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FUNCTIONAL RELATIONSHIPS BETWEEN A
SUBNORMAL OPERATOR AND ITS

MINIMAL NORMAL EXTENSION

ROBERT F. OLIN

Let K be a compact subset of the plane. C(K) denotes
the continuous functions on K and R{K) denotes those con-
tinuous functions of K which are uniform limits of rational
functions whose poles lie off K. We say that / is minimal
on K if fe R{K) and for every complex number c

R(LC) = C(LC)

where Lc = {z e K \ (fz) = c}.
Let S be a subnormal operator on a Hubert space 3tf

with its minimal normal extension N on the Hubert space
Jf. The spectrum of S is denoted by σ(S). In this paper
it is shown that if / is minimal on σ(S) then f(N) on -JtΓ is
the minimal normal extension of f(N) restricted to £ίf. Some
new results about subnormal operators follow as corollaries
of this theorem.

An operator S acting on a Hubert space 3$f is called subnormal
if there exists a normal operator N acting on a Hubert space J%7
which contains 3ίf, such that Nx — Sx for all x in Sffm N is called
the minimal normal extension (abbreviated mne.) of S when SΓ is
the only closed subspace containing Sίf that reduces N. This is
equivalent to saying that the closure of the linear manifold

ί = 0

N*3x3 \Xj e 5ίf, n a nonnegative integers
i

is all of <3Γ. (For the elementary properties of subnormal operators
consult [2, 5].)

If K is a compact set in the plane then C(K) denotes the con-
tinuous functions on K and jy(K) is the collection of functions /
analytic on some open set G(f)Z)K. P(K) and R{K) are the uniform
closures of the polynomials and rational functions with poles off K,
respectively. Further, <5iΓand int K denote the boundary and interior
of K, respectively. K designates the polynomial convex hull of K.
[3, p. 66].

The set of bounded operators on a (complex) Hubert space £ΐf
is denoted by ^ {^f) and σ(T) represents the spectrum of any
operator T belonging to &{£ίf). Finally, C denotes the complex
numbers and N denotes the nonnegative integers.

2* The problem* Throughout the rest of this paper it will be
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assumed that S is a subnormal operator on £έf with its mne. N
on J%". It is well-known that σ(S) z> σ(N) and, in fact, σ(S) is obtained
by "filling in" some of the holes of σ(N). (See [2].) Moreover, σ(S)
and σ(N) are spectral sets for S and N, respectively. (Consult [9]
for the basic properties of spectral sets.)

Consequently, for each / in R(σ(S)) an operator f(S) belonging
to &(<%?) may be defined. Furthermore, a normal operator f(N)
(in ^{3T)) is defined because R(σ(S)) c R(σ(N)). For these functions
/, it is easy to show that f(N)βέf c 3ίf and that

(2.1) f(N)U = f(S).

(f(N)\jr means the restriction of f(N) to Sίf.) It now follows that
f(S) is subnormal.

Moreover, for functions / in J%f(σ(S)) or P(σ(S)) we can define
a normal (subnormal) operator f(N)(f(S)) such that (2.1) holds.
This follows because P(σ(S)) is a uniformly closed subalgebra of
R(σ(S)) and each function / belonging to J^(σ(S)) may be approxi-
mated uniformly on σ(S) by rational functions with poles off σ(S).
(See Runges Theorem [7, p. 256].)

With this background a natural question arises.

Question 2.2. For which function / belonging to R(σ(S)) (or
or P(σ(S))) is f(N) the minimal normal extension of /(S)?

In the next section we present the approximation theorems that
will be the foundation for the answer to (2.2). Before this is done,
it is shown that the spectrum of the mne. of f(S) is σ(f(N)).

THEOREM 2.3. Let f be a bounded Borel function on σ(N) such
that f(N)<βέ? a^f and set f(S) = f(N)^\. Then the spectrum of
the mne. of f(S) is equal to the spectrum of f(N).

