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FUNDAMENTAL UNITS AND CYCLES IN THE
PERIOD OF REAL QUADRATIC

NUMBER FIELDS

LEON BERNSTEIN

PART I

0. Introduction. In this paper we introduce the concept
of "Cycles in the Period" of the simple continued fraction
expansion of a real quadratic irrational. This is expressed
in the

DEFINITION. Let M, D, d be positive rational integers, M
sequare free, M = D2 + d, d S 2iλ Let k, a, s be nonnegative
rational integers, 0 ^ a fg k — 1; let / = f(k, α, s; d, D) be a
polynomial with rational integral coefficients. For a fixed s,
the finite sequence of polynomials

(0.1) F)8) = /(&, α, s; d, D), f(k, a + 1, s; d, D), ••,.

f(k, a + k-l,8;d,D)

will be called "Cycle in the Period" of the simple continued
fraction expansion of V F if, for s0 >• 1, this expansion has
the form

^ M = [6 0 , δi, , Fφ), , F(s0 - 1), f(k, a, so; d , D ) , - . ,

(0.2) f(k, a + b, sQ; d , D ) , - , f(k, a, so; d, D), Ff{sQ- 1), ,

F'(0), f(k, a - 1, 0; d, D), , ftlf 2b0]

b^l b^k-l k is the length of the cycle; F'(s) means
that the order of the f—s must be reversed.

In the first part of this paper, the main result is the
construction of infinitely many classes of quadratic fields
Q(VM), each containing infinitely many M of a simple stru-
cture. Among the various classes thus constructed, there are
a few in whose expansion of VM cycles in the period sur-
prisingly have the length ^12. Functions f(k, a, s; d, D)f

f(k, a + 1, s; d, D), are of course stated explicitly; hence
we are able to construct numbers VM such that the primitive
period of their expansion has any given length m which is
a function of the parameter k.

Expansions of VM which have the structure of cycles in the
period were generally not known up to now. In a recent paper Y.
Yamamoto [6] has given a few numerical examples of expantions of

37



38 LEON BERNSTEIN

real quadratic irrationals in which cycles of length two appear. The
present paper, which generalizes this concept, was, however, developed
independently of Yamoto's beautiful discovery.

It is an old dream of mathematicians to find infinite classes of
real quadratic number fields Q(i/ikf) for which the continued fraction
expansion can be stated explicitly as a function of M. Very little
knowledge in this direction was available up to now. The bit of it
that was there is based on a theorem by Th. Muir [4], and in his
"encyclopedia" of continued fractions 0. Perron [5] has given a few
demonstrations of Muire's theorem which the author does not believe
to be of great practical significance. The most that can be achieved
with Muir's theorem, is the explicitly stated expansion of certain
classes of VM with a primitive period up to length six. In a recent
paper [2] the author has given the following infinite classes of VM
whose continued fraction expansion has a primitive period of lengths
10, 12 and 8 respectively; these are

(0.3)

VDZ + Ad

= [D, (2d)'liD - d\ 1, 1, 2-\D - 1), 2<ΓιA 2~\D - 1) ,

1, 1, (2d)-\D - d), 2D]

d\D;d>l, Dodd; D> d

VD2 - Ad

= [D- 1, 1, (2d)-\D - 3d), 2, 2~\Ό - 3), 1, 2d'\D - d) ,

1, 2~\D - 3), 2, {2dY\D ~ 3d), 1, 2bQ]

d\D;d>l, Dodd; bQ = D - 1; D2 - U squarefree .

- U

(0.5) = [U - 1, 3, 3(d - 1J2-1, 1, 4, 1, 3(d - l)2~ι, 3, 2(3d - 1)]
d > 1, d odd .

This is a special case of of (0.9)
For d = 1, the primitive period in the above expansions has

length at most half of the original one, as the reader verify easily.
Then author constructed these expansions in order to find the well-
known fundamental unit of G. Degert [3] in the corresponding
quadratic field by an approach different from Degert's.

We shall recall the basic rules of expanding VM for further
references:

VM =W = XQ = (W + POJQO"1 = b0 + a?"1; Po = 0; QQ = 1; bQ

(0-6) Γ T
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xk = (w + Pk)Qk' = bk + xςU; Pk = bk^Qk^ - Pk-X; Qk^Qk

( " } = w* - Pi; δ4 = [s j ; (fc = 1, 2,

From Pk + Pk^ = bk_xQk_u w
2 — PI = Qfc-iQ*f we derive the formula

(0.8) (w + P^Xw + P*) - QkΛQk + δ*-i(w + P*))

With m denoting the length of the primitive period of VM as
a periodic continued fraction expansion, the following rules hold:

Let m = 2k; then PA = P fc+1, and vice versa; also bk_i =

bk+i; (i =bk+i; ( i = 1 , • • • , & ) ; &2/b = 2 6 ? .

