
PACIFIC JOURNAL OF MATHEMATICS
Vol. 61, No. 2, 1975

ON LINEAR REPRESENTATIONS OF AFFINE GROUPS I

MANFRED B. WISCHNEWSKY

The category of linear representations of an affine group
is isomorphic to the category of comodules over a &-Hopf-
algebra where k denotes a commutative ring. The category
of C-comodules Comod-C over an arbitrary /c-coalgebra C is
comonadic over the category ώ-Mod of ώ-modules. It is com-
plete, cocomplete and has a cogenerator. The C-comodules
whose cardinality rg max(cardk, £ξ0) generate the category
Comod-C. Comod-C is in general not abelian but can nicely
be embedded into an AB-4 category. Comod-C is a tensored
and cotensored fe-Mod-category (enriched over A -Mod) with
a canonical (E, M)-factorization which is the factorization
in k-mod if and only if C is flat. Comod-C has free C-
comodules if and only if C is finitely generated and pro-
jective. Furthermore I give numerous examples and counter-
examples as well as the explicit description of all construc-
tions, in particular of the limits in Comod-C which was not
known even for coalgebras over fields.

Let & be a commutative ring with a unit. k-Alg shall denote
a small category of models of Λ-algebras (cf. [5] p. XXIV). Recall
that an affine Λ-monoid (resp. ά-group) is a monoid (resp. group)
in the functor category [&-Alg, Sets] whose underlying functor is
representable. Let M be a ά-module. Then M induces an affine
β-monoid Sf(M)ι fc-Alg — Sets by £f(M)(A) = EnάA(M®kA), Ae
fc-Alg (cf. [5] p. 149). Let gf be an affine fc-monoid and M a k-
module. Then a monoid morphism φ: <& —• ^f(M) is called a linear
representation of & in M and the pair (M, φ) a k-^-module. The
definition of morphisms between A-S^-modules is evident. Thus one
obtains the category fc-^-Mod of linear representations of ^ , resp.
of &-S^-modules. Since & is representable we obtain the canonical
isomorphisms [ft-Alg, Sets] (gf, Sf(M)) ~ Sf{M){fl) = &-Mod (M,
M($$k C), where C is the representing object of g?. The monoid
structure of ^ induces a fc-coalgebra structure on C, i.e., the
representing object has two ^-linear mappings Δ:C—*C®C and
ε:C-+k, called comultiplication and counit, such that <C, A, ε) is
coassociative and counitary (cf. [19]). By the above canonical iso-
morphisms every monoid morphism φ: & —> Sf (M) induces a k-
linear map χM: M—> M(g)C such that Λf® Δ-χM = χM (x) C χM and
-M"® S ZΛ = id^, and conversely. A pair <ikί, χM) fulfilling the above
properties is called a C-comodule. Let <Λf, χM) and <iV, χ̂ > be C-
comodules. A Λ-linear mapping /: M—* N is a C-comodule homo-
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morphism if χN-f = f®CχM. Let (M, φM) and (JV, φN) be
modules and <Λf, χM), resp. (N, χN) the corresponding C-comodules.
Then a ά-linear mapping f: M-+N is a &-^-module homomorphism
f:(M,φM)~+(N,φN) if and only if f:(M,χM)-+(N,χN) is a C-
comodule homomorphism.

Hence the category of linear representations of an affine monoid
(group) is isomorphic to a category of C-comodules where C is a
Λ-bialgebra (resp. Λ-Hopf algebra).

In this paper I study the elementary properties of a category
of comodules over an arbitrary fc-coalgebra. Categories of comodules
were already studied by several authors where k is a field or the
coalgebra is finite or flat (cf. [5], [7], [10], [14], [15], [17], [18], [19]).
In all these cases Comod-C is a Grothendieck category with a
generator. But if C is not flat then Comod-C need not to be abelian.
This was already shown in [17]. The homomorphism theorem is no
longer valid, the comodule structure on a subcomodule is in general
no longer unique and so on.

But even in the case of a flat coalgebra C one didn't know as
yet such elementary things as the explicit descriptions of limits.

Let C be an arbitrary coalgebra over a commutative ring k
with a unit. Then the most important results of this paper are:
The underlying functor U: Comod-C—»fc-Mod is comonadic. The cate-
gory Comod-C is complete, cocomplete, wellpowered and cowellpowered,
has a generator and cogenerator. Comod-C can be embedded (full
and faithful) into an AB4-category with sufficiently many injectives
and projectives which in general fails to be a Grothendieck-category.
This embedding is coreflective if and only if all objects in Comod-C
are protective and is an isomorphism if and only if Comod-C is a
spectral category. The functor λ: Comod-C—> C*-Mod(cf. [14] §1 or
[19] Chap. II) is comonadic. Comod-C has free comodules if and
only if C is finitely generated and projective. Comod-C has a proper
(E, M)-factorization which is preserved by the underlying functor
Comod-C—»&-Mod if and only if C is flat. Comod-C is well-powered
and cowellpowered with respect to this factorization. By applying
the techniques of F-categories I show that the /b-Mod-category
Comod-C is tensored and cotensored. If f:C-+C is coalgebra
morphism then the induced ^-linear functor /*: Comod-C—> Comod-C
preserves tensors and is &-Mod-comonadic. The /c-linear functor
— (x) C: &-Mod —> Comod-C has a &-linear-right adjoint. Furthermore
I give numerous examples and counterexamples as well as explicit
descriptions of all constructions.