Proof. Let ^£ denote the closure of the linear manifold

, f(NrJxj\xj e ̂  n e N\
)

and set T = f(N)\^. Its clear that T (on ^t) is the mne. of f(S)
and N^fcz^f because Nf(N)* = f(N)*N. Set Sλ = N\^ and observe
that N is the mne. of Sx because β^ c ^£ c J%Γ.

Since f(N) — T φ f(N)\^± we have the obvious inclusion σ(T)a
σ(f(N)). Suppose σ(f(N))\σ(T) is nonempty and let λ be an element
of this set. Choose a relatively open set G in σ(f(N)) such that
λ e G and G (the closure of G) has an empty intersection with σ(T).

Let E be the spectral measure for f(N). In other words f(N) —
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\zdE(z). Set P equal to the projection from S%Γ onto ^£ and observe

PE{A) = E(A)P for all Borel sets A. By the uniqueness of spectral
measures it is easy to verify that the spectral measure, E, of T is
given by E(A) - PE{Δ)P = PE(A).

Because G Γ) σ{T) = • we have 2?(G) = 0. Therefore 0 = PE(G) =
E(G) P so that the range of E(G) is orthogonal to ^y£. Now G a
nonempty relatively open set in σ(f(N)) implies E(G) Φ 0 which is
a contradiction of the fact that N is the mne. of Sλ. Therefore
<?(f(N))\σ(T) = •• The proof is now complete.

3* Approximation theorems*

THEOREM 3.1. Let K be a compact set in the plane and f an
analytic function on an open set G D K. If f is not constant on
any component of G then the linear span of the set

= {fnfm

z

p \n, m, peN}

is uniformly dense in C(K).

The proof of this theorem as well as the proofs of Theorem 3.2
and Theorem 3.4 rely on Bishop's Generalized Stone-Weierstrass
Theorem. (See [1, 3, 4].) Since their proofs are very similar, only
the proof of Theorem 3.4 will be presented here. (Consult the remarks
at the end of the proof of Theorem 3.4.)

By the Maximum-Modulus Principle every function / belonging
to P(K) may be extended to a function in P(K). This identification
is made in the following theorem.

THEOREM 3.2. Let

1. K be a compact set in the plane and {GJ be the sequence of
components of int K,

2. / belong to P{K) and <3S denote the uniformly closed algebra
generated in C(K) by f and the polynomials.

If f\dGi =£ constant for all i then ^ = C(K).

DEFINITION 3.3. Let if be a compact set in the plane. We say
that / is a minimal function on K if / e R(K) and for every complex
number c

R(LC) = C(LC)

where Lc = {z e K\f{z) = c}.

Before we present some examples of minimal functions, we show



224 ROBERT F. OLIN

why they are interesting.

THEOREM 3.4. Let KQ be a compact subset in the plane, {GJ
denote the sequence of bounded components of C\K0, and let

, = Ko U ( U <?*)
Vie/ /

where I is an arbitrary subset of the positive integers.
If f is a minimal function on Kt and ^ is the uniformly

closed algebra generated in C(K0) by f and R{K^) then *%S = C(K0).

Proof. Let F be a maximal set of antisymmetry of ^. Now
/ and / belong to *%f so there exists a constant c such that

By Bishop's Theorem it suffices to show C(F) = ̂ /\F.
Since / is minimal on Kγ we clearly have B(F) — C(F). Therefore

it suffices to show ^\Fz> R(F). Since <ZS \F is closed in C(F) the last
statement will follow if it can be demonstrated that re^\F for all
rational functions r with poles off F. Before we prove the latter
the following observation is made.

Claim one. f minimal on Kx implies / is not constant on any
component of int Kx.

Suppose the contrary, say there exists a component G of int Kγ

such that f(G) = c0. If z e G then for every neighborhood U of z
it follows that LCQ Π U has nonempty interior. Hence B(LCQ Π U) Φ
C(LCQ n U) because every function belonging to the former set is
analytic on int (LCQ Γi U). This contradicts the fact that / is minimal
on Kγ.

