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MULTIPLIERS ON A BANACH ALGEBRA WITH
A BOUNDED APPROXIMATE IDENTITY

JOHN W. DAVENPORT

Let A be a Banach algebra with a bounded approximate
identity {ea | a e Λ}, and M{A) the multiplier algebra on A.
In this paper, we obtain a representation for M(A) such that
each multiplier operator appears as a multiplicative operator.
The proof makes use of the weak-* compactness of the net
{Teu \aeΛ} and the algebraic properties of a multiplier.

1* Introduction. In 1951, J. G. Wendel showed that the left
centralizers on L^G), G a locally compact group, was equivalent to
C0(G)*, ^he s P a c e of regular Borel measures on G. Thus, if T is a
centralizer and x is any element in L^G) then Tx = ζ *x for some
Borel measure ζ. It is also well known that if A is a Banach algebra
with an identity element then any multiplier on A is determined by
its action on the identity element. In this paper, we show that if
A is a Banach algebra with a bounded approximate identity then
there exist a continuous isomorphism of A such that each multiplier
defined on A is given by point-wise multiplication. In the case that
the approximate identity is uniformly bounded by one, the represen-
tation is norm preserving. Thus we obtain an isometric isomorphism
for all multipliers on L^G) and for all multipliers on any J3*-algebra
such that the action of a multiplier is given by point-wise multipli-
cation by a fixed element in A.

2. The representation space for M(A).

DEFINITION 2.1. Let A be a Banach algebra and T a mapping
from A into A. The map T is a multiplier provided

x(Ty) = (Tx)y (x, ye A).

Every multiplier turns out to be a continuous function and the set
of all multipliers on A under pointwise operations is a commutative
subalgebra of B(A), the set of all bounded linear operators on

NOTATION 2.2. In this paper, a Banach algebra with a bounded
approximate identity will be denoted by A and the multiplier algebra
on A will be denoted by M(A). For any Banach algebra X, we
denote the weak-* convergence of a net in X*, the dual space of X,
indexed by a eΛ, by "lim«*"*(•)". Unless otherwise stated, we denote
the bound on the approximate identity by M.
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DEFINITION 2.3. Let X be a Banach algebra. The algebraX
is said to have a bounded approximate identity provided there exists
a net {ea | a e Λ} in X and a M > 0 such that

2.3.1 \\ea\\<M (aeΛ)
2.3.2 limα eax = limα #eα = x (x e X) .

DEFINITION 2.4. Let {ea \ a e A) denote the approximate identity
on A, and B* = {/e A* | / β«-*/} where f-a(x) =f(ax) for each
a, # e A and fe A*. The set J3* is a closed subspace of A* and B* =
{/ α|/eA*, αeA} ([3]). By defining

2.4.1 [G,/] = (?(/• α) (a6i ,/eS*,GeB:)
2.4.2 F GKf) = F[G,f] (feB,,F,GeBl),

the dual space, Bt, becomes a Banach algebra. This follows since
the above definitions are the restrictions to J5* of the Arens product
on A** which makes A** into a Banach algebra such that if π is
the canonical embeding of A into A** then π is an isometric isomor-
phism ([5]).

LEMMA 2.5. There exists a norm reducing isomorphism of A
into JBJ.

Proof. We define τ: A -> J3£ by τa(f) = f(a) = πα U*.

Clearly τ is linear and since B* = {/ α|/eA*, αeA}, it follows
that r is one-to-one. From | τa(f) | = |/(α) | < | | / | | || a ||, we see that
| |τα| | < | |α | | , for all ae A.

LEMMA 2.6. Let {Fa \ a e Λ) be a net in B%\ a e A; and F, Ge B%,

then the following properties are satisfied:

2.6.1 if limϊ&-*jFα = F then \\mw

a

k-*Fa G = F G
2.6.2 if limSk-Fa = F then lim™k*τa>Fa = za F
2.6.3 if F'za = 0 /or αϊϊ α e A or τα F = 0 /or all α e A ί/ien
J P = 0.

Proof. These properties follow from a straightforward applica-
tion of the definitions of the operations involved.

LEMMA 2.7. The Banach algebra B% has an identity element
which we denote by J.

Proof. From \\zea \\ < || ea\\ < M, it follows that the net {τea}
has a weak-* convergent subnet. Let / = lim«fc~*reα. Since

[J, /](*) = J(f x) = lim τea(f x) = \imf(xea) = /(a?) ,
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for all x e A, we have t h a t [/, f]=f for all fe B*. Thus F J=F,

for all FeB$. Since τa-F is weak-* continuous in F, it also follows

that J F(f) = lima τea F(f) = limtt F(f ea) = JF(/) for all / e B * and
£. Thus J'F = F for all

THEOREM 2.8. Lei A be a Banach algebra with a bounded ap-
proximate identity {ea\ a e A). Then there exists a map μ from M(A)
into B% such that μ is a continuous, algebraic isomorphism of M(A)
into Bt. Furthermore

τ(Ta) = (μT) τa = τa (μT) (aeA, TeM(A)) .

