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COMPLEX VECTOR FIELDS AND DIVISIBLE
CHERN CLASSES

RoBERT D. LITTLE

This paper contains two theorems which relate the maximal
number of independent sections of a complex bundle over a
manifold to the Chern classes of the bundle and certain
functional cohomology operations. The main theoretical result
of the paper is a formula which relates the obstruction to a lifting
in a fibration and a functional cohomology operation.

1. Introduction. Let M be a connected, closed, orientable,
smooth manifold of dimension 2n. If w is a complex n-plane bundle
over M, the complex span of w is the maximal number of cross-sections
of w which are linearly independent over the complex numbers. In this
paper, we consider the following question: when is complex span w = q?
Hopf’s theorem says that complex span >0 if and only if w has
vanishing Euler class and the theorems of Thomas ([10] and [11]) give an
effective answer in the case ¢ =2. We study this problem in the cases
q =3,4 and establish theorems which give necessary and sufficient
conditions for complex span w = ¢ in terms of the Chern classes of @ and
certain functional cohomology operations. The Chern class of w in
H*(M;Z) is denoted by ¢, (w). If §,P' denotes the Steenrod p-power
P! followed by the Bockstein associated with reduction mod p, 6,P.(c(i —
p + 1)) denotes a subset of a functional operation defined on the universal
Chern class ¢ (i — p + 1) and contained in H* (M ; Z). This subset will be
described in the second section of this paper. If p is a prime, M is
j-connected mod p if H,(M;Z,)=0,1=i=j. Inboth theoremsbelow,
M is 1-connected mod 2 and 3.

THEOREM 1. If n is even, n =6, then complex span w =3 if and
only if c (w)=0, n—2=i=n, and 0€ 8Sq>(c(n —2)).

THEOREM 2. Ifnisodd, n# 1(mod 3), n =9, and M is 3-connected
mod 2, then complex span o =4 if and only if ¢, (w)=0, n—-3=i=n,
0€ 8S8q.(c(n —3)), and 0 € 8P, (c(n —3)).

In Theorem 1, if n# 0(mod 3), and n = 2(mod 4), the connectedness
hypothesis can be dropped. Thomas and Gilmore [11] show that if M is
3-connected, then for every n, complex span w =3 if and only if
ciolw)=0 and c,(w)=0. Gilmore [2] proves theorems similar to
Theorems 1 and 2 in which he assumes that H,(M;Z) and H(M; Z),
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respectively, have no elements of order 2. For the specified values of n,
our theorems contain the results of Thomas and Gilmore, because the
operation §,P.(c(i —p + 1)) is a set of elements of order p and hence
must vanish if H*(M; Z) has no p-torsion. If M is an almost-complex
manifold with almost-complex structure w, our theorems relate the
complex span of M to the Chern classes of M and the functional
operations.

2. Obstruction formulas. Letthe map f: M — BU(n) clas-
sify . It is clear that complex span w = ¢q if and only if f lifts to the
total space of the fibration W,, — BU(n — q)— BU(n) where W, is the
Stiefel variety of complex g-frames in complex n-space. We will apply
two obstruction formulas to this lifting problem. The first formula is
due to Olum [8]. If w: E— B is a fibration with fiber F, ¢ in
H""'(F; G) a class transgressing to d in H*(B; G), X a CW complex
and f: X — B a map such that the lifting obstruction O"(f) is nonvoid,
then

2.1) — ¢ 0" (f)=f"d,

where ¢.: H*(X; m.-(F))— H"(X; G) is induced by c,: m,(F)— G,
the composite of the Hurewicz homomorphism and evaluation.

The second formula is the main theoretical result of this paper. We
assume that there is a class a in H* **'(F; Z) such that 6P'a =0 and a is
the only class transgressing to b, where f*b =0 and P'b =0 (mod
integral classes in kernel #* M kernel f*). Under these hypotheses,
there are liftings f,: F—>K(Z,n—2p+1;Z,n—1,8P') and f,: B
—K(Z,n~2p +2;Z,n,6P") of a and b, where the range spaces are
two-stage Postnikov systems induced by 8P'. In [3], we show that the
set {f.»: m,.1(F)—Z} is a congruence class modulo the image of the
Hurewicz homomorphism and for every [g] in m,_(F), f.«[g] € 6P;(a),
where 8P is the standard functional operation. (See [6], p. 157.)
Therefore the induced homomorphism f,.: H*(X; m,_(F))— H"(X; Z)
can be effectively computed in some cases. In the proposition below, ¢
denotes the fundamental class of K(Z,n —2p +2;Z,n, 6P') and we
assume that H"(E;Z) and H"(B;Z) are torsion free.

ProrosiTioN 2.2. If w: E— B is a fibration satisfying the above

hypotheses and p is a prime such that n =Z2(2p — 1), then we have
containments

(2.3) ' f-O"(f) = 8P} {v) = 8P}(b).