Let m = 2k + 1; then QA = QA+1, and vice versa; also

bk — bk+1; bk_i — bk+i+ί(ί — 1, , k — 1); 6 2 f c + 1 — 26 0 .

I f m 2k

If m = 2A? + 1, then P,_, = P,+ ί + 2(i = 0, , Λ - 1);

Q f c_,- Qfc+ί+1(ΐ = 0, . . ,Λ).

Q, > 2(v = 1, 2 •). Only if m = 2fc, Qfc = 2 is possible
( 0 Λ 3 ) (then P, = Pfc+1) .

In Part II (later in this volume) the fundamental unit of Q(VW), M
square free, is stated explicitly, being calculated from the periodic
expansion of Λ/M.

The explicit representation of this expansion is therefore a primary
issue. Units of algebraic number fields of any degree have been
recently investigated by H. Zassenhaus [7]. This author also thinks
that the calculation of units from the periodic expansion of a basis
of the field, generally by Jacobi-Perron algorithm, is a most suitable
tool.

In the following chapters w2 is squarefree.

1. Expansion of w = l/[(2α + l)fc + a]2 + 2α + 1; a, k ̂  L The
formula holds

(1.1) w2 = A2k + 2aAk + (a + I)2 = (Ak + a)2 + A; A = 2α + 1 .

(1.2) [w] = Ak + a; w = Ak + a + r 0 < r < 1 .

The reader will easily verify the following expansion for k 2s 2.

(1.3) w = A* + α + — P, - A* + a; Q, = A;
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(1.4)

(1.5) w + A" ~ g = 1 + -ί; P3 = (A - 2)A*-1 + α + 1; Q3 = 2A*"1 .
4a A"'1 + 1 x3

(1.6)
2A*"1

— P4 — A — (a
x4

Q4 = A2 .

(1.7) A\- (a
A2

We now prove the formulas

i ) P3 s_! = A" - [A8 -{a + 1)];

(1.8)
(ii) P 3 s = (As - 2)Afc-s + {a + 1); Q3s =

(iii) P3 S + 1 = Afc - (a + 1); Q s s + 1 = A +1; δ 3 s M =

Proof by idductίon. Formulas (1.8) are correct for s = 1, as
can be easily verified from (1.3) to (1.7). We prove: (1.8) is true
for s being replaced by s + 1. We obtain from (1.8), (iii), presuming
1 ^ s + 1 ^ k,

f w + A" — (o + 1) _ 9Ak-u+i) i ,
I —-— — ΔΆ — H

A M

(1.9)

QS3+2 =

= A*-[AS+1 - (α + 1)]

"+11 - [As+1 - 2(α + 1)] .

Since

ί-lltl) 1 _L

l±
= χ 3

2A fc-1 Λk

= 1 +
(2a - ί)A

<2

we obtain

«; + Ak - As+1 + (a + 1)

(1.10)

Since, for A; ̂  2,

= 1 +
1 .

2A* - 2Ak~is+1) - A s + ί + 2(α + 1) x 3 s + 3

P 3 s + 3 = ( A s + 1 - 2)A ί ;- ί s + 1» + (a + 1); Q 3 s + 3 = 2A*" ( S + 1 )



FUNDAMENTAL UNITS AND CYCLES 41

we obtain

(1.11)

Since

we have

(1.12)

!W + A* - 2A*-(S+1> + a + 1 d . + 1 χ 1
J O/tfe—(s + l) "*"*" "*" ' pp
) ώ^X ι/t/3s+4

l p 3 s + 4 = A" - (a + 1); <3 3 s + 4 = A*+ 2 .

i / o 4J-C+.) _ x ^ s + 2 - 1 + r _ / o 1 4 _ ( l

A s + 2 3 s + 4

δ S s + 4 = 2A / f c- ( s + 2 ) - 1 .

With formulas (1.9)-(1.12) formulas (1.8), with s replaced by
s + 1 are verified. Since, as can easily be verified from (1.8), no
Pv equals Pv+ί9 and no Qv equals Qv+1 in the cycle {P3.-i, -P3s, -P3.+1}
and {Q3s_i, Q3s, Q3s+i}. We look for the the possibility that some
Qυ = 2. This happens for

(1.13) Q3fe - 2 .

