munich. The author wishes to express
her gratitude to Professor Fr. Kasch and Professor B. J. Mueller for
stimulating conversations and to the referee for his helpful suggestions.

1* The full subcategory ^ of ikf-generated objects of WlR. A
reference for standard notions and results is [2]. The following
notation is observed: R is an associative (not necessarily commutative)
ring with 1, WftR the category of unitary right JS-modules, M = MR

an object of 3ftΛ, S = HomΛ (M, M) the ring of JS-endomorphisms of
M, M* = Horn* (Jkf, B). Naturally, M is a left, M* a right S-module.

The homomorphisms (,): M* ξ$s M-+R with (/, m) = f(m) resp.
[, ]: M®RM*-+S with [m, /] = mf(-) are i2-i2-resp. S-S-linear, their
images are denoted by T resp. A. As is well-known, T = R(A = S)
means that MR is a generator (finitely generated and projective).
TM{A) = Σ{lm (/), / 6 Hom.e {M, A)} is called the trace of M on A,
TM{R) = T is called simply the trace. Φ: Gί7—>l3Ki2 represents the
natural transformation corresponding to the adjoined pair (G, F),
where

F: mR —> ms with F(A) = Horn, (ΛΓ, A)

G: Wis — > mR with G(B) = B ®s M

One observes Im (Φ(A)) = TM(A).
It is known that F preserves injective envelopes in case F is full

and faithful and G is exact, the latter being true iff MR is a generator
[5] (In this statement ΈlR may be replaced by any Grothendieek
category). Noting that Horn (M, A) == Horn (M, TM(A)), we focus
attention on the full subcategory ^£ of ilf-generated objects of ΈlR>

i.e. i e . / / iff TM(A) = A (compare [4]), with the restricted functors
F': ^y£ — Wls, G': Wls->^f(ΦΊ G'F' — 1^ belongs to the adjoined pair
{G',F')). As is easily checked, an injective envelope A—>B of R-
modules goes down to an injective envelope TM(A) —> TM(B) in ^£,
hence F preserves injective envelopes if F' does. A sufficient condition
for the latter: Ff full and faithful, Gr exact. We will interpret this
in terms of equivalent conditions on M, and we will see that, in many
cases, it is also necessary.

DEFINITION 1.1. 1. M is called a self-generator iff TM(K) = K,
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for all ϋJ-submodules K of M.
2. M is called a J-self-generator iff Γ^t f) =U, for all i2-sub-

modules U of Λf n, ne N. (compare with related concepts in [4] and
[10]).

EXAMPLE 1.2. (F. Dischinger): Let

R —

a 0 b 0

0 α 0 c

0 0 a 0

0 0 0 a_

:a, b, ce K

where K is a noncommutative field. Choose λ, μe K such that Xμ Φ μX
and let

I = -

0 0 6 0

0 0 0 Xb

0 0 0 0

0 0 0 0

beK

Clearly, I is a right ideal of R, and the cyclic right iϋ-module M =
R/I is a self generator, but not a generator. Denoting the product
of μ with the unity matrix by x, we obtain I Π xl — 0 and iϋ/7 =
iZ/ίcJ. Thus R is embedded into M2, and consequently M is not a
I'-self-generator.

Over a commutative ring, clearly, every cyclic module is a J-self-
generator; for further examples see §§2, 3. In view of the following
two lemmas, Definition 1.1 appears as the natural choice. (Note that
F' is full and faithful iff Φ' is an isomorphism.)

LEMMA 1.3. 1. Let A e WlR. The map Φ'(A): Horn (If, A) ®s M-+
TM(A) is an isomorphism if M generates all kernels of homomorphisms
Mn -+ A, ne N.

2. [17] The left S-module SM is flat iff M generates all kernels
of homomorphisms Mn —» M, ne N.

Proof. 1. Let Σ ? ^ / ^ ) = 0> where ft e ΈLomE (M, A), mt e M.
By hypothesis ( m , ) ^ ^ = Σj=i, Oj{n3) for some gt e Hom^ (M, Ke{®f)),
nά e M. Denoting the canonical projections M* —> M by prίf we conclude
that Σ*Λ ® m< = Σ«/* ® Pr€ ( Σ i flr^y)) = ΣuifiPTiOi <g> % - 0, since
ΣifiPr.gj^O for all j .