Now fix a rational function r with poles off F. Let the sequence
of components of C\F be denoted by {Z7J where Uo denotes the
unbounded component and let the sequence of C\Kt be denoted by
{^3} where <̂ 0 denotes the unbounded component. Because C\KX c
C\F, for each j there exists a unique iό such that ^ c Uir We
wish to show that the map ̂ 3

j—>Uij is an onto map from {^} to
Therefore we want to prove.

Claim two. For each i there exists a j such that έ?ό c U^
Suppose that some Ui does not contain any ^ . Then because

C\K, = Ui <?*• and ̂ 0 U Uo it follows that U, c Kγ. But dUiaF and
so / is constant on some component of int JKΊ which contradicts claim
one.

Hence, each Ut contains a point of the complement of Kx. Since
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r is analytic on some open set Fι and since ^ contains the rational
functions with poles of K19 Runge's Theorem gives re^\F. This
completes the proof.

Remarks. (1) In the last section of this paper an example is
given to show that (notation as above) if c?/1 is the uniformly closed
algebra generated in C(K0) by / and P{K^) then ^ ' may fail to be
C(KQ). (2) To prove Theorem 3.1 observe that any maximal set of
antisymmetry of the uniformly closed algebra generated by J^~ must
consist of only finite number of points by the conditions on /. There-
fore, since J^ contains the polynomials, each maximal set of antisym-
metry must consist of only one point. (3) To prove Theorem 3.2
observe that each maximal set of antisymmetry F must be nowhere
dense and C\F must be connected. Therefore C(F) = P(F) by
Lavrentiev's Theorem. (Consult [3, p. 48].)

This section of the paper is concluded by giving some examples
of minimal functions. Let / be an entire function which is not
constant. Then / 6 R(K) for any compact set K and for any constant
c the level set Lc = {zeK\f(z) — c} consists of a finite number of
points and therefore / is minimal on K.

If / e P(K) and / is not constant on any components of int K
it is easy to show / is minimal on K. (In fact, one gets P(LC) =
C(LC) for any level set Le.) Consequently, (by the first claim in the
proof of Theorem 3.4) if / e P(K) then a necessary and sufficient
condition that / be minimal on K is that / is not constant on any
component of int K.

LEMMA 3.5. Let K be a compact subset in the plane satisfying
either of the following conditions:

(a) The planar measure of dK is equal to zero,
(b) R(K) is a Dirichlet algebra. (See [3, p. 34].)
If f e R(K) and f is not constant on any component of int K

then f is minimal on K.

Proof. First case, f e R{K) and dK has planar measure zero.
Fix a constant c and the level set Lc = {zeK\f(z) = c}. Then

(3.6) Lc = {Lc n int K) U {Lc n dK} .

{Lc Π int K] is countable by the hypothesis on / and {Lc Π dK} has
planar measure zero by the hypothesis on dK. Therefore, the planar
measure of Le is zero and by the Hartog-Rosenthal Theorem [3] we
have R(LC) = C(LC).

Second case. Again fix a constant c and write Lc as in (3.6).
Since every point of {Le Π int K} is an isolated point (because / is
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not constant on any component of int K) each such point is clearly
a peak point for R{LC). Since R(K) is a Dirichlet algebra every
point in {Lc Π dK} is a peak point of R(K) and hence a peak point
of R(LC). Thus every point of Lc is a peak point for R(LC) so by
[3, p. 54]

R(LC) = C(LC) .

4* Answers to question 2*2*

THEOREM 4.1. Let S be a subnormal operator on έ%f and N be
its mne. on 3ίΓ. If f is analytic on an open set G D σ(S) such that
f is not constant on any component of G then f(N) is the mne. of
f(S).

Proof. Let ^£ denote the closure of the linear manifold

i Σ f(Nγjxό xj e <%?, n e N\ .