I* Comodules over arbitrary coalgebras* In the language of
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monoidal categories a ά-coalgebra <C, A, ε> is just a comonoid in the
monoidal category (&-Mod, (g)) (cf. [11] Chap. VII 3). A C-comodule
(M, χM) is a coaction of C on M and a C-comodule homomorphism
is a morphism between coactions of C in (yfc-mod, 0 ) (cf. [11] Chap.
VII 4). This formal description gives us at once some elementary
results such as the existence of a right adjoint of the underlying
functor U: Comod-C—•λ -Mod or the creation of colimits by U.

In the sequel I will give another description of Comod-C which
allows us to apply the highly developed theory of monads.

Let <C, Δ, ε> be a coalgebra. The coalgebra structure of
<C, A, ε> induces a functor

9f: = - <g) C; Λ -Mod > Λ-Mod

and functorial morphisms

A = - <g) J : 9 f ><gf2 = - (g)C(g)C

Since <C, 4, ε> is a coalgebra < — ® C, — (x) J, — (R) ε> clearly defines
a comonad over ifc-Mod. A coalgebra (M, χM) over this comonad is
a pair where M is fc-module and χM: M—> ̂ (M) is a fc-morphism
such that the following diagrams commutes

XM
M

M

A morphism / between ^-coalgebras (M, χM) and (N, %N) is a
&-morphism f:M-+N such that χN.f= ^(f) χM. Hence we obtain
the following

THEOREM 1 (Notation as above). Let <C, A, ε> be a coalgebra.
Then the category Comod-C of C-comodules is comonadic over
fc-Mod.

From the elementary theory of monads we obtain at once some
important corollaries.

COROLLARY 2 (cf. [11], [13], [16]). The underlying functor
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U: Comod-C > k-Mod

has a right adjoint <&: Λ-Mod—> Comod-C defined by

gf: Jc-Moά > Comod-C

M\

fι

The comonad defined in fc-Mod by this adjunction is the given
comonad <— (g> C, — (x) Δ, — (x) e).

COROLLARY 3. The underlying functor U: Comod-C —• Λ-Mod
creates colimits and isomorphisms. In particular Comod-C is
cocomplete and the colimits are formed in λ -Mod.

COROLLARY 4. U creates those limits which are preserved by
— (x) C. If C is fiat and T: D—>Comod-C is a finite diagram,
then p:Diaglf—* T is a limit in Comod-C if and only if Up:
Diag UM—+ UT is a limit in fc-Mod.

Applying 21.3.6 in [16] we obtain

COROLLARY 5. Comod-C is cowellpowered.

Since right adjoints preserve cogenerators we get

COROLLARY 6. Comod-C has a cogenerator.

Let ^ be a category with finite limits and finite colimits. A
functor F:C—> C is called left-exact (right-exact) if F preserves
finite limits (finite colimits). F is called exact if F is left-exact and
right-exact.

Since Λ-Mod is an additive category and — (x) C is additive and
right-exact we obtain from Remark 21.1.11 in [16] Chap. 21 the
well known

COROLLARY (cf. [7], [10]).
(1) Comod-C is an additive category.
(2) U and <& are additive functors.

Furthermore & is exact and U is right exact.

PROPOSITION 8 (Notation as above). The following statements
are equivalent:

( i ) U is exact.
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(ii) G is flat.
(iii) <& preserves injectives.

Proof, (ii)—>(i): Since U creates finite limits and is right exact
it is exact.

(i)->(ii): Let f:M—>N be an injective ^-module homomorphism.
Since gf is exact, S^(/) = / ® C: M (x) C —>N(g) C is an equalizer in
Comod-C. Since U is exact /(x) C is injective, i.e., C is flat.

(i)—»(iii): Well known.
(iii) —• (i): Let m: (M, χM) —> (N, χN) be a monomorphism in

Comod-C and f:M—*Q an injective extension of M in Λ-Mod. Then
we obtain the following commutative diagram

f®C m&C

<Q(g)C,Q(g)J) i^L <M(g) C, M(x) J> ^ ^ (N(g) C, N® Δ)

<ikf, Zif> - ^ <N, χN)

Since ^ preserves injectives, (Q (x) C, Q (g) J> = ^(Q) is injective
in Comod-C. Since 5^((?) is injective and m is a monomorphism
we obtain a comodule-homomorphism g: <iSΓ, χN) —• <Q ® C, Q (x) Δ}
such that

<M,

= g m
m

<Q®C,Q®Δ)

Since <Λί, χ^) is a C-comodule and ε: — ® C —> Idk_Uθά is a functorial
morphism we obtain the following equations:

SM XM = idM and f-εM = ε ρ / ® C .

Thus / = f iάM ~ f.sM.χM = sQ /(g) Cχ^ = eQ g m. Hence m is injec-
tive since / is injective, i.e., U is exact.

If C is flat U creates finite limits and colimits. Since Comod-C
is additive and fc-Mod is abelian we conclude that Comod-C is
abelian. Since furthermore &-Mod is a Grothendieck category and
U preserves and reflects colimits and monomorphisms Comod-C
fulfills AB5' (cf. [16] 4, 6.3), i.e., we obtain the following well known
result.