We now obtain from (1.8), (ii), and from (1.2)

(1.14)

w + A k + a - 1 = 2 A k + 2a - r' = j _ k + α _ 1 + _ l _

- Ak + α - 1 - 60 ~ 1 -

The length of the primitive period of the expansion of w thus
equals 1 + 6(& — 1) -f 3 + 2 = 6&, and we can state.

THEOREM 1. Le£ α, k be natural numbers, a ^ 1, k ;> 2, w2 =
(Afe + α)2 + A, A = 2c& + 1, ^ 2 squarefree. The expansion of w as a
periodic continued fraction has a primitive period of length 6k and
the form

ί
w = [boy blf , 63s-i, δ38, δ 3 s + 1, , &3fc_!, δ3fc, 63fc-i, •.-, blf 2δ0]

60 - Ak + α; ^ = 2A&~1; 68*-i = 1; δ8* = &o - 1

&8.-1 - 1; δ3 s - A 8 - 1; 63s+i - 2Afe-s~1 - 1; 8 = 1, , & - 1 .

For k = 1, we obtain by a special calculation t h a t

(1.16) i/9α 2 + 8α + 2 = [3α + 2, 1, 3α, 1, 2, 6a + 2] .

2 . E x p a n s i o n of w = l/(A f c - a)2 + A; A = 2a + 1; α, k ^ 1*
The formulas hold
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(2.1) w2 = A2k - 2aAk + (a + I) 2 .

(2.2) [w] = A k - a w = A k - a + r,0 <r <1 .

The reader will easily verify the following

THEOREM 2. Let a, k be natural numbers, a ^ 1, k ^ 2, w2 =
(Afc — α)2 + A, A = 2α + 1, w2 squarefree. The expansion of w as a
periodic continued fraction has a primitive period of length 6k — 2
and the form

( 2 . 3 ) W = [ί>o, * * ' , &35-2, &3ί-l, &3S, * ' , ί>3fc-2, &SΛ-1, ?>3fc-2, ' * *, &i, 2 6 0 ]

fδ0 = A* — α; fts^ = b0 — 1; 63fe_2 = 1
(2.4)

t & 3 , - 2 = 2 A h - - 1 ; b u ^ = A ' - l bu = l s = 1, ••-, k - 1 .

For k — 1, we obtain the expansion

(2.5) v V + 4α + 2 = [α + 1, 1, α, 1, 2(α + 1)] .

(2.6) is obtained from l/α2 + 4α + 2 = τ/(α + 2)2 - 2, for which the
author has found (2.6) in [1],

3. Expansion of w = V{Ak + a + I)2 - A) A = 2α + 1; a, k ^ 1.
The formulas hold

(3.1) w2 = A2k + 2(a + l)Ak + a2

(3.2) [w] = Ak + a; w = A* + α + r; 0 < r < 1 .

The reader will easily verify the following

THEOREM 3. Let a, k be natural numbers, a ^ 1, k ^ 2; w2 =
(A* + α + I)2 — A; A = 2α + 1, w2 squarefree. The expansion of w
as a periodic continued fraction has a primitive period of length
4k + 2 and the form

= [ί>0, , fr2*-i, b2s, , 62A.+1, 62fc, •••,&!, 260]

= &2fc+i = Ak + α; 6,..! - A 8" 1; 62s =(3.3)

For k = 1 we obtain the expansion

T/9α2 + 10a + 3 = [3a + 1, 1, 2, 3α + 1, 2, 1, 6α + 2] .

4 . E x p a n s i o n of w = V\Ak - (a + I)] 2 - A; A = 2α + 1, α, A; ̂  2.
The formulas hold

(4.1) w2 = A2k - 2(α + 1)A* + α2
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[w] = Ak-(a + 2);

The reader will easily verify the following:

43

THEOREM 4. Let a, k ^ 1 be natural numbers, w2 = [Ak - (a + I)]2 -
A, A = 2α + 1, w2 squarefree. The expansion of w, as a periodic
continued fraction, has a primitive period of length 4(2fc — 1) and
the form

(4.3)

w = [60, bl9 b2, , fe4s_!, δ4 1, δ4

δ4fc-5, ^4fc-4f O4 f c_3, O4 f c_2, O4fc_3, ' ' ' , 6 2 , &!, 2 θ 0 ]

δ0 = A* - (a + 2); 6, = 1, b2 = 2>Ak~l - 3

64.-1 - 1; δ4s - Aβ - 2; δ 4 s + 1 = 1; 64 s + 2 = 2(A*—*

8 = 1, 2, , A; - 2, A; ̂  3; α ^ 2;

b4k-5 = 1; 64ft_4 = Afc-χ - 2; 64fc_3 = 2; b4k_2 = 60 .

i ) ;

For fc = 2, α ^ 1 the expansion holds

τ/(4α2 + 3α)2 - 2a + 1)

(4.4) = [4α2 + 3α - 1, 1, 4α - 1, 1, 2α - 1, 2, 4α2 + 3α - 1, 2 ,

2a - 1, 1, 4α - 1, 1, 8α3 + 6a - 2] .