Assertion 2 is simply Lemma 19.19 of [2].
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LEMMA 1.4. The following statements are equivalent.
(1) M is a Σ-self-generator,
(2) ^ is closed with respect to R-submodules (hence is a

Grothendieck category),
(3) F' is full and faithful, and Gr is exact.

Proof. (1)*=>(2): One direction is clear. Conversely, let M be
a Jf-self-generator, A e ^ (i.e. there is a set I and an epimorphism
/ : M{1) —• A) and A! an i2-submodule of A. Because A! may be assumed
finitely generated, we can choose a finite subset Γ of I such that
A! c f(M(J/)). By hypothesis, M generates f~\Af) Π M{Γ) and hence A'.

(2)=>(3): This is a special case of [5] since M is a generator
for ^£[ It also follows directly from Lemma 1.3.

(3) ==> (1): Assume that Gr is exact (i.e., SM is flat). We claim
that if Φ'(A) is an isomorphism, then M generates all kernels of
homomorphisms Mn —>A for neN. Let f:M* —* A, let ft = fint

where int is the natural injection, and let (mJeKeί/). Assuming
that Φ\A) is an isomorphism, Σft(m{) = 0 forces the element Σft (x) mt

of Horn (M, A) ®s M to be zero. Consequently, since sM is flat, the
element Σft (g) m< of ΣfiS^M is zero. Thus, [3, Lemma 10] there
are # o e iS, % e M, 1 ^ i ^ π, 1 ^ i ^ m such that

Mi = Σ Qis{ns) , for all i

all i .

For βTj = Σinigίj9 this means #, e HomΛ (M, Ke (/)) and (mj = Σ ; ^i(%)-

REMARKS. 1. The implications (3)=>(2) and (3)==>(1) are inde-
pendent of [5] where only Grothendieck categories are considered.

2. In our proof of (3) ==> (1) we have shown that if SM is flat,
then the converse of Lemma 1.3.1 is true.

In part (1) of the following corollary we rediscover a theorem
of Pahl [12] as the special case A = M & generator.

COROLLARY 1.5. Let M be a Σ-self-generator, f:A—>B a homo-
morphism of R-modules. Then

1. Horn (M, A) is an injective (quasi-injective, see [2]) S-module
iff TM(A) is an M-injective (quasi-injective) R-module.

2. Horn (M, / ) : Horn (M, A) —> Horn (M, B) is an essential mono-
morphism in SK̂  iff f\Tjiu) TM(A)—>TM(B) is an essential mono-
morphism in TtR.

In particular, F preserves injective envelopes.
3. If Horn (M, A) is artinian (noetherian) in SK5, then so is
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TM{A) in %JlB (e.g. if Ss is artinian, then so is MR).

Proof. 1.2. From 1.4. ((?', i*7') is an adjoint pair of functors
between abelian categories, G' exact, F' full and faithful. As is
well-known, F' then preserves and reflects injectivity and essential
extensions. Along the same line, one checks that F' (hence F) pre-
serves and reflects quasi-injectivity.

3. A'\-+ Hom^ (M, A') defines an injective map from the lattice of
i?-submodules of TM(A) into the lattice of £-submodules of Hom^M, A).

2. Perfect coinjectors* We call M a (perfect) coinjector iff
F — HomΛ(Λί, —): WlR —*ϊΰts preserves injective modules (injective
envelopes). It is well-known that M is a coinjector iff M is flat as
a left S-module. As we have seen, all Σ-selί-generators are perfect
coinjectors. We will study cases, in which this is reversible and
"itself-generator" may be replaced by "self-generator". First of all,
the special case of R a Dedekind domain yields a structure theorem
for perfect coinjectors. A resulting description of the torsion modules
that are coinjectors generalizes [13, Th. 2]. For O^PeSpecB, let
MP = {x e M: Pnx = 0 for some n e N}.

THEOREM 2.1. For a Dedekind domain R, the following are
equivalent:

(1) M is a perfect coinjector,
(2) F: WlR —> %RS preserves essential extensions,
( 3 ) M is a Σself-generator,
(4) M is a self-generator,
(5) if M is not a torsion module, then M is a generator. If

M is a torsion module, then the following holds for each primary
component MP, 0 Φ P e Spec R: MP is reduced (i.e. does not contain
a nonzero divisible submodule), or the direct complements of the
largest divisible submodule are unbounded.

Furthermore, a torsion module is a perfect coinjector iff it is
a coinjector.