COROLLARY 9. // C is flat then Comod-C is a Grothendieck
category. Furthermore U preserves and reflects finite limits and
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colimits. In particular a comodule homomorphism is an equalizer
(coequalizer) in Comod-C if and only if f is injective (surjective).

EXAMPLES 10. (1) Let k be a regular ring (regular in the
sense of von Neumann) (cf. [2] p. 175, EX. 13). Then Comod-C is
a Grothendieck category for every fc-coalgebra C.

Let k be a commutative, associative ring with unit. Let T be
a ^-module. Then C = k 0 T together A(r, t) = r(g)l + l(g)t +
ί(g)l + p(t) and ε(r, t) ~ r is a coalgebra with unit (cf. [18], where
p:T —+ T(g)T is an arbitrary coassociative fc-morphism (take for
example p = 0). Hence C = k © T is flat (protective, finitely gener-
ated, •••) if and only if T is flat (protective, finitely generated, •••).

(2) Let A be a torsion free abelian group A and C = ^ φ 4
with the above defined structure* Then Comod-C is a Grothendieck
category υ .

(3) Let A be an abelian group which is not torsion free, (e.g.,
Z\nZ, Q/Z). Then the coalgebra C = Z(&A with one of the above
defined coalgebra structures is not flat1.

DEFINITION 11. Let (M, χM) be a C-comodule. A subcomodule
(N9 χN) is a submodule N of M such that the inclusion i: N—> M is
a comodule homomorphism.

PROPOSITION 12. Let Comod-C be an abelian category. Then
the comodule structure on a subcomodule is unique.

Proof. Let <iSΓ, χx> and (N, χ2) be subcomodules of <M, χM).
Since the inclusion i: (N, χ^ —> <ilf, χ^) is injective it is a mono-
morphism and hence an equalizer in Comod-C since Comod-C is
abelian by assumption. Hence the identity (N, χ2) —* (N, χx> must
be a comodule homomorphism. Since U: Comod-C ~+k-Mod creates
isomorphisms we obtain χL = χ2.

EXAMPLE 13. (cf. [18]) Let C = Z φ Z / , z be the Z-coalgebra
with the following structure:

ε(z, q) = z. (cp. (11) Ex. 1)

Then the category Comod-C of Z 0 Z/^Z-comodules is not abelian.
By applying Proposition 12 we have only to show that there exist
a C-comodule (M, χM) and subcomodules (N, χN) and (N, χ'N) of

1 Let k be a principal ideal domain. Then a ^-module M is flat if and only if M
is torsion free (cf. [4] § 24 Prop. 3 (iΠ).
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(M, χM) with χN Φ χr

N. The following example was given in [18].
Take

and

N = Z/nZ; χ'N(z) = z ( x ) l + ϊ ( x ) z .

Then the inclusion i: Z/nZ—+Q/Z:z-+(z/n) is a comodule homo-
morphism for χN and χ'N. Since χN Φ χ'N we obtian that Comod-C
is not abelian.

Conjecture 14. Comod-C is abelian if and only if C is flat.

In order to prove this conjecture one has to show that if
Comod-C is abelian then the comodule monomorphisms are injective
(cf. Proposition 8).

In [9], P. Freyd proves the existence of free abelian categories.
He does it by taking a category C and embedding it into a large
ambient abelian category. He then constructs the smallest exact sub-
category containing C. The external version of this construction was
made by M. Alderman in [1]. He gives an explicit description of
free abelian categories. I'll take up Alderman's construction and
will show that the category Comod-C (for every coalgebra C) can
be fully and faithfully embedded into an AB-4 category with enough
projectives and injectives, the free abelian category over Comod-C
which in general fails to be a Grothendieck category.

Let us now recall Alderman's construction. Let A be an addi-
tive category. In the functor category A~~ define the following
equivalence relation:

/ ' / / ' ft,

A \φ k Ξ ψ i 1*
B'

iff there are maps hι:A~+Br and h2: A"-+B such that φ — ψ =
g'h^ + h2f, i.e., the two short complexes are homo topic. Then the
resulting category A^/= is denoted by Ab(A). Ab(A) is abelian
([1]). The functor IA: A-> Ab(A): A->(0-» A-+0) is obviously full
and faithful. Let now F be an additive functor from A to B with
B abelian. Then there is a unique exact functor F*: Ab(A)—>B
such that the diagram
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A -^U Ab(A)

\ \F*

B

commutes up to natural equivalence (cf. [1] Theorem 1.14).
Let now A be the additive category Comod-C.

THEOREM 15. Let C be a coalgebra. Then
(1) There exists an abelian category Ab (Comod-C) and a full

and faithful embedding

I: Comod-C > Ab (Comod-C)

such that every additive functor F: Comod-C —> B into an abelian
category B can be factored through an exact functor F*:Ab (Comod-C)—•
B (up to natural equivalence).

(2) Ab (Comod-C), the free abelian category over Comod-C, is
an ABA-category.

(3) The inclusion functor I preserves products and coproducts.
(4) The inclusion functor I preserves equalizers (coequalizers)

if and only if the equalizers (coequalizers) in Comod-C are coretrac-
tions (retractions).

