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CONTINUOUS LINEAR IMAGES OF PSEUDO-COMPLETE
LINEAR TOPOLOGICAL SPACES

AARON R. TODD

The various properties of topological spaces in the classical
Baire category theorems which imply the Baire property also
imply the stronger property of pseudo-completeness. In contrast
to some of these properties and to the Baire property, J. C.
Oxtoby has shown that pseudo-completeness is productive. The
following main result places pseudo-completeness in the context
of linear topological spaces: Let E and F be linear topological
spaces and g be a continuous linear mapping of E into F. If
E is pseudo-complete, g is almost open, and the completion of
g[E] has a continuous metric, then g[E] is complete. The proof
of this result uses the difference theorem, but not an open
mapping theorem. The hypotheses lead to a discussion of
conditions for a linear mapping to be almost open and for a
linear topological space to have a continuous metric.

An example shows that, although a translation invariant
continuous metric on a linear topological space E extends
to a translation invariant continuous pseudo-metric on the
completion of E, this extension need not be a metric, even
if it induces a normed topology on E. Othes examples show
that a pseudo-complete linear topological space need not be
complete in its natural uniformity, and that the almost
open condition of the main result may not be omitted and
is not implied by the combination of the other conditions
and the conclusion.

Pseudo-complete topological spaces, introduced by Oxtoby [8],
successfully bind together the classical Baire category theorems. They
have been the subject of recent work; Aarts and Lutzer [1], for
example, have shown that a metrizable space is pseudo-complete if
and only if it has a dense subspace which is topologically complete.
In the context of linear topological spaces, Todd [13] shows that,
under certain conditions, a linear topological space which is pseudo-
complete is complete in the natural uniformity. Theorem 3.1 extends
this result for the image of a pseudo-complete linear topological space
under a continuous linear almost open mapping; in contrast. Example
5.5 gives pseudo-complete locally convex linear topological spaces which
are not complete, and hence are not Ptak spaces.

From open mapping theorems arise restrictions on continuous
images of certain types of spaces. As an application of his open
mapping theorem, Banach ([2], p. 38), showed that the continuous
linear image of a complete metric linear space in a space of the same
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kind is either meager or the whole space. Robertson and Robertson
[9] extend this result in locally convex linear topological spaces by
use of fully complete or Ptak spaces. Note that a linear subspace
of a locally convex linear topological space which is not both dense
and barrelled is a meager subspace. Moreover, Ptak spaces include
Frechet spaces (complete metric linear spaces which are locally convex).
Thus the following modification of the Robertson and Robertson result
includes Banach's result restricted to Frechet spaces, but with a
more precise requirement than meagerness: If g is a continuous
linear mapping of a Ptak space E into a Hausdorff locally convex
linear topological space F, then g maps E onto F, if g[E] is both
dense in F and barrelled.

Recently, Saxon [11] has shown that each infinite dimensional
Banach space contains a dense barrelled subspace which is not Baire,
and so, as each must be proper, the above result implies that none
is a continuous linear image of a Ptak space. This is also true for
pseudo-complete locally convex linear topological space in place of
Ptak space. However, this result is not based on an open mapping
theorem, but rather on the difference theorem via Theorem 3.1; the
proof of this theorem is the main subject of § 3 which also contains
an extension of a result of Aarts and Lutzer. Section 4 discusses
the conditions of Theorem 3.1 and states some corollaries to it, while
§ 2 gives some definitions and earlier results, and § 5 contains examples
relating to Theorem 3.1.

2* Definitions and remarks* A topological space is quasi-regular
if and only if each nonempty open set contains the closure of a non-
empty open set. A family & of nonempty open sets is a pseudo-
base if and only if each nonempty open set contains an element of
&. Finally, a quasi-regular topological space is pseudo-complete if
and only if there is a sequence {0^ of pseudo-bases such that if the
terms of the sequence (Un) are elements of terms of {0?,), respec-
tively, and each U% contains the closure of Z7Λ+ι> then the intersection
Γ)nUn is nonempty.

A subset of a topological space is rare if its closure has no
interior, and is meager if it may be covered by a countable family
of rare sets. A topological space is a Baire space if and only if each
nonempty open set is not meager. The closure of a Baire subspace
of a topological space is a Baire space. In case E is a linear topol-
ogical space, E is a Baire space if and only if E is not meager.
Oxtoby [8] shows that each pseudo-complete space is a Baire space.

