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NONOSCILLATION THEOREMS FOR DIFFERENTIAL
EQUATIONS WITH DEVIATING ARGUMENT

TAKASI KUSANO AND HIROSHI ONOSE

The asymptotic behavior of nonoscillatory solutions of a
class of nth order nonlinear functional differential equations
with deviating argument is investigated. Sufficient conditions
are provided which ensure that all nonoscillatory solutions
(or all bounded nonoscillatory solutions) of the equations
under consideration approach zero as the independent variable
tends to infinity. The criteria obtained prove to apply to
equations with advanced argument as well as to equations
with retarded argument.

1* Introduction* We consider the nth order functional differ-
ential equation with deviating argument

(1) (r^itXrUm -WtXnίtMt))')'- •)')')' + a{t)f(y(g(t))) = b(t) ,

where a(t), b{t), g(t), rx{t), , rw_L(£) are real-valued and continuous
on [r, oo) and f(y) is real-valued and continuous on (-co, oo). The
following conditions are assumed to hold throughout the paper:

(a) lim g(t) = oo
ί—oo

(2 ) (b) yf(y) > 0 f or y Φ 0

(c) r«(ί) > 0 and lim pt(t) = 0, where
t-*oo

£^jψds, i = 1, , n - 1, (po(t) = 1) .

We note that the condition (2c) is satisfied if

( 3 )

We restrict our consideration to those solutions y(t) of (1) which
exist on some ray [Ty, oo) and satisfy

sup {] y{t) Mo ^ t< oo} > 0

for any toe[Ty, oo). Such a solution is said to be oscillatory if it
has arbitrarily large zeros; otherwise, it is said to be nonoscillatory.

In the oscillation theory of ordinary differential equations one
of the important problems is to find sufficient conditions in order
that all (bounded) nonoscillatory solutions of (1) tend to zero as
ί—>oo. Since the work of Hammett [3] this problem has been the
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subject of a considerable amount of study and a number of results
have been obtained. See, for example, Graef and Spikes [1], Grimmer
[2], Kartsatos [4], Kusano and Onose [5], Londen [6], Singh [7], [8]
and Singh and Dahiya [9].

The purpose of the present paper is to proceed further to add
some new results to this problem. First, in the case where a(t) is
oscillatory, we present conditions in order that all bounded nonoscil-
latory solutions of (1) tend to zero as t —> <χ>. Secondly, in the case
where a(t) is nonnegative, we provide conditions which force all
nonoscillatory solutions of (1) to approach zero as ί—» oo. Incidentally,
our results serve to strengthen recent results of Kartsatos [4], who
gave conditions under which every (bounded) nonoscillatory solution
of (1) satisfying (3) tends to a finite limit as ί —> oo.

2 Nonoscillation theorems* We begin with two lemmas that
will be needed in the proof of our main results.

LEMMA 1. Consider the differential equation

where φ(t) is continuous on [T, oo), p(t) is continuously differentiate
on [T, oo) and

ρ{t) > 0 , p\t) < 0 , lim p(t) = 0 .
ί-»oo

Let u{t) be the solution of (4) on [T, oo) satisfying u(T) — 0. Then,
= oo[or — oo] implies l i m ^ u(t) = oo[or — oo].

Proof. The solution u(t) is given by the formula

u(t) = - p ( t ) Γ ^ f \ φ ( s ) d s , t ^ T .
JT p\s)

If \imt_^ φ(t) = oo [or — oo], then it is obvious that

= oo[0r - o o ] .
p\s)

Hence, by LΉospitaΓs rule,

lim u(t) - lim | ( -

= oo [or — oo] .

LEMMA 2. Let σ(t) be continuous on [Γ, oo) and let v(t) be con-
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tinuously differentiable on [Ty oo). If the limit lim^^ [o(t)v\t) +
v(t)] exists in the extended real line R\ then the limit lim^^ v(t)
exists in R%.

Proof. If the conclusion is false, then there are numbers ξ and
η such that

lim inf v(t) < ξ < ΎJ < lim sup v(t) .

We are able to select an increasing sequence {£jΓ=i with the following
properties:

( 5 ) lim tu = oo , v'(tv) = 0 , v = 1, 2, ,

( 6 ) i ί ί ^ ) < f , v(tj > η , i; = 1, 2, .

In view of (5) we see that the limit

lim [σ(tv)v'(tv) + ^(ί,)] = lim v(tu)

exists in R\ However, this is a contradiction, since (6) implies that
the sequence {v(£v)}Γ=i cannot have a limit in i2*.

We are now in a position to state and prove our nonoscillation
results. The following notation will be used: a+(t) = max {a(t), 0},
a~(t) = max{-α(έ), 0}.