(5) Ab (Comod-C) has sufficiently many projectives and injec-
tives.

As immediate consequences of this theorem we obtain the follow-
ing two theorems by applying the special adjoint functor theorem:

THEOREM 16 (Notation as above). The following statements are
equivalent.

( i ) Comod-C is a corefiective subcategory of Ab (Comod-C).
(ii) The inclusion functor I: Comod-C—• Ab (Comod-C) preserves

epimorphisms.
(iii) Every epimorphism in Comod-C is a retraction.
(iv) Every object in Comod-C is projective.
THEOREM 17 (Notation as above). The following statements are

equivalent:
( i ) The inclusion I: Comod-C—> Ab (Comod-C) is an iso-

morphism.
(ii) Every object in Comod-C is injective.
(iii) Every monomorphism in Comod-C is a coretraction. If

(i)-(iii) are fulfilled then Comod-C is a spectral category.

REMARK 18. If Comod-C is an abelian category then the
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statements of the above two theorems are equivalent. But if
Comod-C is not abelian then these conditions need not to be equivalent.

Proof of Theorem 15. We have to prove (2), (3), (4) since the
other statements were proved in [1].

(2) Let Ml — ^ Mt — ^ Mϊ, ie I, be a family of Ab (Comod-C)-
objects. Then

TiJΓ* •" TiJΓ f ί T i l "

M[ > Mt > Ml'

is the coproduct of these family in Ab (Comod-C) as one easily
shows, where m'if mt and m", ίe I are the corresponding coproducts
of the objects M'i9 Mi and M" in Comod-C. Hence Ab (Comod-C) is
cocomplete, i.e., an AB-3 category. In order to show that
Ab (Comod-C) is an AB4-category we have to show that for any
family {ft: {Mx) —* (-ΛΓ*)} of monomorphisms in Ab (Comod-C), the
morphism ]Lft is also a monomorphism.

LEMMA 19 ([1] Theorem 1.1 or [8] Lemma β.l).
(1) The equalizer of

N' -^-> N -?-+ N"

is given by

' / ' o\ (ψ -Qf

MφN' AL—> ΛΓ0 M"

(1, 0) | ( 1 , 0) | ( 0 , 1 )

M' > M > M"

and the coequalizer by

N' °—* N 9 > N"

1010
N' 0 M > iV0 M" > N" 0 M" .

.0 - / / VO - 1
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Since Ab (Comod-C) is an abelian category we obtain at once the
following criterίum.

LEMMA 20. Let

(<p) = \P' \Ψ \Ψ"

N' -^-* N-2-+ N"

be a morphism in Ab (Comod-C). Then
(1) (φ) is a monomorphism if and only if there are morphisms

ψ': N' > ikf, q: M > M'

q": M" • M and ψ: N > M such that

and

(2) (φ) is an epimorphism if and only if there are morphisms

p: N > N', p": N" > N,

δ: N > M and δ: N" > M" such that

g'-p + p"g + φ δ = id^

δ"g+f δ = O.

The construction of coproducts in Ab (Comod-C) and Lemma (20) 1
show immediately that Ab (Comod-C) is an A#4-category.

(3) Trivial.
(4) Let f:M-+N an equalizer in Comod-C and assume that I

preserves this equalizer
Consider the following diagram

0 >M >0

f

0 >N >0.

Then (/) is a monomorphism in Ab (Comod-C) if and only if there
exists a morphism g:N-+M such that g f =idM, i.e., if / is a
coretraction (Lemma 20.1). In the same vein one shows by applying
Lemma 20.2 that / is an epimorphism if and only if / is a retrac-
tion Comod-C. This completes our proof.
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REMARK 21. (1) Ab (Comod-C) is an ABi*-Category. Let C
be a coalgebra. Then Comod-C is complete by Corollary 26. Now
in the same vein as above one shows that Ab (Gomod-C) has products
which are the pointwise ones. Hence Ab (Comod-C) is an Ai33*-
category. From the construction of products and the characteriza-
tion of epimorphisms by Lemma 20.2 we obtain that Ab (Comod-C)
is an AB4*-category.

(2) Ab (Comod-C) is, in general, not a Grothendieck category.
Take Z with the trivial coalgebra structure. Then Comod-Z is
isomorphic to Z-Mod, the category of abelian groups. Assume
Ab (Comod-Z) = Ab (Z-Mod) is a Grothendieck category. Since
Ab (Z-Mod) is an AB3*-category by 21 1, Ab (Z-Mod) is a C2-category
(Mitchell [12]), i.e., for any set (Mt) of objects in Ab (Z-Mod) the
canonical morphism

m: MMi > Tiki,

is a monomorphism. Take now Mn = Z for ne N. Then the canonical
morphism

. ii πr 5f(W) v Λ

0 > ΊΓNZ- ZN >0

is the image of the canonical morphism m: Z{N) —* ZN. Then I{m)
is a monomorphism in Ab (Z-Mod) if and only if the canonical
morphism m: Z(ΛΓ) —• ZN is a core traction. Consider now the canonical
projection p: ZN -+ ZN/Zm and the element x = (2n; neN)e Z\ Then
the image p(x) is obviously divisible by every power of 2. Since
an element (xt; i e I) in Z1 is divisible if and only if all components
x are divisible in Z we obtain that ZN\Z{N) cannot be embedded in
a product Z1. Hence the monomorphism m: 0 —* Z(ΛΓ) —• ZN is not
split, i.e., no coretraction and therefore /(/) is no monomorphism in
Ab (Z-Mod). Hence Ab (Comod-Z) is not a Grothendieck category.