Proof. (1) => (2) and (3) => (4) are trivial, (3) => (1) holds for an
arbitrary ring R. So does (4) => (2): Let A c B be an essential
extension and 0 Φ fe Hom5 (M, B). Pick m e M with f(m) Φ 0 and
use the fact that mR is generated by M to find g e Hom (M, mR) c S
with 0 Φ fg e Hom^ (M, A).

(2)=>(5): First, let M be non-torsion, i.e. RR a submodule of
MB. The field K of quotients of R being an injective envelope of R
(as an jR-module), KR is a direct summand of an injective envelope
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of M. This forces Horn* (M, K) Φ 0 and hence Homβ (M, JS) ̂  0 by
hypothesis. But for a Dedekind integral domain R, T Φ 0 means

For ikf a torsion module, we may assume M P-primary and not
reduced. Since Γ\nQNPnM contains the largest divisible submodule
of M^ it is enough to prove M/Γ\neNPnM to be unbounded. Assume
the contrary, Pk(M/Γ\neNPnM) = 0 for some keN. For rsPk\Pk+1,
let lrι M^+Mbe multiplication with r. By applying (2) to the essential
extension NczM, where N = {me M: Pm — 0}, one obtains ge S such
that 0 Φ lrge Hom^ (M, N)(lr Φ 0, since M is not reduced and hence
unbounded). In particular, this means Pk+1g(M) = 0. Consequently,
g(Γ\n*NPnM) = 0, that is, g factors through M/Π PnM. From our
assumption we conclude Pkg(M) = 0, contradicting rg(M) Φ 0.

(5) ==> (3): We limit our attention to a primary torsion module
M = MP and a cyclic i2-submodule A s i2/Pfe of ikfw, w e JV. If M is
bounded, then M is known to be a direct sum of cyclic i2-submόdutes,
and so AdMn implies the existence of a direct summand R/Pn>
where n ^ k.

If M is unbounded with Mγ its largest divisible submodule, then
M/M1 is also unbounded (in the case M\ Φ 0 apply the hypothesis).
There is no loss of generality in assuming M1 = 0, since Mι is a direct
summand of M. We claim M\ f)neNPnM is unbounded. If not, then
PmMcz f\neNPnM for some m which would imply PmM = Pm+ίikf, for
all i. This means PmΛf is divisible. But with M unbounded, PmMφ 0
contradicts M1 = 0. In particular, we have that Pk(MIP™M) Φ 0 for
some m, and hence the bounded module M/PmM contains a direct
summand of the form R/Pn, n ^ k. Therefore, M/P^M resp. M
generates A. This completes the proof of the equivalences.

Now suppose a torsion module M to be a coinjector. Lemma
1.3 justifies the restriction M = MP. In order to verify (5), let M =
•Mi φ Λf2 with 0 Φ Mί divisible and M2 reduced, n e N arbitrary. For
r 6 P% consider the multiplication lr: M-+M with r. From 1.3 ker (lr)
is generated by M and thus by Mi9 because Horn (Mlf ker (lr)) = 0.
Moreover, ker (ϊr) contains a submodule R/Pn, since JlίΊ does, which
forces PnM2 Φ 0. This shows the unboundedness of M2.

REMARKS. 1. The last statement is false for nontorsion modules:
Consider the Z-module Q.

2. A different reading of (4) <=* (5) for the special case R - Z
and M a torsion module is [8, th 2.5].

3. Our proof actually establishes the implication (4) => (2) for
all rings R.

THEOREM 2,2. Let R = Z.
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1. Direct sums of Prϋfer groups Z(p°°), p prime, are not coin-
jector s.

2. Direct sums of cyclic groups, especially all finitely generated
or bounded groups, are perfect coinjector s.

3. A direct product of cyclic groups is a perfect coinjector iff
it is either bounded or one of the cyclic factors is infinite.

Proof. 1., 2. are clear, 3. is left as an exercise.

Let R be arbitrary. Example 1.2 shows that, in general, neither
(2) implies (1) nor (4) implies (3). In the following we point out
classes of modules ikf, for which the equivalence of the first four
statements of 2.1 is maintained.

For an ideal I of R, Sandomierski calls an i2-module A /-accessible
in case AI = A. With this definition, M is T-accessible ("trace-
accessible") if, for instance, M is a protective module, a generator
or an idempotent ideal (for further examples see §3).