It suffices to show ^£ — <5ίΓ.
Observe that N, f(N) and f(N)* all leave ^£ invariant. There-

fore any operator T in the norm closed algebra Jtf generated by
these operators and the identity leaves ^ invariant. By the
Spectral Theorem the algebra Szf is * isometrically isomorphic to
the uniformly closed algebra ^ in C(σ(N)) generated by /, /, z and
1. By Theorem 3.1, ze^S, hence N* e Jϊf. Therefore N*^£'cz^C
Since ^ c ^ c ^ by minimality ^ = J3fΓ. This finishes the proof.

As an immediate consequence of the last proof we have

COROLLARY 4.2. If N is a normal operator, f e Jϊf(σ(N)) and
f is not constant on any component of its domain then the com-
mutative C* algebra generated by N and the identity is equal to the
commutative algebra generated by f(N), f(N)*f N and the identity.

Just as Theorem 4.1 follows directly from Theorem 3.1 the
following two theorems follow directly from the other two approxima-
tion theorems in section three.

THEOREM 4.3. Let S be a subnormal operator on S%f and
be its mne. on 5ίΓ. Let {GJ denote the sequence of components of
int σ(S). If f e P(σ(S)) and f is not constant on any Gt then f(N)
is the mne. of f(S).

THEOREM 4.4. Let S be a subnormal operator on Sίf with mne.
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N on J%^. If f is a minimal function on σ(S) then f(N) is the
mne. of f(S).

REMARK. The proof of Theorem 4.4 follows exactly like the proof
of Theorem 4.1 except one replaces Theorem 3.1 with Theorem 3.4
using Ko = σ(N) and Kγ = σ(S).

Using Theorem 4.3 it is possible to describe the mne. of f(S)
for an arbitrary function / belonging to P(σ(S)). More precisely;

let the sequence of components of int σ(S) be denoted by {̂ }Γ=o (if
the sequence is finite the procedure is the same) and let // denote
the set of positive integers such that if ielf then f\^. = constant =
ai9 and if ί$I/ then / \^. Φ constant.

Using [8, p. 296] we can find closed subspaces Sff^ i — 0, 1, 2,
such that <%?± ̂  for i Φ j , Σo°° Θ ^ t = <%? [each ^ reduces S and
if St = SI*,* then S = So © (ΣΓ θ Si) with respect to 3if = Σo00 θ ^
Moreover we can choose the Jg^'s such that (a) So is normal and

/\ _
σ(S0)(zdσ(S) and (b) ^ is a spectral set for S,.

Without loss of generality we can assume that the mne. of S
is JSΓ = So 0 (ΣΓ θ JV<) with respect to ^ r - ^ ? 0 (ΣΓ θ ^) where
JV; (on ^%ς) is the mne. of St (on S^\) for i = 1, 2 .

Claim. f(Nt) is the mne. of /(S*) for all ΐgl/. First observe
that /(ΛΓ,) and /(S,) are defined because / 6 P(σ(S)) c P(σ(Si)).

Now fix a complex number c and its associated level set Lc =
{̂  G (7(5,) I /(*) = c} c {« e ^ I /(«) = o) = B.^

Since / is not constant on ^ and B(σ(S)) = P(σ(S)) is a Dirichlet
algebra, by the same methods used in the proof of Lemma 3.5, it
follows that R(B) = C(B) which implies R(LC) = C(Le). This in turn
implies that / is minimal on σ(St). This establishes the claim.

It is now clear that the mne. of f(S) is f(S0) 0 (Zuif

(Σtez/Θα*) with respect ^ ? 0 (ΣitIf 0 ^ 7 ) 0 (Σ.ez/

What is the mne. of f(S) for an arbitrary function / belonging
to R(σ(S))Ί If R(σ(S)) is a Dirichlet algebra the question has a
natural solution. Proceed exactly as above except let {έ?t}? be the
sequence of components of int σ(S). Since R(σ(S)) is a Dirichlet algebra
the nontrivial Gleason parts of R(σ(S)) are precisely the ^ ' s .