Next I will prove that Comod-C has a generator where C is an
arbitrary coalgebra. The existence of a generator in Comod-C where
C is flat was proved by Saavedra [15] 2.07. But his proof cannot
be generalized. The following proof uses Barr's results in [3[ and
is in fact an imitation of his proof of the existence of a set of
generators in the category of coalgebras over a commutative ring.

A submodule UczM of a module M is called a pure submodule of
M provided that for any module N ί7(x)ΛΓ—*Af(x)JVis a monomorphism.

PROPOSITION 22 (Barr [3] 1.3). Given UczM there is an C7*cilί
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such that Ud £7* such that U* is a pure submodule of M, and
such that

card (U*) £ max (card (U), card (ft), χ0) .2

THEOREM 23. Le£ <Λf, χ> δβ a C-comodule, U a submodule of
M. Then there is a subcomodule M' aM such that UaM' and

card (Mf) ^ max (card U, card k, ^ 0 )

Proof. Let (M, χ> be a C-comodule. A ά-submodule U of M
is called χ-invariant if χ(U) czi® C (U(x) C) where i: U—+M is the
inclusions. Let Z7 be a submodule of ikf. For each ue U choose a
representation

χ(u) = Σ m, (x) C< .

Let 17' be the submodule generated by all mt and the elements of
U. Then UcU'ciM, χ(U) = Σ^Um,® C.ei® C(Uf (g) C) and
card (CΓ) ^ max (card U, card &, χ0).

Now iterate the above process in order to get a sequence

Ua I Γ c Z7"c . . . c f/(w) c .

such that χ(U(n)) c i (g) C(C7(%+1) (g) C). Define U = {Jne* U{n). Then
U is a submodule of M such that Ud U such that J7 is χ-invariant
and such that card (U) S max (card £7, cardft, χo) Next we define
the following sequence of submodule of M

Un — Un~~i when n is odd

and

Un = [/„_! when n is even ,

where U*^ is "the" pure submodule of M containing £/„_! (—> Pro-
position 22). Then let M' = U Un. Then M' c M is a pure sub-
module of M which is χ-invariant. Hence χ(Mr) czM' ® C and
<ikF, χ> is a subcomodule of <Λf, χ>. The cardinality conclusion is
obvious.

THEOREM 24. ϊ%e C-comodule whose cardinality ^ max (card Λ, ^ 0 )
generate the category Comod-C In particular Comod-C has a
generator.

Proof. Let /, g: <M, χM) zX <JV, χ#> be two different comodule
homomorphisms. Then there exists an element meM such that

2 card (X) means the cardinality of the set X.
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f(m) Φ g(m). Then by Theorem 22 there exists a subcomodule M'
containing the submodule generated by m;

<m>.cΛf'cΛf. Furthermore card <m> ̂  card k. Hence card AT ^

max (card k, χ0) and f,Φ gt: (Mf, χM,) Λ <Λf, χM} zX (N, χN).
9

EXAMPLE 25. Let C = Z 0 Q/Z. Then the "set" of denumerable
Z 0 Q/Z-comodules generates the category Comod-ZQ/Z.

Since Comod-C is cocomplete, cowellpowered and has a generator
we obtain by applying the special functor theorem [cf. [13] p. 114
Corollary].

COROLLARY 26. The category Comod-C is complete. Moreover
Comod-C is locally presentable in the sense of Gabriel-Ulmer.2

This Corollary shows only the existence of arbitrary limits in
Comod-C but gives us no explicit description. Our next step will
be therefore to describe explicitly the limits. This was not known
even in the case where & is a field. We apply Linton's techniques
of constructing colimits in an Eilenberg-Moore category over Sets
(cf. [14] Chap. 21)

Construction of limits in Comod-C 27. Let / be a small category
and D: /—> Comod-C be a diagram. Let (lim UD, φ) be the limit of
UD in Λ -Mod and (lim (— (x) C U-D, f) the limit of -&CU-D in
Λ-Mod. If / is void then lim D is the zero comodule. Now let / be
nonvoid. Let η: IdCθmoa-c —> ~ (B) C U be the f unctorial morphism
defined by

χ = η((M, χ » : <Af, χ> >{M® C, M® A)

M Z—

X M®Δ

? • M (x) C (x) C

Then there is exactly one Λ-morphism

ψ\ \\m(UD) > lim ( - (x) C ί/D)

such that the following diagram commutes:

UD -̂> Diag (lim UD)

U*η*D — Diag (η*)

- (x) C U-D-^> Diag (lim - <g) Cί7D)
3 The set of generators in Comod-C is Ki-presentable-(Ulmer).
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where Diag is the diagonal functor.
Let lim UD = M and Km - ®C U-D = N. Then there exists

exactly one fc-morphism φ*: M® C—• N such that — ® C * 9 =
α̂  Diag (<£>*). We claim that 37* is a monomorphism. Consider

Diag(/) Diao ίy}*}
Diag (X) = = ϊ Diag (M) J^Sll, Diag (iSΓ)

Diag(g) I I

Γ = Γ
UD _J^!^_ Θ C . tΛZ)

where/, #: X-+M are fc-morphisms with η*.f = η.g. Since (Ϊ7, — (x)C)
is an adjoint functor pair U*r] is a coretraction and hence also
U*η*D. Thus we obtain φ Diag (/) = φ Diag (g) and hence f=g
since φ is a universal morphism.