Proof. Let T e M(A). Since 11 Tea |] < 11 T \ \ ikf, the net
{τ(Tea) I a e A} has a weak-* convergent subnet in J5J. If {τ(Teβ) \ β e Γ]
converges to G and {τ(Tea) \aeA] converges to F, each in the weak-*
topology; then, for each feB*, we have that

F(f) = limτ(Tea)(f) = lim τ(Tea)- J(f)
a a

= limlimrTeβτe,(/) = lim lim (τTea(eβ))(f)
a β a β

/) = lim τea G(f) = G(f) .
a β a

Now we define the mapping μ from M(A) to Bt by

μ(T) = F = fim τ(Tea) (T e M{A)) .
a

The previous remarks show that μ is well defined. We first observe
that if F = μ(T), then

) = lim rΓα.τβα(/) = τ(Ta)(f) .
a a

Thus

2.8.1. τa μ(T) - τ(Γα) (αei, TeM(A)) .

By Lemma 2.7, the identity element of Bt is the weak-* limit
of a subnet of {τea \ a e A}. Let {τeβ} denote this subnet. Hence we
have

μ{T)-τa(f) - lim τeβψ(T)'τa(f) = limτeβ μ(T)-τa(f)
β β

= limτeβ-τTa(f) = τTa(f) .

β

Therefore,

2.8.2. μT-za = rTα (αei, TeM(A)) .
Let x,yeA and Γ€ikf(A). Then
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τx-μ(TS)-τy = τ(TSx)y = τSx-τTy = μS-τx-μT-τy

= τx-μS-μT-τy

and thus by Lemma 2.6, it follows that μ(TS) = μ(S) μ(T). But
C. N. Kellogg [4] proved that M(A) is a closed commutative sub-
algebra of B(A), the set of all bounded linear operators on A. Thus
μ(TS) = μ(ST) = μ(T) μ(S) and therefore μ is homomorphic.

If μ(T) = μ(S) for some Γ, SeikΓ(A) where /ι(Γ) = limϊ*-rΓββ

and μ(S) = liτάβk'*τSeβ then for each feB*, and α e i , we have

τ(Ta)(f) = Km τ(Γα) τea(f) = lim rα
or α

- τa-μ(TXf) = τa μ(S){f) = τa \imτ(Seβ)(f)
β

= lim τa τ(Seβ)(f) = limτ(Sa)'eβ(f) = τ(Sa)(f) .
β β

Since r is one-to-one, it follows that Ta = Sα for each ae A. Thus
μ is one-to-one.

From μ(T) = limaτTea and || rΓβα | | < || Tea\\ < \\ T\\ || β β | | <
|| T\\ M, it follows that μ is continuous.

COROLLARY 2.9. // M = 1, ίAen M(A) is isometrίcally *-isomor-
phic to a subspace of B%.

Proof. This follows from Theorem 2.8 and the fact that
Hra|| = | | α | | .

For A = LAG), G a nondiscrete locally compact abelian group,
the space B* is the space of uniformily continuous bounded functions
on G and Bt is the space M(G) of bounded measures of the maximal
ideal space of B*. If G is compact then M(A) = M(G). In the case
that A is a i?*-algebra, we have the following result.

COROLLARY 2.10. If A is a B*-algebra then M(A) is isometri-
cally *-ismorphic to a subspace of A**. Furthermore, if μ(T) = F
for TeM(A) and F G A * * , then

πa-F = F πa = πΓα (α e A)

where the above operation is the Arens product on A**.

Proof. D. C. Taylor [7] has shown that A* = {/ α | /e A*, αeA} =
{a flfeA*, aeA}. Thus J5* - A* and £J = A**. In this case the
product operation on B% — A** becomes the Arens product and the
involution on A** is given by F*(f) = F(f) where /(#*) [2]. Since
a I?*-algebra possesses an approximate identity uniformly bounded
by one, the result follows from Corollary 2.9.
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COROLLARY 2.11. Let A be a B*-algebra. Then F e i * * belongs
to μ(M(A)) if and only if the operator F commutes with πA and
F*πa is continuous in the weak-* topology on A* for each aeA.

The author wishes to thank Professor C. N. Kellogg for his
encouragement and guidance.
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