For ft = 1, α >̂ 4, the expansion holds

(4.5) - 2α - 1 = [a - 2, 1, a - 3, 1, 2(α - 2)] .

5. Expans ion of w = V[Ak + (A - I)] 2 + 4A; A = 2*6, & odd ^

1; d ^ 1; ft ^ 2« The formulas hold (d and 6 not both equal 1)

(5.1)
w2 = A2k + 2(A - l)Ak + (A + I)2; [w]

= Afc + A - 1; w = [w] + r, 0 < r < 1 .

The reader will easily verify the following:

THEOREM 5. Let A = 2% b odd ^ 1, d ^ 2, k ^ 2 δβ natural
numbers, w2 = [Afc + (A — I)]2 + 4A squarefree. If k ^ Z is odd,
then the expansion of w, as a periodic continued fraction has a
primitive period of length 5k — 6. The expansion has the form

(5.2)

( i ) δ0 = A 4 + A - 1; 6 t = 2< ί-1δA*-

( i i ) 65β_ε = 2; 65S_2 = 2 ί- 16A«- 1 - 1; ^ = δ 5 s = 1; 6 5 s + ι
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8 = 1, 2, -.., -i-(fc-S), k^

(iii)
Dl/2(δk-U) = " 1

°l /2(5&-9)
V2{k~Z) _

For & = 3, the expansion has the form

(V[A3 + (A - I)]2 + 4A

(5.3) + a - 1, 2d"16A, 2, 2d"1δ - 1, 1, 1, 2d"16

- 1 ,2, 2d"16A, 2(A3 + A - 1)]

If A; ̂  2 is even, the expansion of w, as a periodic continued
fraction has a primitive period of length 5k — 6. The expansion has
the form

(5.4)

[w = [b0, bly , ί>5s-3, ί>5 s_2, 653.!, 65s, δββ+i, , 2, ,

6 5 s + 1 , δ 5 s , 65s-!, &5s_2, 653-3, * " , 6i, 26 0 ]

Q — 1 O . . . ^~ (h 9 V j^ > A
o — X, ^-i, , v / ' ^ — jb •

60, δi, 6 5 S -3, ί>5s-2, &5S-i, &5s, &5s+i a s i n ( 5 . 1 7 ) , (i), ( i i) .

For k = 2, the expansion has the form

jl/[A2 + (A - I)]2 + 4A
( ' } ( = [A2 + A - 1, 2d~% 2, 2d~% 2(A2 + A - 1)] .

EXAMPLE 1. For d = 2, 6 = 1, A = 4, we obtain from (5.18)

•/45θΓ= [67, 8, 2, 1, 1, 1, 1, 2, 8, 134] .

EXAMPLE 2. For d = 2, δ = 1, A = 4, we obtain from (5.20)

α/377 - [19, 2, 2, 2, 38] .

The reader should note that for k = 1, we obtain the known
expansion τ/4A2 + 1 = [2A,~4A].

As is known in the case of an odd period of length 2r + 1, the
formulas hold

(5.6) w2 = P2

r+1 + Q2

r+1 .

In our case 5k — 6 = 2r + 1, hence

(5.7)
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and so we obtain

(5.8) Q U - i ) + P5

2

/2( fc_υ - [Ak + (A - I)] 2 + 4A .

We obtain from (5.8), (iv), for s = l/2(fc - 1),

Q6/2(fc-i> = (Aιmk'l) + l)Afc-1/2(*"1} - [A1/2(fc~1)+1 + 1(A + 1)] ,

P _ λfc-(Jfc-l)/2 I J(Jb-l)/2 + l
5/2(fc —1) — "*•*• T~ •*!• >

P — OA(k + i)/2. f) λk ( A \ Λ\

,~ QX δ/2(k-l) — 6J± , k^5/2(Jfc-i> — Ά \jf± ΊΓ Λ-) .

Indeed:

P2 I f\2 __ ^ ylfc + 1 , >J2λ O/yj I l U i I / ^ I I \2

= A2 4 + 2(A - l)A)b + (A + I) 2 = w2,

by (5.1).

6. Expansion of w = V[Ak - (A - I)]2 + 4A, A = 2% d ̂  1, b ̂
1 odd, & ̂  2* The formulas hold (d and 6 not both equal 1)

ia i λ w2 - A2& - 2(A - l)Ak + (A + I)2; [w] - Ak - (A - 1)
(b.l)

w = [w] + r, 0 < r < 1 .