Consider now the cof ree comodules (M(x) C, M® Δ) and (N® C,
N(g)4) and the comodule homomorphisms

φ* ®C-M®Δf η* ®

Let (K, Xκ)™(M(g)C, M® J> = = = = : (iNΓ(x) C, N® A} be an
equalizer of (57* (x) C, ^* (g) M(x) J). Then <iΓ, X*> is the limit of D
in Comod-C.

This is now shown in several steps (cf. [16] 21. 2. 10).

EXAMPLE 28. Let C be a flat coalgebra. Then the finite limits
and in particular the equalizers in Comod-C are formed in Zc-Mod.
We want now to compute the products in Comod-C. Let (Mi9 Xi);
iel, be a family of C-comodules. Denote by ΠMi the product of
the underlying ά-modules and by ΠMi ® C the product of the
^-modules Jf< ® C. Then we obtain two canonical morphisms rf
and φ* defined by the universal property of ΠMi ® C:

-=,*| Z i = \πXi=7'

Mt <^- ΠMI

and

V
with φ*((mt) (x) c) = (m, (g) c) and 57*(m4) = (Xi{mτ)). Then the equalizer
of
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(ΠM{) <g> C = = = : (ΠMt (g) C) <g) C

is the product of the family <Λf<, χ{) in Comod-C, i.e.,

Π <M(, χ<> = ] Σ mk®Cke (ΠM()(g) C; Σ (χ«(mf))® C4
Comod-C \ finite finite

= Σ Σ (mi <g> σ i ( 1 )) ® c»
finite (C )̂

where mfc = (m!-)iel and z/Cfc = Σ ί ^ C t d ) ® Ck{2) with the comodule
structure induced by the comodule structure (TIM?) ® J and (771^ (x)
ε(ΠMi) (x) C. The projections P; are given by the following assign-
ments.

Π <Af*,Z*> > <Λf<, Xi) Σ
d fi

Π < * , Z * > < < , Xi) Σ
Cmod-C finite

Let us now consider the functorial morphism (functorial in C)

λ: λ -Mod (Λf, iV® C) > k-Mod (C* (g) Λf, N)

defined by λ(/)(c* ® m) = (1 (x) c*)/(m) where C* - Λ-Mod (C, k). If
C is a coalgebra then C* is a Λ-algebra with the multiplication

and unit e(c) = ε(c). (cf. [14]) Let C be a coalgebra and (M, χ: M-+
Λf®C> a comodule. Then ilf is a C*-left module with multiplica-
tion: λ(χ): C* (x) ikf —* M. The assignments

λ: Comod-C > C*-Mod

(M, χ) i > <ikf, λ(χ)>

/• >f

define a functor (cf. [14]).

THEOREM 29. λ: Comod-C-^ C*-Mod is comonadίc. In particular
λ has a right adjoint.

Proof. Since Comod-C is cocomplete, cowellpowered and has a
generator, λ has a right-adjoint if and only if λ preserves colimits
(special adjoint functor theorem). Let

(Mi9Xi)^U(co\imMif χ)

be a colimit diagram in Comod-C. Then λ(χ): C* (x)colim Mt —>
colim Mi is a colimit of (Mif λ(χ,)>, i e 7, as one easily computes.
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Hence λ preserves colimits and thus has a right adjoint. Next I'll
show that λ creates equalizer of λ-contractible pairs. Let /, g: (A,
χA) ZX <JB, χB} be a pair of λ-contractible Comod-C morphisms and
m: K-+ A be an equalizer of /, g: (A, X(χA))zt(B, λ(χB)> in C*-Mod.
Then there exist C*-module homomorphisms h: (B, MχB)) —* (A, λ(χj>
and k: (A, λ(χj> -* K such that the following diagram commutes:

Since functors preserve equalizers of contractible pairs, K—>AzXB
g

is an equalizer of the contractible pair (/, g) in &-Mod. Since

U: Comod-C -+&-Mod is comonadic, K carries a comodule structure

lκ such that (K, χκ) ^ (A, χA) ZX (B, χB) is an equalizer diagram in
Comod-C. Hence λ
hence is comonadic.

g

Comod-C Hence λ creates equalizers of λ-contractible pairs and

REMARKS 30. (1) The fact that λ creates equalizers of λ-
contractible pairs follows also from the following:

LEMMA. Let f, g(A, χA) zX (B, χB) be a pair of comodule homo-

morphisms and K—>AzZB the equalizer of f, g in ά-Mod. // m is
g

a coretraetion in fc-Mod then K carries a comodule structure Xκ

such that

is an equalizer diagram in Comod-C.

Let m be an equalizer of a λ-contractible pair /, g. Then m is
a coretraetion in λ -Mod and hence an equalizer in Comod-C, i.e., λ
creates equalizers of λ-contractible pairs.