Note that (2.3) shows that the obstruction is contained in the
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operation 8P;(b). A general result of this kind was obtained by
Meyer. (See [S], §13.) It will be clear in the proof of (2.2) that the
indeterminacy of 8P}, is image 6P, and so (2.3) expesses the obstruction
as an operation with smaller indeterminacy than the indeterminacy of
6P}, image (8P'+f*). Proposition 2.2 will follow from the next
lemma. In the proof of the lemma, the reduction mod p of an integral
class 6 will be denoted by 6.

LEmMMA 2.4.  The composite f,m is homotopically trivial.

Proof. Let K=K(Z,n—-2p+2;Z,n 8P"). If nz=22p-1),
H"(K; Z) is isomorphic to Z modulo finite groups with a free generator 6
such that 6,: m, (K)—> Z is multiplication by p and § = P's. These facts
follow immediately from the long exact homotopy and Serre cohomology
sequences for the fibration K — K(Z,n —2p +2) and the Hurewicz
theorem modulo finite groups. Since (fy)*t = 7w*b = 0, because b is in
the image of the transgression, O"(f,m, *) is nonvoid. It follows from
the hypotheses that f} 8 =0 (mod integral classes in kernel 7 * N kernel
f*) and from the properties of 6 and (4.4) in [8] that f;6 —f,*6 =
pO"(f, fi) for any two liftings of b. Therefore, after alteration by an
n-cocycle, we may assume f} 6 € kernel 7* N kernel f* and so w*f} 60 =
0=pO"(fym *), and this implies f,7 is homotopically trivial since
H"(E;Z) has no torsion.

Lemma 2.4 implies the existence of a map of fibrations from the
fibration 7 into the path space fibration over K with fiber QK =
K(Z,n—-2p+1;Z,n—1,8P"). The map of fibers is a lifting of a,
f.o F—>K(Z,n—-2p+1,Z,n—1, 8P'), because we are assuming that a
is the only class transgressing to b. The map f,f lifts to the path space if
and only if it is homotopic to the constant map. We have taken care that
fi0 Eker f* and so (f.f)* has image zero in dimension n. Therefore
the obstruction to a homotopy of f,f to point is precisely 8P (v) (10.8
[7]) and the indeterminacy of 8P, is image 8P'. Formula (2.3) now
follows immediately from standard naturality properties of obstructions
and functional operations ([6], p. 157).

3. The proofs of Theorems 1 and 2. We begin with some
general remarks. The group H*(W,,;Z) is an exterior algebra with
generators a, in H* (W, ,;Z), n—q+1=k =n ([1], p. 444). The
space W, is 2(n — q)-connected and m; (W,,) is Z if i is odd and a finite
group if i is even as long as n is large, n —q is odd, 2=q =4, and
2(n—q)+1=i=2n-1. The necessary size of n is indicated in the
theorems. The group my,-42( W,.,) is zero and the other finite groups
are 2 or 3 torsion groups in this range of dimensions, [2]. Since the



486 ROBERT D. LITTLE

Hurewicz homomorphism h: m (W,,)— H,(W,,;Z) is a isomorphism
modulo finite abelian groups if i =4(n —gq), it sends a generator in
mu-1(W,,) into an integer m, #0, n —q + 1= k = n. These integers can
be computed using an inductive argument based on the fibration
W, ig-1i—= W,,— 8>, In particular, m,_,,,=1, m,,,=2 and the
prime divisors of the others are either 2 or 3, [4]. Since a, transgresses
to c(k), it follows from (2.1) that —m,O*(f)= c:(w). Thomas’
theorem [10] follows from this formula and the first two values of m,: if
M is arbitrary and n is odd, complex span w = 2 if and only if ¢; (w) =0,
n—1=i=n

Consider the lifting obstruction O*(f), where n—q+p=k =
n. In this range of dimensions, c(k —p + 1) is the image of a unique
class a,_,., under transgression and if ¢, (w) =0, P'c(k —p +1)=0 (mod
integral classes in kernel =*Nkernelf*), ([1], p. 429). Let
' BU()— K(Z,2(k —p +1); Z, 2k, 5P') be a lifting of c(k —p +1),
fopir: Wy — K(Z,2k —2p + 1, Z, 2k — 1, 8P") a lifting of a,_,.,, and set
8P, (c(k —p+1))=06P}i(v). If [g] in mu_(W,,) is a generator, then
fi-pr14l8] € 8P (ak-p+1), [3]. Since Pl'ay_,.. = u,(k)a,, where u,(k)=
k (mod p), ([1], p. 429), a direct computation of the operation 8P} (ax_,+1)
yields the equation fi_,..4[g]= u,(k)p~'mi(mod my). If ¢,(w) =0, then
mO*(f)=0 and the action of the homomorphisms f,_,,,. on the
obstruction is independent of the lifting. The next proposition follows
immediately from the above remarks and Proposition 2.2. The assump-
tion p =g forces the inequality of the proposition because we have
2q = n in our theorems.