LEMMA 2.3. (a) MT = M iff AM = M iff TM(A) = AT, for all

AemB.
(b) If MT = M, then T and A are idempotent (i.e. T = T, A2 = A),

and A is the trace of the left S-module M (i.e. A = Σ{lm(g): ge
Horn, (M, S)}).

Proof. In view of m(f, n) — [m, f]n, a) and the first part of b)
are straightforward. A czΣ{Im(g): geϊLoms (M, S)} is always true,
because [ — , / ] € Homs (M, S) for / 6 Λf*. The other inclusion follows
from AM = M.

THEOREM 2.4. For a module M = MT or a quasi-protective
module M (see [2]), the following are equivalent:

(1) M is a perfect coinjector,
(2) F: ΪDls —+ $Jls preserves essential extensions,
( 3 ) M is a Σ-self-generator,
( 4) M is a self-generator,
(5) If A! is a simple essential submodule of an R-module A,

then Horn (ikf, A') = 0 implies Horn (ikf, A) = 0,
In the case M = MT, we may add:
(6) TR is a self-generator,
(7) R-submodules of T-accessible modules are T-accessible,
(8) R(R/T) is fiat.

REMARKS. 1. For M protective, (7) <=> (8) was proved inde-
pendently in [10, Th. 2.1].
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2. The proof of (5) =* (3) was inspired by [1, Th. 2.4] which is
contained in the above as a special case of (1) <=> (2) <=> (8). (Note that
M(&R — = Homβ(ikP, —), and BAf* is finitely generated protective
in case MB is finitely generated projective.)

3. M quasi-projective and M = MT are special cases of the
following situation: There exists an ikf-projective module P such
that M = i;{Im (/): f e S, f can be factored through P). Modules of
this type (as well as I'-self-generator) are easily checked to satisfy
the following two conditions, for all submodules A, B of Mn, ne N:

(a) TM(A + B) = TM(A) + TM(B).
(b) AaB and TM(B) c TM(A) implies TM(B/A) = 0. More general

than 2.4, we prove the equivalence of (l)-(5) for all modules Mwith
conditions (a), (b). (Note that they do not, in general, hold for abelian
groups.)

4. For MR = Qz the statements (6)-(8) are true, whereas (l)-(5)
are not.

Proof of 2.4. Without restrictions on M, we have established
(3) =- (1) in 1.5 and (4) =* (2) in the proof of 2.1. Also for all M the
implications (1) => (2) => (5) are trivially true. We show (5) => (3):
Assume x<$ TM(xR) for some xeM*, neN. Choose AcMn maximal
with respect to TM{xR) czA,x<ίA. Then A + xR/A is simple and
essential in Mn/A. Prom TM(A + xR) = TM{A) + TM{xR) c TM{A) we
conclude TM{A + xR/A) = 0 (compare Remark 3), hence 0 = TM(M*/A) =
Mn/A by (5). This contradicts Mn/A Φ 0.

Now specialize to 1 = MT. In view of 1.4 and TM(A) = AT,
for all Ae$flB, conditions (3) and (7) are identical. By replacing M
by T = T2 in (1) => (2), we obtain (6) =* (7). (6) — (8) is easily derived
from [3, p. 33].

M being a perfect coinjector as described in 2.1 and 2.4, Horn (M, —)
also reflects injectivity and injective envelopes in the sense of 1.5.
For example, if M = MT is a self-generator, then S is right injective
iff MB is quasi-injective iff MR is Γ-injective.

3* Examples of itself -generators M = MT. Trivially, every
generator is a trace-accessible Jί-self-generator. Examples that arise
for special classes of rings are listed in.

THEOREM 3.1. Let M = MT (in particular true for MB projec-
tive). Then MRί TR and RT are trace-accessible Σ-self-generators if
either.

1. R is regular,
2. R is commutative, and M is projective or finitely generated.
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Proof. 1. is clear (2.4). 2. If ikf is projeetive* then I is a
self-generator from [6]. The assertion follows from 2.4. Let ikf be
finitely generated. In order to verify (5) of 2.4, we regard an essential
extension of .β-modules A' c A and 0 Φ f e Horn*, (ikf, A). Since f(M)
is finitely generated, there exists r e R with 0 Φ f(M)r c A'. This
means 0 Φ lrf e Homβ (M, A'), where lre S denotes the multiplication
with r.