(2) The fact that λ is comonadic follows immediately from the
following Dubuc-triangle
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Comod-C-^->C*-Mod

&-Mod

where U and V are the underlying functors. Since U and V are
comonadic and Comod-C has equalizer, λ is also comonadic (cf. [20]
Proposition 6.11).

(3) If C is finite (= finitely generated and protective) then
λ: Comod-C—• C*-Mod is an isomorphism of categories (cf. [14]).

The next proposition solves the problem of the existence of free
comodules i.e. answers the following question: For which coalgebras
C does the forgetful functor V: Comod-C—> Sets have a left-adjoint?

PROPOSITION 31. The following statements are equivalent:
( i ) The forgetful functor V: Comod-C —* Sets has a left-

adjoint.
(ii) C is finite i.e. finitely generated and protective.
(iii) — (x) C: &-Mod —* Λ-Mod preserves limits.
(iv) λ: Comod-C—> C*-Mod has a left-adjoint.
(v) U: Comod-C—>&-Mod preserves limits.

If one of these conditions is fulfilled then λ: Comod-C—* C*-Mod is
an isomorphism.

Proof. The equivalences (i) «-* (iii) *-*> (iv) <-> (v) are categorical
routine. The equivalence (iii)«-»(ii) follows from the well-known
fact that — (x) C preserves limits if and only if C is finitely presented
and flat or equivalently if C is finitely generated and prejective. If
one of these conditions is fulfilled then λ is an isomorphism by
(30.3).

Description of the free C-comodules 32. Let C be a finitely
generated and protective coalgebra. The above proposition gives us
the following explicit description of the free C-comodules: Let X be
an arbitrary set. Then the free C-comodule FX generated by X is
given by FX = φ z C* where C* has the "canonical" C-comodule
structure.

COROLLARY 33. Notation as above. The functor λ: Comod-C—>
C*-Mod is an isomorphism if and only if C is finitely generated
and projective.

Next we consider factorizations in Comod-C. Let us first recall
some of the basic notions and propositions (cf. [20]). Let A be a
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category. For two ^4-morphisms e: A—*B and m:C—*D we write
e I m if every commutative diagram

AB

\/Λ
C >D

m

can be made commutative by a unique morphism w: B-* C. Let P
be any class of JL-morphisms. Then p τ resp. pι shall denote the
following classes of ^4-morphisms.

Pτ = {e; e I m for all me P}

p{ — {m; e\m for all e e P} .

A pair (E, M) of classes E and M of ^1-morphisms is a prefactriza-
tion in L̂ if E = M^ and M—Eι. A prefactorization (E, M) is
called a factorization in A if every morphism / in 4̂. is of the form
f=m e with meM and eeJ^. A factorization (E, M) is proper if
every βe £7 is an epimorphism and every me M is a monomorphism.
Hence a proper factorization on A is the same thing as a bicate-
gorical structure in the sense of Isbell. We say that a category A
has a M-factorization if A has a (M\ M>factorization. Let K and
L be categories with factrizations Mκ resp. ikίL. A functor F.K—+L
is said top reserve Mκ-tactorizations if F(Mκ)aML and F(M£)(zM£.
F is said to reflect Mr-factorizations if ^ ( M x ) ikf* and F~\M£)<zMi.
Let fZxCMorίΓ with Iso (lίΓ)c-ίZχ and Jϊ^ Iso (K)cHκ. A functor
F:K—+L is said to create Hκ-factor izations from ML-fact or izations
if for all / e Mor K with

J P / = mLeL, mL e ML, eL e ikfL

τ

there is a unique factorization / ' = mκ-eκ in R with FmK = mL,
Feκ = eL, mκ e Hκ, eκ e I.

PROPOSITION 34. Let K be a cocomplete, cowellpowered category.
Then K has an (epi, extremal mono)-factorίzation i.e., a factoriza-
tion (E, M) where E is the class of all epimorphίsms and M is the
class of all extremal monomorphisms (Isbell-Kennison).

Hence the category Comod-C has at least one proper factorization.

PROPOSITION 35. Let (E, M) be a proper factorization in
Comod-C. Then the following statement are equivalent.

( i ) The underlying functor U: Comod-C —> A -Mod preserves the
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factorization.
(ii) U is exact.
(iii) C is flat.

Proof. Since (ii) and (iii) are equivalent by Proposition 8 and
since the implication (iii) —* (i) is trivial we have only to prove (i) —*
(iii). Let Ek resp. Mk be the class of all epimorphisms resp. mono-
morphisms in A -Mod. Since U preserves the factorization and U
reflects isomorphisms we obtain that E = U~\Ek) and M = U~ι(Mk).
Since U(E)czEk and - (x) C is right adjoint to U we get (Mk) (x) CaM.
Hence we get for the functor — (x) C: k-Moά —> λ -Mod

(Mk) (x) C - U{- (x) C){Mk) c (M) c Mk

i.e., — (x) C preserves monomorphisms.

COROLLARY 36. The underlying functor U: Comod-C -* /b-Mod
creates factorizations from Ek-factorizations in fc-Mod if and only
if C is flat.