THEOREM 1. Let the following conditions hold:

(7) \~ Pn-Jt)a+(t)dt = oo ,

( 8 )

( 9 ) \°°Pn-i(t)\b(t)\dt< oo .

Then, all bounded nonoscillatory solutions of (1) tend to zero as
t - * co.

Proof. Let #(£) be a bounded nonoscillatory solution of (1). We
may suppose without loss of generality that y(t) > 0 for t ^ ί0. By
(2a) there exists t, ̂  ί0 such that g(t) ̂  ί0

 f o r t ^ tlβ Thus, ?/(g(ί)) > 0
for t ^ tL. We define

(10) G0(t) - y(t) , G,(i) = r%(t)G'Ut) , i = 1, , % - 1 ,

(11) wA(ί) = (' ^ ^ ^ ^ G ^ ^ s ) ^ , A: = 0, 1, . , n - 1 .
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An integration by parts yields

tt*-i(ί) = \ Pn-k(s)G^k(s)ds

+

ζ?4§^(*) + u*(t) pn
Pn-kW

This shows that %Λ(ί) satisfies the differential equation

(12) ^ H ^ ' ~ u + ^^(ί) = ° '
P»-k(t)

or equivalently,

(13) v! - &=%u + £ ^ = ^ * ( ί ) = 0 ,

where

Since ^ ( 0 = 0 by (11) and since jθΛ_fc(£) > 0, p'n-k(t) < 0, l im,^ pn_k(t) = O
by (2c), we apply Lemma 1 to (13) to conclude that l i m ^ uk^(t) =
oo[or — oo] implies that lim^^ uk(t) = co[or — oo]. Moreover, applying
Lemma 2 to (12), we conclude that lim^*, uk(t) exists in i2* whenever
lim^oo Mfc_i(£) exists in i2*.

We now multiply both sides of (1) by pn^{t) and integrate it
over [tί9 t]. Then,

= t pn-1{s)b(s)ds + t ^-i(s)α (s)f(y(g(s)))ds .

We distinguish the following two cases:

(15) Γ ρ^tW(t)f(y(9(t)))dt = - ,
J*l

(16) Γ Pn-Ma+itmvigmdt < - .

Suppose (15) holds. In view of (8), (9) and the boundedness of y(t)
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the right-hand side of (14) tends to a finite limit as t —> °o, so that
from (14) we see that l i m ^ uo(t) = — oo. Hence, by Lemma 1 applied
to (13) with k = 1, we have l i m ^ u^t) = - o o . Applying Lemma 1
again to (13) with k — 2, we find l i m ^ u2(t) = — oo. Repeating the
same argument, we conclude that l i m ^ un_x(t) = — oo f which implies
that lim^oo y(t) •=• — oo. This, however, contradicts the assumption
that y(t) is positive. Consequently, (15) is impossible. Now, letting
t —> oo in (14) and using (16), we see that l i m ^ uQ(t) is finite. From
Lemma 2 applied to (12) with k = 1 it follows that l i m ^ ux(t) exists
in RK This limit must be finite, since l i m ^ ux(t) = — oo would imply

^ y(t) = — oo, a contradiction to the positivity of y(t), and
uλ{t) = oo would imply l i m ^ y(t) = oo y a contradiction to the

boundedness of y(t). Continuing in this way, we conclude that
l i m ^ %Λ_i(£) is finite. Therefore, l i m ^ y(t) exists as a finite number.
On the other hand, in view of (2b), (7) and (16) it is easy to verify
that

lim inf y(g(t)) = lim inf y(t) = 0 .
£-*oo ί->oo

Thus it follows that lim^^ y(t) = 0, and the proof is complete.

EXAMPLE 1. Consider the equation

(17) (t(t(tV(t)Y)fY + y(Jt) - 7-1*-1 , t > 0 ,

where 7 is a positive constant (possibly greater than 1). We have
p^t) = p2(t) — p3(t) = t~ι and see that all conditions of Theorem 1 are
satisfied. Hence, all bounded nonoscillatory solutions of (17) tend to
zero as ί—̂  oo. In fact, y(t) — t~γ is a solution of (17) having this
property.

In the following theorem it will be shown that the conclusion of
Theorem 1 still holds if the roles of a+(t) and a~{t) are interchanged.

THEOREM 2. All bounded nonoscillatory solutions of (1) tend to
zero as t —> oo if the following conditions are satisfied:

(18) J pn.At)a+{t)dt <

(19)

(20) JV-i(ί ) I δ(t) I dί <

Proof. Let y(t) be a bounded nonoscillatory solution of (1) such
that y(g(t)) > 0 for t^t^ A parallel argument holds if y{g(t)) < 0
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for t ^ ίlβ Define the functions Gτ(t) and uk(t) by the formulas (10)
and (11). Assume that

' P*-i(t)a-(t)f(y(g(t)))dt = oo .