Not every T-accessible module ikf over a commutative ring is a
self-generator. For example, let R be the ring of all Cauchy-sequences
in Q with componentwise multiplication and ikf the ideal of zero
sequences. We observe ikf = T = T2, whereas Λf is not a self-
generator: Pick α = (αj e Γ with αf ̂  0, for infinitely many ie N.
Clearly a£aT, which means a$ TM(aR). For R arbitrary, not even
the finitely generated and protective modules are self-generators.

Choose R = (% J ) , where K is a field, M = (% f^,A = (jj f ) c Λf
and check Hom^ (ikf, A) = 0. (Consequently M is not a perfect coinjector.

However, ikf is a coinjector, since S is a field; compare [1]).
On the other hand, looking at I as a left S-module, we make

the following simple observation that will turn out to be very useful
in §5.

THEOREM 3.2. For M a projective R-module, the left S-modules
M and Δ are trace-accessible Σ-self-generators.

Proof. The trace of SM coincides with Δ, and we have ΔM = M
(2.3). In view of 2.4 it is enough to show meΔm, for all meM,
which is an immediate consequence of the dual basis lemma.

Examples of modules having the considered properties on both
sides simultaneously are provided by the Zelmanowitz regular modules
[18] (i.e. for every meM, there is an / 6 ikf* satisfying m = m(/, m)).
Part 1 of the following theorem contains [10, Cor. 2.2].

THEOREM 3.3. If MR is (Zelmanowitz) regular, then the following
modules are trace-accessible Σ-self-generators:

1. the R-modules MB, TB9

2. the S-modules SM, SΔ.

Proof. For me M, m = m(f, m) is a stronger version of me mT9

which means M — MT is a self-generator. So 1 clearly follows from
2.4. Moreover, m(/, m) = [m, /]m, where [ —, /] 6 Homs (ikf, S), shows
that SM is again regular, and the above argument may be reflected
to the other side.
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For examples of (Zelmanowitz) regular modules, especially non-
projective ones, see [18].

4* Submodules of AR and Hom^ (Λf, A)s. The following remarks
on modules M = MT form the basis for more specialized results for
(finitely generated) projective modules on one hand and (T-accessible
self-) generators on the other. Lemma 4.1 and the symmetry of 4.2
with respect to T and Δ show the condition Λf = MT to be natural.

LEMMA 4.1. M = MT is true iff for every Ae$JlB and every
Ssubmodule B of ΈίomR(M, A), the S-submodule BΔ of B is essential.

Proof. Let M = MT, A, B as above, and 0 Φ f e B. Pick m e M
with f(m) Φ 0. By hypothesis, m = Σmt(fi9 nt), which means
0 Φ f(m) = Σf(mt(fi9 nt)) = Σf[mt, ft]ni9 whence 0 Φ f[mi9 f<] e BΔ
for some i.

Conversely, we conclude Hom^ (M, M/MT) = 0 from Horn*. (M,
M/MT)Δ = 0.

NOTATION. For A e WlR, the lattice of β-submodules resp. In-
accessible i2-submodules of A will be denoted by *Z/R(A) resp. ^T{A).
For B e Wls, %SS(B) and %fd(B) are defined similarly.

THEOREM 4.2. Let M = MT.

1. For every A e ϊttlR, the following are inverse lattice isomor-

phisms:

ψ: ^T(A) 3 X i > Horn (AT, X)Δ e ^ ( H o m (Af, A))

Ψ\ ^ ( H o m (Λf, A)) 3 Y\ > {̂Im (/): feY}e f/τ(A)

2. Statements (l)-(3) resp. (l')-(3') are equivalent:

(1) ^T(A) = <^R(AT) , (Γ) ^Δ{B) = ^S{BΔ) 9

for all AeWlR for all BeWls

(2) TR (or MR) is a (2') Δs is a self-generator

self-generator

(3 ) R(B/T) is flat (3') S(S/Δ) is flat

Proof. 2. follows immediately from 2.4.
1. In view of T2 = T and Δ2 = Δf the maps f and φ are well-

defined lattice homomorphisms. Moreover, ΔM = M implies Im (/) —
(g): g e fΔ], for all / e Horn, (Af, A). For Xe %fτ{A\ φψ(X) =
(/): / G Horn (Mf X)Δ) = ̂ {Im (/): / e Horn (Λf, X)} = XT = X.