Proposition 35 shows that, if C is not flat, then an arbitrary
C-comodule homomorphism can not be factorized through a surjec-
tive comodule homomorphism and an injective comodule homo-
morphism. In particular the canonical (epi-mono)-factorization of a
comodule homomorphism in λ -Mod cannot be lifted to a factorization
in Comod-C. In the sequel {E, M) shall always denote the proper
factorization (epi, extremal mono) on Comod-C. Words as epimor-
phism, monomorphism, generator, wellpowered are used in a sense
relative to {E, M).

PROPOSITION 37. Comod-C is wellpowered relative to the factori-
zation (epi, extremal mono).4

Proof. In the same vein as the proof for Proposition 10.6.3
in [16].

For the rest of this paper we will use the property that the
category &-Mod is a symmetrical monoidal closed category with
respect to the tensor product, and that Comod-C is an enriched
category over /b-Mod. In the following we will study the left
adjoints of the &-Mod-representable functors called tensors and
cotensors. They provide a characterisation of certain constructions
which is not available in an ordinary set based approach. Cotensors
will play an important role in duality theory (i.e. Gelfand theory)

4 Comod-C is even wellpowered with respect to all monos.
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as it will be shown in part II of the present work. We use the
language in [6].

Comod-C is a A -Mod-category. The internal Hom-functor [, ]:
Comod-Cop x Comod-C — Λ -Mod is gived by [M, N] = Comod-C(ikf, N).
The pair of adjoint functors Comod-C ̂ 1 k-Mod is a pair of Λ-Mod-
functors. In the sequel we call /b-Mod-functors A -linear functors.

PROPOSITION 38. The category Comod-C is tensored i.e. for
every k-module M and every C-comodule X the functor Comod-C —•
k-Moά: Y h-> λ>Mod (M, Comod-C(X, Y)) is representable over A -Mod.

Proof. Let Mek-Mod and Xe Comod-C. The J l ί ® I is a C-
comodule. The rest follows from the canonical ά-linear isomorphism

Comod-C(Af(x) X, Y) = &-Mod(M, Comod-C(X, Y)).

COROLLARY 39. The cofree k-linear functor — (g) C: k-Mod —•
Comod-C has a k-linear right adjoint functor represented by the k-
linear functor Comod-C(C, —).

PROPOSITION 40. The category Comod-C is cotensored i.e. for
every Mek-Mod and X e Comod-C the functor Comod-Cop —> &-Mod:

Λ-Mod (M, Comod(F, X)) is representable.

Proof. Since Comod-C is a tensored category Comod-C is
cotensored if and only if for every ^-module M the A -linear functor
FM: Λf® ~ : Comod-C -^Comod-C has a fc-linear right adjoint. Let
N(g)X be a tensor with Nek-M.oά and X e Comod-C as above.
Then FM(N®X) = M® (N®X) ^ JV® (AT® JSΓ) = N®FM(X). Hence
FM is a tensor preserving functor in the sense of [6]. Since FM

preserves colimits, FM has a right adjoint by the Special Adjoint
Functor Theorem. Since FM preserves tensors the right adjoint
Comod-C (M, —) is a ά-linear functor and the representation Comod-C
(X, Comod-C (M, X)) = Comoά-C(M ® X, Γ) = k-Moά (M, Comod (X, Y))
is fe-linear.

COROLLARY 41. Comod-C is k-Moά-com,plete and k-Mod-cocomplete.

Let f:C-+C be a coalgebra morphism. Then / induceds a
functor / * : Comod-C—•Comod-C by the assignment (M,χM)h->
(M, 1 ®fχM). Then / * is obviously a Λ-linear functor. By [15] 21.2.1
the mapping / H > / * induces a bijection between Coalg(C, C ) and
the "set" of all functors φ: Comod-C —• Comod-C with Uc = TJCιφ.

PROPOSITION 42. Let f:C~+C be a coalgebra morphism. Then
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(1) / * preserves tensors.
(2) / * has a k-linear right adjoint /*.

Proof. The assertion 1 is trivial. Since / * preserves colimits
it has a right adjoint by the Special Adjoint Functor Theorem.
Since / * preserves tensors the right adjoint is fc-linear.

Description of the functor /* 43. Let M be a C-right comodule
and N a C-left comodule. The tensor coproduct of M and JV under C
denoted by M (x)c N is given by the following equalizer digram in
fc-Mod.

N —

Then if f:C—>C is a coalgebra morphism between flat coalgebras
C and C" the functor /*: Comod-C —>Comod-C is given by the
following assignment /*(M", χM) = (ikf®*7 C, 1M®° A).

Final Observation 44. In the same vein as I studied the category
of comodules for a fixed coalgebra one can study the category
Comod of all comodules i.e. pairs ((M, χM), C) where (ikf, χM) is a
comodule over C. One obtains similar results. The starting point
for the study of this category is the following theorem

THEOREM 45. The underlying functor

U: Comod • fe-Mod x fc-Coalg: ((Af, χM), C) i > (M, C)

is comonadic.

This note was written during my visit to the University of
California at San Diego. I would like to thank in particular
Professor Helmut Rδhrl for his hospitality and the stimulating dis-
cussions on this paper. Furthermore I am indebted to Professor
Bodo Pareigis for stimulating the study of comodules over an
arbitrary coalgebra.
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