Each topologically complete metrizable space is pseudo-complete.
A linear topological space is regular, and so is quasi-regular. Todd
[13] shows that a linear metrizable space is pseudo-complete if and
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only if it is complete; however, a complete linear topological space
need not be pseudo-complete.

A mapping / from a topological space X to a topological space
Y is almost open if and only if (fN)~ Π (fX) is a neighborhood of

f(u) in the subspace (fX) of Y, whenever N is a neighborhood of u
in X An open mapping is defined in the same manner, but without
the closure used. The image of a Baire space under an almost open
continuous mapping is a Baire space. In case E and F are linear
topological spaces and g is a linear mapping of E onto F, the map-
ping g is almost open if and only if (gU)~ is a neighborhood of 0 in
F whenever U is a neighborhood of 0 in E.

A topological space X has a continuous metric if and only if
there is a metric on the set X which induces a topology on X weaker
than the topology of X. It is easy to see that a topological space
X has a continuous metric d if d is a metric on X and is continuous
as a function from X x X is the real numbers. Todd [13] shows
that a linear topological space E has a continuous translation invariant
metric if and only if E has a countable family of open sets which
intersects in a singleton.

For other terms, the paper generally follows Horvath [4] and
Kelley, Namioka, et al. [6], for example, A~* is the interior of the
closure of set A; however, locally convex linear topological space
shortens to convex space and the name of a topological property
follows "convex" and "linear."

3* Images of a linear pseudo-complete spaces* The main the-
orem follows.

THEOREM 3.1. The image of a linear pseudo-complete space under
a linear continuous almost open mapping is complete, if its comple-
tion has a continuous metric.

Proof. Let E be a linear topological space which is pseudo-com-
plete, g be a linear continuous almost open mapping from E to a
linear topological space F. We may suppose that F is the completion
of gE and let d be a continuous metric on F. Finally, suppose (&n)
is a sequence of pseudo-bases for E as in the definition of pseudo-
completeness.

Claim. There is a sequence (^n) with each <ĝ  a subfamily of
&n such that, with ^ 0 = {E}, for each k ^ 0,

(0) Uk = U {(QC)-*: Ce <Sffc} is dense in F,
( 1 ) {(gCy*: Ce^k) is a disjoint family,

for each C in ^ + 1 ,
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(2 ) cZ-diam (gC) < l/(k + 1), and
(3) some D in ^k contains C~.

Proof of claim. Clearly ^ 0 satisfies (0) and (1). Suppose m ^
- 1 , and <Sf0, , ^m+i satisfy (0) and (1) for 0 ^ k ^ m + 1 and
satisfy (2) and (3) for 0 <: k ^ m.

Let w = m + 1 and ^ be the family of all elements C of &n+ι

which satisfy (2) and (3) for k = n. Let ^ Λ + 1 be maximal among
subfamilies Ξf of ^ satisfying (1) for ^ replaced by 3ΐ.

Assume Un+ί = U {(ί/C)""*: C e ^ + i } is not dense in F. Since Un

is dense, there is an element D of ^ n such that (gDy^U^+i is non-
empty. Let V be a nonempty open subset of F with d-diam (F) <
l/(w + 1) and V~ contained in (gDy^U^. As V meets gD, there is
I? in &n+1 with β~ contained in D Π ^ - 1 F .

Now βfJ5 Π V~ c (gDY^Un+u thus d-diam (grβ) < l/(̂ ι + 1), and, as
B~ c f l 6 ^ f t , B is an element of ^ . Moreover, (gB)^ is in the com-
plement of Z7n+1, so 3Γ = ^n+1 U {B} is a subfamily of ^ satisfying
(1) for <g% replaced by 3f. From the maximality of ^ + 1 , JB is in
^t+i Hence {gBY* c ϊ7Λ+i, a contradiction as βr is almost open, and
5 is a nonempty open set.