ENDOMORPHISM RINGS OF SELF-GENERATORS 597

Now let Ye ^ ( H o m (M, A)). We claim Horn* (M, X)Δ = Y, where
X — ^{Im (/): / e Y}. One inclusion is obvious. Conversely, let h e
RoraB (M, X), [m, g] e Δ. From h(m) = Σft(mt), ft e Y, mt e M, we
conclude h[m, g] = Σft[mi9 g] e YΔ — Y, since h[m, g]x = h(m(g, x)) =
h(m)(g, x) = Σfάm&g, x) = Σf^m^g, x)) = Σft[mtί g]x, for all xeM.

REMARKS AND COROLLARIES 4.3.

1. The lattice isomorphism in 4.2 may also be deduced from
[11, Prop. 6]. (This is more complicated but reveals a more general
aspect.) For Δ = S it coincides with the one established by Sand-
omierski [15]. The symmetric extremes T = R and Δ — S even have
a converse in the following sense:

T = R iff ^R{A) B X\-+ Horn {M, X)Δ e ^ ( H o m (M, A))) is an iso-
morphism for all AeTlE.

Δ = S iff ^τ(A) 3 Xf-> Horn (M, X) e ^ ( H o m (M, A)) is an isomor-
phism for all AeTtB.

2. Let M = MT. We illustrate with a few examples, how chain
conditions of AR and Horn (M, A)s are related (for Δ = S, see [15]):

(a) Aϊ7^ is finitely generated iff Horn (M, A)ΔS is finitely generated.
In particular, MR is finitely generated iff Δs is finitely generated.

(b) If MR is a self-generator and Horn (If, A)s is artinian (noe-
therian), then ATR is artinian (noetherian). If Δs is a self-generator
and AR is artinian (noetherian), then Horn (M, -A)Ĵ  is artinian (noe-
therian). (An interesting case being A = AT — M.)

Proof, (a) Let ATB be finitely generated, (Bi)ieI a chain of
proper S-submodules of Hom(M, A)Δ and consider the chain (BtΔ)ieI.
According to 4.2, there is a chain (Xi)ieI of proper iϋ-submodules of
AT with ψ(Xt) = BJ. U Xi £ AT (by hypotheses) and U X, e %ST(A)

yields U CM) = U ψ(Xi) = iHU ^<) £ H o m W ^ ) J ' h e n c e U B* S
Horn (ikf, A)z/. The converse is proved similarly,

(b) is obvious.

3* Examples of modules M such that Δs is a self generator
(different from Δ — S) are easily deduced from [16, Th. 3.5]. In fact,
the following are equivalent:

(1) R is right noetherian,
(2) Δs is a (I'-)self-generator, for all projective modules MB,
(3 ) MS = M*Δs is a (2'-)self-generator, for all projective modules

MR.
For R commutative noetherian, combine with 3.1 and 3.2: If

MR is projective, then all of the following modules are J?-self-genera-
tors : MB, TB, Ml, SM, M*s, 8Δ, Δs. Consequently, <2/B{MB) = %SS(ΔS),
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Sandmierski [15] called an 22-module X T-faithful iff xT Φ 0,
for all 0 Φ x e X, and proved that, in case MR is finitely generated
protective, X T-ίaithf ul, then finite Goldie dimension of XR is inherited
by Horn (M, X)s. The latter remains true for reduced hypothesis on
ikf and is even reversible.

COROLLARY 4.4. Let ikf = MT, neN.

1. If X is T-faithful, then XR has finite Goldie dimension n
iff Horn (M, X)s has finite Goldie dimension n.

2. If M is a self-generator, then, for all Xe ί!JlB, XTR has finite
Goldie dimension n iff the same is true for Horn (ikf, X)s.

Proof. 1. Let φ £ 6 / X* be a direct sum of non-trivial iϋ-submodules
X, of X. We conclude X*T Φ 0 by hypothesis and apply f: ψ(ΣXtT) ==
Σψ(XiT), where 0 Φ ^(X, T% c Horn (ikf, X)s. The sumlVi^Γ) is
direct: X, T Π Σ ^ ; ^ ϊ7 = 0 implies 0 = t ((X Γ Π Σ ^ i -^Γ) T) =
(ψ(X,T) n Σ w τK-3Γ*T))Λ> whence t(-X*Γ) Π Σ ^ i Ψ(XJT) = 0 from 4.1.

The same method yields the converse.
2. If M is a self-generator, then XT is Γ-faithful for all X

(4.2).