ProrosITION 3.1. Let p be a prime such that p=q. If c,(w)=0
and m, =0(mod p), then

(3.2) w(k)p~'mO* (f) = 8P.(c(k —p +1)) = 86Pj(c(k —p+1)).

We now turn to the proof of Theorem 2. The proof of Theorem 1
will be discussed later. In addition to the properties of W,, mentioned
above, we will need the fact that the 3-component of m,,_(W,,) is zero if
n# 1(mod 3) [2] and some more precise information on the image of the
Hurewicz homomorphism h: my, 3(W,.)— H,,-3(W,4; Z), n odd and
n=9: m, ,=0(mod3) and m,_, #0(mod9) if n# 1(mod 3), [4].

The conditions in Theorem 2 are clearly necessary. The hypothesis
Co-s(w) =0 implies that O**~*(f) is nonvoid and because n is odd and
m,_, = 2, Proposition 3.1 implies that O*"*(f)= 8Sq2(c(n —3)). This
equation is an actual equality because the indeterminacy of O>™(f) is
image 8Sq° ([10], p. 191) which is the indeterminacy of 8Sq2(c(n — 3)).
Therefore the hypothesis 0 € 8Sq%(c(n —3)) is enough to imply that
O**(f) is nonvoid since n# 1(mod 3) means that m,,_(W,,) has no
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3-component and M is 3-connected mod 2. Since ¢, ,(w)=0 and
m,.,=0(mod 3), we have wui(n—1)3"'m,.,O0**(f)=68PL(c(n—23)),
where us(n — 1) # 0 because n# 1(mod 3). The proof of Theorem 2 will
be complete when we have shown that this equation is an actual equality,
because the other obstructions vanish by connectivity, Poincaré duality,
and ¢,(w)=0.

To establish equality, we work with the equation in the form
fo-n O (f)= O (f'f), where fost W= K(Z,2n - 7;Z,2n —
3,8P") and f: BU(n)— K(Z,2n — 6;Z,2n —2, 8P"') are liftings of a,-;
and c(n — 3), respectively. Let h and h be 2n — 3-liftings of f'f and f,
respectively, and let {¢*"2(h)} and {c**~*(h )} be the obstruction cohomol-
ogy classes determined by these liftings. We assert that h and h can be
altered in such a way that the obstruction class of h is unchanged and
foadc™(h)}={c**h)}. The argument begins by altering h by a
2n —7-cocycle v such that {v} = —30>7(f'h, h). The altered map h,
extends to a 2n — 3 lifting of f'f because of the homotopy of K(Z,2n —
7,Z,2n =3, 8P") and {c*"*(h)}—{c**(h,)}=6P'O*'(h,h,)= 6P v},
[91, so {c***h)}={c**h,)} by our choice of v. Note that

O2n—7(fl’,;, hy): O2n—-7(fl’,;’ h)+ OZ"_7(h, hv): _202n‘7(f1’:l—7 h).

The homomorphism f, 3. m5,-+(W,s)— Z is the identity and so we may
alter h by a 2n —7-cocycle a such that f, ,{a}={a}= O™ (f’ h,h,). If
h, is the altered map, O 7(h h,)= —20*" 7(fh h), and so
(e (h)y—{c(h,)} = 8Sq*0*" 7(h h.)=0. Therefore, h, extends to a
2n -3 lifting of f because {c**(h)}=0 and M is 3-connected mod
2. We have

02n~7(f:,;'m h,,) — Ozn~7(fzh_m f/ﬁ')+ 02n47(f/h” hv) =0

because 0> '(h,,h)= —{a}, and so f'h, is homotopic to h, in dimen-
sions less than 2n —3 and the difference formula for cocycles yields
fosd{c™(h, )} = {c**(h,)}. This completes the proof of equality and of
Theorem 2. The proof of Theorem 1 is exactly the same except that
there is no obstruction of order 3. The remark about the special case
n#0(mod 3), n =2(mod 4) follows from [2].

The problem of computing the operations 8P, seems difficult. The
following example shows that they are nontrivial invariants of the
sectioning problem on the level of complexes'. Let n be even, n Z6,
and let p: E— BU(n) be the first stage in the Postnikov system for the
fibration BU(n —3)— BU(n) and let p,;: E,— BU(n —2) be the first

' 1 am grateful to the referee for this example.
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stage in the system of the fibration BU(n —3)— BU(n —2). Let X be
the 2n — 1-skeleton of E, and w the bundle classified by the inclusion
BU(n —2)— BU(n) composed with p,. If k in H**E;Z) is the
k-invariant, then 2k = p*c(n —1) [10] and if s: E,— E is the natural
map, then s*k is in the image of the Bockstein mod 2. With these
observations, it is easy to see that o has the following properties:
¢(w)=0, n—2=i=n, complex span w =2, but 0& 8Sq.(c(n—2))
because X does not lift to BU(n — 3).
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