Because g is almost open and continuous and E is a Baire space,
the completion F of gE is itself a Baire space. By (0) each Un is
dense and open in the Baire space F, so A — f\n Un is a dense Gδ

subset of F, and thus, necessarily, nonmeager in F. By the differ-
ence theorem (see Kelley-Namioda [6], 10.4, p. 92), the difference set
(A — A) is a neighborhood of 0 in F.

We now show each y in A is in gE, and hence gE equals F,
which will complete the proof. There are Cn e ^ with y in each
(gCn)~\ From (2), fL (0C«)~* = {vh For % fixed, there is D in ΐf;
containing C~+1 by (3). Now, we have

y e 0/C.r n tecur c tear n (gD)-*,

so CΛ = D by (1), and Cw contains C7+1 for each ^. From pseudo-
completeness there is an x in f\ Cn, and so, we have, since g is
almost open,

Therefore y is in gE.

This result generalizes the following result arising from [13]; the
proofs are similar.

COROLLARY 3.2. If the topology of the completion of a linear
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topological space E contains a countable family which intersects in
a singleton, then E is complete if it is pseudo-complete.

Proof. Existence of such a countable family is equivalent to the
existence of a continuous metric on the completion of E. To apply
the theorem, use the injection mapping of E into itself.

The claim in the proof of the theorem does not depend on line-
arity and may be used in proving the following extension of a theorem
of Aarts and Lutzer [1], where now almost open replaces open.

THEOREM 3.3 (Aarts and Lutzer). Suppose X is pseudo-complete
andf: X-+Yis continuous, onto and almost open. If Y is metrizable,
then Y contains a dense subspace which has a complete metric and
is zero-dimensional. In particular, Y is pseudo-complete.

4> The conditions* We now consider contexts in which almost
open mappings and continuous metrics arise.

A property of barrelled spaces F (see Horvath [4], Prop. 1, p.
296) is that each linear surjection of a convex space E onto F is
almost open; in fact, this property characterizes barrelled spaces. A
similar statement holds for ultra-barrelled spaces (see W. Robertson
[10]) in place of barrelled spaces and linear topological space in place
of convex space. Each linear Baire space is ultra-barrelled, and a
convex space which is ultra-barrelled is barrelled. Each of these
implications is strict ([10]). Interest in linear Baire spaces is further
enhanced by the following characterization of Saxon [12]: A linear
topological space is a Baire space if and only if no absorbing balanced
set is rare.

The following two corollaries of Theorem 3.1 follow without
difficulty from the above discussion.

COROLLARY 4.1. The image of a convex pseudo-complete space
under a linear continuous mapping is complete, if it is barrelled
and its completion has a continuous metric.

COROLLARY 4.2. The image of a linear pseudo-complete space
under a linear continuous mapping is complete, if it is an ultra-
barrelled space and its completion has a continuous metric.

Since a complete linear metrizable space is pseudo-complete, the
following gives the result of Banach discussed in the introduction,
but without use of the open mapping theorem.

COROLLARY 4.3. The linear continuous image of a linear pseudo-
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complete space in a linear metrizable space is either meager or the
whole space.

Proof. Suppose g:E-+F are as indicated. If gE is not meager
in F, then it is dense in F. Moreover, gE is not meager in itself,
hence gE is a Baire space, and so is ultra-barrelled. Therefore g is
almost open. As F is metrizable, its completion is metrizable, and
so the completion of gE has a continuous metric. Hence gE is com-
plete and, in particular, closed in F. Thus gE is F.

As may be seen, meager may be replaced in this corollary by
not both dense and ultra-barrelled or, in case the domain space is
convex, by not both dense and barrelled. Thus, for example, no
proper linear subspace of a Banach space which is both dense and
barrelled is the linear continuous image of a convex pseudo-complete
space.

Now let us consider contexts in which a linear topological space
has a continuous metric. Of course such a metric exists if the linear
topological space has a continuous semi-norm or continuous para-norm
which is 0 only at the zero of the space. However, the following is
more specific.

THEOREM 4.4. If a linear topological space E has a countable
total family of linear continuous functionals, then E has a continuous
metric.

Proof. Suppose (fn) is a sequence of linear continuous functionals
on E which is total, i.e. if fnx = 0 for all n, then x = 0. Now Umn =
{x e E: I fnx | < 1/m} gives a countable family of open sets whose
intersection f)mn Umn is a singleton. Therefore E has a continuous
metric.