The information about the socle of Hom^ (M, A)s [So(Hom (M9 A))],
given in the next theorem, characterizes self-genera tors. In the case
of vector spaces, we rediscover standard results (Δ being the ideal
of M-endomorphisms of finite rank). For non-trivial examples see
§3. Even the computation of So(ιS<?) for M a generator (e.g. B = Z,
M= Z(&Z(p°°)) may be considerably simplified by 4.5. "<zm means
"essential i2-(resp. S-) submodule".

THEOREM 4.5. Let M = MT, AeϊΰlB, X an R-submodule of AT,
B an S-submodule of Horn (M, A). Then the following are equivalent
(condition (2)-(4) are understood to hold for all A, X, B).

(1) MR is a self-generator,
(2) Hoπitf (M, X)ΔS is simple iff XR is simple,
(2') BAs is simple iff ^{Im (/): / e B}R is simple,
(3 ) Horn (M, X) c ' Horn (Λf, A) ijf X e ' AT,
(3') 5 c ' Horn (M, A) iff Σ{lm (/): / 6 B) cz' AT,
( 4) So (Horn (M, A)) = Horn (ikf, So (A))//, α^d O9iβ of the follow-

ing is true:
(a) So (Horn (ikf, A)) c ' Horn (ikf, A) iff So (AT) c ' AΓ,
(b) So (Horn (ikf, A)) is simple iff So (AT) is simple,
(c) So (Horn (ikf, A)) - 0 iff So (AT) = 0.

Moreover, if (1) holds, then S is semisimple artinian iff MR is
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finitely generated, projective and semisimple (this generalizes [18,
Th. 4.8.]).

Proof. (1) => (2): Let XR be simple. From X = XT (4.2) we
deduce <%rT(X) = {0, X}, which means ^ ( H o m (ilf, X)Λ) = {0, Horn (If,
X)J}. Moreover, for any S-submodule ΰ ^ O of Horn (ilf, A)A> we
obtain £/ί =£ 0 (4.1); that is B = BA = Horn (ilf, X)Δ. Analogously
check the other implication of (2) with the aid of 4.2.

(2) => (1): We verify condition (5) of 2.4. Let A' be a simple
essential i?-submodule of A and Horn (ilf, A) Φ 0, i.e. AT Φ 0. Hence
A'cAΓ. By (2), Horn (ilf, A')Δ is a simple S-module; in particular
Horn (ilf, A') Φ 0.

(1) => (4): Let (B%)ίBI be the simple S-submodules of Hom(ifcf, A).
We observe BtΔ = !?< and choose X* e ^/T(A) with -f (XJ = Bt ac-
cording to 4.2. By (1)«(2) the Xt are the simple iϋ-submodules of AT,
and we obtain: So (Horn (ilf, A)) = ΣήeiBi = ΣieiΨ(Xd = f (Σ* -X"i) =
f (So (AT)) = f(So (A). Γ) - Horn (Λf, So (A))J.

(a), (b), (c) follow immediately from 4.2.
(4) => (1): A, A' as in "(2) => (1)". Prom Af - So (A) - So (AT)

we deduce So (Horn (Λf, A)) = Horn (ilf, A')^ So (AT) being a simple,
essential submodule of A Γ, we conclude So (Horn (ilf, A)) Φ 0 from
each of (a), (b), (c). Consequently, Horn (ilf, A') Φ 0.

The remaining implications are proved along the same pattern.
Moreover, we note: S is semisimple artinian iff S = So (S) = (Hom(M,
So (M)))A iff S = Δ and So (ilf) - M.

5. Perfect injectors (compare [1]). In [1, Th. 2.4] Anderson
established the equivalence of the following statements for a finitely
generated projective module MR:

( i ) M®R —: RTl—> s$Jl preserves injective envelopes (ilfΛ is a
"perfect injector"),

(ii) M(&R —: RTl —> sWί preserves essential extensions,
(iii) (B/T)R is flat,
From 2.4 we may add one more equivalent condition:
(iv) 5 T is a self-generator.
As we will see, the background of this result is a category

equivalence between the full subcategories of RWl resp. βίl consisting
of all T- resp. J-accessible objects (these will be denoted by τ^€ resp.
ά^). This observation will enable us to discuss the validity of either
(i) or (ii) (which are not necessarily equivalent when "finitely gen-
erated" is dropped) and other properties of the functor M®R —.