Now we can use Mlak's results [6] to find subspaces β£$ whose
relationships to the ^ ' s are precisely like the case above except
that σ(S0) c dσ(S). The calculation above now carries over.

The general case (no assumption on R(σ(S))) still remains open.

5* Some consequences* Recall that an operator T
reductive if and only if every invariant subspace of T reduces T.
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COROLLARY 5.1. Let N be a normal operator and f e P(σ(N))

such that f is not constant on any component of'mtσ(N). If f(N)
is a reductive operator then N is a reductive operator.

Proof. If N (on SΓ) is not a reductive operator then N must
be the mne. of some (nonnormal) subnormal S (on 3^\ By Theorem
4.3 f(N) is the mne. of f(S), so £tf is a nonreducing invariant
subspace for f(N).

COROLLARY 5.2. If f is a minimal function on σ(S) and f(S)
is normal then S is normal.

A subnormal operator S is called completely subnormal if S has
no nonzero reducing subspace on which it is normal.

LEMMA 5.3. Let N (on JίΓ) be the mne. of S (on <%"). S is

completely subnormal if and only if JV* is the mne. of N*\&*±.

Proof. Suppose N* is not the mne. of N* |^±. (iS
because Nβ^ c έ%f.) Then there exists a closed subspace ^ such
that SίfL c ^C S= -%"", AΓ*^^ c . ^ and JW ̂ f c ^K Therefore 0 Φ
^€L c Jg^ and N\^L = <S|^i is normal which implies S is not com-
pletely subnormal. By reversing the above argument the proof is
completed.

COROLLARY 5.4. / / S is completely subnormal and f is a minimal
function on σ(S) then f(S) is completely subnormal.

Proof. By Lemma 5.3 it suffices to show f(N)* is the mne. of
f(N)*\jr±. It is easy to show that σ(S) = σ(N*\^±).

Now define a function g on 0(N*\*>i) by g(z) = f(z) for zeσ(S).
Because / is minimal on σ(S), g is minimal on σ(S). Therefore

g(N*) = f(N)* is the mne. of f(N)*\*r±.

6. An example. The purpose of this section is to give an
example of a compact set K and a minimal function φ on K such
that the uniformly closed algebra ^ generated by φ and P(K) is
not C(K). (See Theorem 3.4.)

Let F be the cornucupia (that is, the closed unit disk, D, with
a ribbon which winds around from the outside and clusters on the
boundary of the disk, 3D). (For a picture, see [3, p. 152].) Let
K = F with the interior of the disk deleted. That is, K = {ribbon} U
3D. Since the interior of K is simply connected we may choose a
conformal map φ from int K onto the open unit disk D.
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By [7, p. 280] we extend φ to be a one-to-one and continuous
function on A (J int K, where A equals the boundary of the ribbon
with 3D delated. Since A is connected, φ(A) is an arc on the unit
circle.

Let dD\φ(A) — [a, β], (It is clear that dD\φ(A) is a closed arc.)
Since φ"1 has radial limits almost everywhere, because φ~ι is a
bounded analytic function in the open disk, it can be shown that
[α, β] consists of exactly one point, say [a, β] — {X}. We now exend
the definition of ψ to all of F by defining φ on D to be equal to λ
where {λ} — dD\φ(A). A straightforward sequence argument shows
φ is continuous on F, and by construction ψ is analytic on int F.
Therefore by Mergelyan's Theorem [3, p. 48] φ e P(K). It now
follows that φ is minimal on K.

What is the uniform algebra % generated in C(K) by φ and
the polynomials? It is easy to show that the maximal sets on antisym-
metry for Ήf are precisely the singleton sets {w} for all w in K\dD
together with the set 3D. It then follows that a function / is an
element of <2S if and only if / e C(K) and / can be extended to a
function feC(K)( = C(F)) such that f\3eP(D).
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