(A more direct proof comes from consideration of the Frechet
combination d(x, y) = Σ *i 2"71 \f«(x - y) 1/(1 + | / (a? - y) |).)

Thus, for example, a linear Hausdorff space with a Schauder
basis (see McArthur [7]) has a continuous metric. Also, for E a
linear topological space with continuous dual E\ if Er contains a
countable total family, then any linear topology on E with the same
dual E' has a continuous metric; in particular, the weak topology
on E has a continuous metric. Clearly, the countable total family
of continuous functionals in Theorem 4.4 may be replaced by a
sequence (pn) of continuous para-norms for which pn(x) = 0, for all
n, implies x = 0.

Even a continuous norm on a normed linear space need not extend
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to a continuous norm on the completion of the space, as may be seen
in Example 5.8. However, a translation invariant continuous pseudo-
metric on a linear topological space extends uniquely to a continuous
pseudo-metric on the completion of the space. The result is essentially
a simple observation of uniform spaces, but we shall state it here
for linear topological spaces.

THEOREM 4.5. If linear topological space E has a translation
invariant continuous pseudo-metric d'9 then d' has a unique extension
d to the completion E~ of E which is a translation invariant con-
tinuous pseudo-metric on E~.

Proof. Clearly d':ExE—+R is uniformly continuous. From
Kelley ([5], Th. 26, p. 195), d' has a unique continuous extension d
to E~ x E~. It may be verified that d is a translation invariant
pseudo-metric on E~, and so a continuous pseudo-metric on ϋP.

Of interest are conditions under which a translation invariant
continuous metric which induces a linear topology, may be extended
to a continuous metric on the completion of a space. These are
essentially characterized by a result of W. Robertson [10], restated
here in terms of nets: Suppose that E is a linear Hausdorff space
under each of two topologies ξ and r], with ξ finer than η, and that
i is the identity mapping i: (E, ζ) Q (E, η). Then the extension i^
of i is a one-to-one mapping of (E, ξ)~ into (E, rj)^ if and only if
each Cauchy net in (E, ζ) which converges in (E, Ύ]) also converges in

(E, ξ).
With this, we obtain the following.

THEOREM 4.6. If d is a translation invariant continuous metric
on a linear topological space E which induces a linear topology on
E, then d has an extension to a continuous metric on the completion
E~ of E if and only if each Cauchy net in E which converges in
(E, d) also converges in E.

Proof. In the W. Robertson theorem, let ξ be the topology of
E and η be the linear metric topology induced on E by d. With
i: EQ (E, d)f the extension i~: E~ —» (E, d)^ of i is one-to-one if and
only if each Cauchy net in E which converges in (E, d) is convergent
in E.

Suppose the extension -P is one-to-one. In any case, (E, d)~ is a
linear metrizable space and the extension cΓ of d from (E, d) to (E, d)~
is a translation invariant metric inducing the topology of (E, d)~.
As i* is continuous and assumed one-to-one, d~{x, y) = d(i~x, ϊ^y) is
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a continuous metric on E~9 which is an extension of d on E to E~.
Now suppose d has an extension to a continuous metric d~ on

2ίP, and let (xa) be a Cauchy net in E which converges to x in (E, d).
The net (xa) converges to some y in £Γ\ and so

d~(x, y) = limα (?"(», αα) = limβ d(x, xa) = 0 .

Thus x = y, and (a?β) converges in E.

5* Examples and an open question* In [8], Oxtoby showed
that the Cartesian product of any family of pseudo-complete spaces
is pseudo-complete. In this section, we shall see that any product
of an uncountable family of nontrivial pseudocomplete spaces contain
proper dense subspaces which are pseudocomplete. Other examples
show the necessity of the almost open requirement of Theorem 3.1
and the difficulty of obtaining it even with all other properties of
Theorem 3.1 satisfied. The final example shows that a continuous
norm need not have a continuous extension to a norm. The paper
ends with an open question.

For the first objective, we shall need several technical proposi-
tions.

PROPOSITION 5.1. For each sequence (^n) of pseudo-bases of a
quasi-regular space X, there is a sequence (&») of pseudo-bases with
each &n a subfamily of ^ n and the family of closure of elements
of ^n+ι a refinement of &n.