Throughout this section we let ilf = MT; consequently, M®RAe

ΔΛ, for all Ae RWl, and ilf ® Λ TA = M®R A in case MR is flat. The
following theorem contains a variant of the Morita theorems.
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THEOREM 5.1. The following statements are equivalent:
(1) τ^£ and j ^ C are closed with respect to R- resp. S-sub-

modules, and M^R~~ induces an equivalence τ^//f —*ά^/£ with inverse
M* ® s — (especially MR is flat),

(2) RT and SA are self-generators,
(3) (R/T)R and (S/A)s are flat.

Before proving 5.1, we notice that, for a protective or a regular
module MR, the left S-module SA is always a self-generator (3.2 and
3.3), hence in both of these cases (1) is true iff RT is a self-generator.

The following technical device contains [16, p. 358, cor.].

LEMMA 5.2. 1. If RT (or TR) is a self-generator, then T =
Λf * ®s M as R-bimodules,

2. If SA (or As) is a self-generator, then A = M $$R M* as S-
bimodules.

Proof. 1. Let J be a self-generator. We show that
(,): M* 05-M—> T is an isomorphism. First, since TM* = M*A and
AM = M, we have TM* ®s M = If* ®s Me τ ^ . Since TΛ is
closed with respect to j?-submodules (2.4), it is sufficient to show
T ke (,) = 0. Let Σ(fi9 mt) = 0 and (g, n) e T; then (g, n)If, (x) mi =
Σ(g[n, /J) (x) m, - J ^ (x) (K /Jm,) = flr <g) ^ ( / t , m,) - 0. The rest fol-
lows by symmetry.

Proof of 5.1. All of 5.1 is covered by 2.4 except the fact that
(2) forces the restricted functors M ®ϋ> —: τ ^ ^ Δ ^ and M* ® 5 —:
j ^ ^ —• Γ t ^^ to be inverse equivalences. Since the inclusions TR

 c=—^ i?^
and As^—> Ss are pure by (2), we know TA = Γ ® E 4 and J β =
zf ®^ S, for all A e JSl, B e sWl. Now let A e τ^€, B e Δ^£. By com-
bining the above with 5.2, we obtain:

From properties of the restriced functor M®R

we easily derive information about the functor

COROLLARY 5.3. One o/ the conditions of 5.1 δem# satisfied (e.g
Λfβ protective and (R/T)R flat), £&e statements of each of the following
pairs are equivalent, for all A, Be RWl, f e Hom^ (A, B):

1. (i) M® f:M(j$RA—+M(&RB is an (essential) monomorphism
in sWl.
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(ϋ) f\τA TA —> TB is an (essential) monomorphism in Jΰt
(In case / is an essential monomorphism, (ii) is true.)

2. (i) 8M®BA is Δ-injective (quasi-injective).
(ii) BA is T~injective (quasi-injective).

3. (i) M®/ Λf®Λ -A —>MφBB is a projective cover in s$Jl.
(ϋ) f\τA TA—* TB is a projective cover in Jΰl (In contrast

to injective envelopes, TA —> TB is not necessarily a projective cover
in TΛ€ if A —+B is a projective cover in ΛSK.)

4. (i) ikf®^ A is artinian (noetherian, finitely generated) iw sίΰt.
(ii) ΓA is artinian (noetherian, finitely generated) in SSK.

5.4. Connection with Anderson's results. If SΔ is a self-generator,
as is the case when MB is projective or regular, then the statements
(ii), (iii), (iv) of the beginning of this section are equivalent (for (ii) =>
(iii) Anderson's proof may be adopted). However, (ii) does not imply
(i): Let M be a vector-space over a field R, dimikΓ^ — oo, then SM~

SM(&BR is not injective (see [14]).
For the special case Δ — S, the equivalence (ii) <=> (i) follows from

5.3.

EXAMPLE 5.5. The following classes of modules MR have the
properties listed in 5.1 and 5.3, e.g. ikf®^— preserves essential
extensions:

1. All projective modules over a commutative ring R. In par-
ticular, all finitely generated projective modules over a commutative
ring are perfect injectors in the sense of [1].

2. The maximal regular ideal [7] of an arbitrary ring R, con-
sidered as a right (resp. left) i2-module.

Proof. 1. According to 3.1 RT and SΔ are self-generators.
2. The maximal regular ideal is Zelmanowitz regular as a right

and left jR-module. Hence, all the modules RT, TBf SΔ, As are self-
generators by 3.3.
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