Then, letting t —• oo in (14) and using (19), (20) and the boundedness
of y{t), we obtain lim*^ uo(t) = oo, so that applying Lemma 1 to (13)
with k = 1, we see that l i m ^ ux(t) = °°- Repeated application of
this argument shows that lim^^ u^^t) — oo, which implies that
lim^^ y(t) = oo. But this contradicts the fact that y(t) is bounded.
Consequently, we must have

' p»-i(t)a-(t)f(y(g(t)))dt < oo .

The rest of the proof now proceeds exactly as in the second half of
the proof of Theorem 1. The details are therefore omitted.

EXAMPLE 2. Consider the equation

(21) (βV(ί))'" ~ eψ(log t) = r V , t ^ 0 ,

which has a nonoscillatory solution y(t) = e~* tending to zero as
£—•00. It is easily verified that the conditions of Theorem 2 are
satisfied with p^t) = ρ2(t) = pz{t) = e~*. It follows that all bounded
nonoscillatory solutions of (21) approach zero as t —> 00.

Finally, we examine the equation (1) in which a(t) is nonnegative
and present conditons under which all nonoscillatory solutions are
necessarily bounded and approach zero as t—•* 00.

THEOREM 3. Let the condition (3) hold. Suppose that a(t) ^ 0,
lim inf „_«,/(#) > 0 and lim sup^_«,/(2/) < 0. If

(22) J pn^(t)a(t)dt = - ,

(23) Γ I δ(ί) \dt < 00 ,

then all nonoscillatory solutions of (1) tend to zero as t —* 00.

Proof. Let y(t) be a nonoscillatory solution of (1). We may
suppose that y(g(t)) > 0 for t ^ ί1# Define (?*(£) and %(£) by (10) and
(11). We shall first show that y(t) is bounded above. From (1) we
obtain

(24) GU(ί) - £..&) + Γ a(s)f(y(g(s)))ds = Γ
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Since the first integral of (24) is positive and, by (23), the second
integral is bounded, there exists a constant Kn_x such that

G - i ( ί ) - r%.tf)G'%-&) S Kn^ f o r t ^ t , .

Dividing the above inequality by τn_St) and integrating from tx to t,
we get

Λ* - ^ — for t^t19

()
which shows, in view of (3), that there exists a constant Kn_2 such
that

8(ί) g iΓ_2 for t ^ ίL .

Applying the above argument repeatedly, we have

G-8(ί) ^ #»-8, , Gtfί) ^ ΛΓi, G0(ί) ̂  KQ for ί ^ t, ,

where Kn_3, , i^, Ko are constants. It follows that y(t) is bounded
above for t ;> ί1#

From this point on, we argue as in the proof of Theorem 1 on
the basis of the relation

Γ
t

(25) Γ p^(8)GU(8)d8 + Γ ρn-,(s)a(s)f(y(g(s)))ds = Γ pn^(s)b(s)ds .

Noting that on account of (23) the right-hand side of (25) tends to
a finite limit as ί —> co 9 we can deduce from (25) that

(26) J~ P,-λt)a(t)f(y(g{t)))dt < co ,

since otherwise we could use Lemma 1 to obtain l i m ^ uk(t) = — oo
for k = 0, 1, , n — 1, which implies l i m ^ y(t) = — oo, a contradic-
tion. Next, using (25), (26) and applying Lemma 2, we can show
that lim ôo uk(t) is finite for each k = 0, 1, , w — 1. Thus, l i m ^ y(t)
exists and is finite. On the other hand, from (22) and (26) we see
that lim inf^ y(t) = 0. Therefore, we conclude that y(t) tends to
zero as ί—» <>o. This completes the proof.

EXAMPLE 3. Consider the equation

(27) (t\t\t2y'{t)yyy + tγ(n) == τ~6r2, ί > o ,

where 7 is a positive constant. In this case, we have p^t) = t~ι,
p2(t) = (1/2)Γ2, /O8(t) = (1/6)Γ3. Since all assumptions of Theorem 3
are satisfied, every nonoscillatory solution of (27) approaches zero as
t —> oo. This equation has a nonoscillatory solution y(t) — t~2.
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EXAMPLE 4. Consider the equation

(28) (β'(βW(*))')7 + e3ty(t + Θ) = (24 + β " V , ί ^ 0 ,

where # is a constant. This equation possesses $/(<) = e~4t as a non-
oscillatory solution tending to zero as ί ^ o o , It is easy to verify
that ργ{t) = e~\ ρ2(t) = (l/2)β~2ί, pa(ί) = (l/6)β~3ί, and the conditions of
Theorem 3 are satisfied. Therefore, all other nonoscillatory solutions
of (28) also tend to zero as t —> °o.
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