Proof. We define (.^) by induction. Let ^ equal ^lf and
suppose we have ^ , , &n satisfying the requirements. Let &n+1 —
{Ce^n+ι: some H in &n contains C~). Let U be a nonempty open
subset of X. Now U contains some element B of &nt and, as X is
quasi-regular, B contains the closure of some nonempty open set V.
&n+1 is a pseudo-base, so some element C of ^ Λ + 1 is contained in V.
Now Uz)Bz) V~Z) VD C, hence U contains C and B contains C~~,
thus C is in &n+ί. Therefore &n+1 is a pseudo-base for X, and the
family of closures of elements of &n+ι refines &n.

PROPOSITION 5.2. If X is pseudo-complete and nonempty, then
there is a sequence (&n) of pseudo-bases of X as in the definition
of pseudo-completeness and such that each ^ n contains X.

Proof. Let (r^n) be a sequence of pseudo-bases for X which
satisfies the requirements of pseudo-completeness for X. Suppose
(0?Z) is a sequence of pseudo-bases related to ( ί^) as in Proposition
5.1, and let &n = ̂ {J{X}. We need only see, for any sequence (Un)
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of elements of the terms of ( ^ ) respectively, with each Un contain-
ing Un+ι, that the intersection f]nUn is nonempty. Should each Un

be X, then f\n Un = X Φ 0 . Otherwise, for some m, Um Φ X. As
each Un contains Un+1, each UkΦ X for k ^ m, and we may suppose
m > 2. Now each £7*. is in &l for k ^ m. As the family of closures
of elements of each &ή+1 refines £@l, there is an element F w _! of
^m_! with F w _! containing ?7™, and, by induction, elements Vk of
^ ' for k < m — 1, so that Ffc contains Vζix. Finally (Vn) with F n =
Un, for n^m, satisfies Vn e ^ and F , z> F~+1 so that f|» Un =
ΓU™ Ϊ7W contains (ΓU<W Ffc) Π (Π^m IT*) = ΠnVnΦ 0.

The following theorem and, especially, its corollary may be
compared with similar facts concerning barrelled, linear Baire and
other closely related spaces in Corollary 4.12 of [14].

THEOREM 5.3. Let X be a product of a family {Xf.jeJ} of
pseudo-complete spaces, and x0 be in X. If Xo is a subspace of X
containing all x with x(j) = xo(j) for all but a countable subset of J,
then Xo is pseudo-complete.

Proof. For each j in J", let (^n(j)) be a sequence of pseudo-
bases for X3 as in the definition of pseudo-completeness for X3 . We
may suppose each &Jj) contains X, . Let each ^ consist of products
of Bj G &n(j) where all but a finite number of Bβ are Xo , and take
^ equal to {C Π Xo: Ce^J.

Clearly each ^ is a pseudo-base for the dense subspace Xo of
X. Moreover, Xo is quasi-regular. Now suppose Un e ^ n and Un

contains U~+ι Π Xo for each n. There are Bi e &Jj) with Un =
( Π J Bi) Π XQ, and so, for each fixed n,

(UJ BD nxo = unz) u~+1 r)X0 = [(UJ Bi+ι) n xo]~ n x0

= (UJ BU)' nxo = (UJ BίTi) n x0.

Let K be a countable subset of J such that for each j in J"\UL, 5 i
is Xs for all w. For any u in JB»+!, define x in Xo by x(/ι) = uf choose
any x(j) in Bi+1 for j» in K\{h}, and ^0') = a?00") otherwise. Thus x is
in Unf and so ^ — α;(/̂ ) is in Bi. Hence Bi contains Bί+j. for all n
and j . Now Π^ -Bn is nonempty for each j . Therefore there is an
x in X such that x(j) is in Π^ Bi for all j , and, additionally, α (i) =
xQ(j) for y in J \ ^ . Thus x is in Xo. Finally, x is in the intersection
f\n Un so that (0^ satisfies the requirements of pseudo-completeness
for Xo.

The following is a direct consequence of this theorem.
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COROLLARY 5.4. Let E be a product of a family of linear
pseudo-complete spaces. If Eo is a linear subspace of E which con-
tains all elements of E whose coordinates are zero except for a
countable subset, then EQ is a linear pseudo-complete space.

An example of [13] is a convex space which has a continuous
norm and which is complete yet not pseudo-complete. The existence
of linear pseudo-complete spaces which are not complete was left
open. The following exhibits such spaces.

EXAMPLE 5.5. Suppose E is an uncountable product of nontrivial
linear complete metric spaces, and let Eo be the linear subspace of
E consisting of all elements x of E whose coordinates are zero except
for a countable subset. The linear topological space Eo is pseudo-
complete by the corollary above; however, it is a dense proper sub-
space of E, and so not a complete linear topological space. Thus
pseudo-completeness does not imply completeness.

Suppose the factor spaces in the above example are all convex,
then, as Ptak spaces are complete, we have examples of convex
pseudo-complete spaces which are not Ptak spaces.

The following example suggests the importance of the almost
open requirement in the main theorem.

EXAMPLE 5.6. Let g be the injection of E = (/u || ||t) into F =
(slf || WJ). E is a Banach space, and so is pseudo-complete; F is a
normed space, and so its completion has a continuous metric; finally,
g is a linear continuous mapping which is both one-to-one and onto.
However, the image gE = F is not complete. To see, independently
of Theorem 3.1, that g is not almost open, observe that E is a Ptak
space, and so each linear continuous mapping of E into a convex
Hausdorίf space is open if it is almost open.

Even with what appear to be strong conditions, in particular, all
the conditions, except for almost open, of the hypothesis and conclu-
sion of Theorem 3.1, a mapping need not be almost open. This is
born out in the following.

EXAMPLE 5.7. Let E = (E, \\ ||) be an infinite dimensional Banach
space for which there is a sequence of linear continuous functionals
which is total. Let F = (E, σ) where σ is the convex topology for
E with local base consisting of all polars (fn)° = {xe E: \fnx | <̂  1,
neω} of sequences (fn) c E' which norm converge to 0 in E'. This
is the weak-bounded topology or bw-topology for i?(Day [3], Def. 2,
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p. 41). It may be seen that σ is weaker than the norm topology and
stronger than the weak topology for E. Thus, the injection g of
pseudo-complete space E into F is linear, one-to-one, onto and con-
tinuous. Now F is complete or not according as E is or is not
reflexive ([3], Th. 2, p. 57). When E is reflexive, the completion of
F clearly has a continuous metric. However, g is never almost open.
For let S be the closed unit ball of E, then S = gS is closed in F
since it is closed in the weak topology for E. Suppose (/n)° is a
neighborhood of 0 in F, as above, and choose N such that | | / J | ^
1/2 for n ϊ> N, and x in E such that \\x\\ = 2 and fnx — 0 for 1 ^
n ^ N. Thus x is in (/Λ)°, yet not in S, and so S is not a neighbor-
hood of 0 in F.

The following example shows that a translation invariant con-
tinuous metric on a linear topological space need not have a continuous
extension which is a metric on the completion.

EXAMPLE 5.8. Let E be an infinite dimensional Banach space
under the norm p, and suppose || || is a norm on E which induces a
linear topology strictly finer than that induced by p, so that p is a
continuous norm on (E, || ||). Now (E, || ||) is not complete, hence
there is a Cauchy sequence (xn) in (E, |[ ||) which does not converge.
Suppose it converges to y in (E, || ||y\ It also converges to some x
in (E, p). Let p~ be the continuous extension of p to (E, || ||)^.
Clearly, p~(y — x) = limΛ p~(xn - x) = limΛ p(ίcw - x) = 0, yet y — XΦ
0. so that p~ is not a norm on (ϋ7, || ||y\ Now p(u — v) gives a
translation invariant continuous metric on (Ey \\ ||); its extension to
(JE, II 11)̂  is p~(u — v), which is not a metric.

Open question. Since there are convex pseudo-complete spaces
which are not Ptak spaces, there is a linear continuous mapping g
of such a space E onto a convex Hausdorff space F such that g is
almost open, but not open. Of more interest in the context of Theorem
3.1 would be for F, in addition, to be metrizable or for its comple-
tion to have a continuous metric. Such an example remains to be
found.
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