The reader will easily verify the following

THEOREM 6. Let A — 2db, b odd ̂  1, d ̂  2, δβ natural numbers,
w2 = [Ak — (A — I)]2 + 4A squarefree. If k ̂ Z is odd, then the ex-
pansion of w as a periodic continued fraction has a primitive period
of length 5(k — 1). The expansion has the form

(6.2)

Ul/2(δk-9)f Vl/2(δle-7)f ^l/2(

k _ Od-lfr Λk-s-2 __ 1 .
δs + l — £ OJ± — 1 ,

i .
δs+2 — -A J

δs+z — l

65s+5 = 2; s = 0, 1, . . . , A < f c - 5)

j, _ 2'i-i5A1/2(*~1) — 1' b =
Oi-ljk ΛUHk—3) f h 0

1/2(84-7) — ώ "•«• J-> l>l/ί<5fc-δ> — ^

16, = A^ - (A - 1) .

For k — 3, w has the expansion

(6.3)

V[A3 - (A - I)]2 + 4A

= [A3 - A + 1, 2 i-'6A - 1, 1, 1, 2<J-1δ - 1, 2, 2i~1&

- 1 , 1, 1, 2 i" 16A - 1, 2(A3 - A + 1)] .
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If k ^ 4 is even then the expansion of w as a periodic continued
fraction has a primitive period of length 5k — 5. The expansion has
the form

[w = [60,

(6.4) = A* - ( 4 - 1);

(6.5)

&5.+1, δ 5 s + 2 , δ δ 8 + 3 , &5S+4, ί> 5 s + 5 a s i n ( 6 . 1 2 ) ; s = 0, 1, , — ( & — 4 ) ,

For k = 2, the expansion of w is

jl/[A2 - (A - I)]2 + 4A

[ = [A2 - A + 1, 2d"16 - 1, 1, 1, 2d"16 - 1, 2(A2 - A + 1)] .

By formula (5.21) we obtain here

fPl + 3 + QL+3 = w2, s = ^(fc ~ 2); P1/2(5fc_4) - 2A1/2fc

(6.6) j 2

^ A1/2(5,_4) - Ak - (A + 1) .

Indeed:

(2A2kf + [Ak - (A + I)]2 = A2k - 2(A - 1)A* + (A + I)2 = w2 .

7. Expansion of w - V/[Afc + (A + I)]2 - 4A, A = 2dί>, & odd ^ 1;
^ 1, k ^ 1* We can eliminate the case k — 1, for then

w - l/4A2 + 1 = [2A, 4A] .

The formulas hold (d and b not both equal 1)

[w2 = A2* + 2(A + l)Ak + (A - I)2; [w] = Ak + A
(7 1)

[w = Ak + A + r, 0 < r < 1 .
The reader will easily verify the following

THEOREM 7. Lei A = 2db, b odd Ξ> 1, c? ̂  2 6β natural numbers,
w2 = [Ak + (A + I)]2 - 4A, Λ ̂  1, ^ 2 squarefree. The length of the
primitive period in the expansion of w as a periodic continued
fraction equals 6(k — 1) + 1. If k is even ^ 4, the expansion has
the form

^3fc-5> ^3fc-4> 1? 1> ^3fe-4> ^3fc-5, * ' ' , 2 6 0 J

(7.2) J 60 = Afc + A ,
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bea+ι = 1; 6β3+2 = 2d~1bAk-'-2 - 1; 6βs+3 = 6e,+4 - 1 ί

6βs+6 = 2d^bA' - 1; «Wβ = 1; s = 0, 1, , ±(k - 4)

If A; is odd S; 5, the expansion has the form

W " ', frβs+i, feβs+2, bβs+3, δβs+4, δ β ί + 5 , 6 β 3 + β ,

k-βt "3A-7» 03*-6> Oilt-i, 03*-4> ί 1» 1» U3k_4, O3k_li ,

V3k-6> < > 3 f c - 7 , O 3 f c - 8 , • • ' , ^ θ j

bo = Ak + A,

ί)68+s = 2i"1bAi - 1; ?wβ = 1; s = 0, 1, , i-(fc - 5) .

Δ

bus = 1; δ»-τ = 2'-ιbAυ«i-» - 1; &3*-β = δ»_. = 1

δs*-4 = 2i"16il1/lt*-» - 1 .

For A; = 2 we obtain the expansion

j v ^ + A + l ) 2 - - ^
1 = [A2 + A, 1, 2d-1& - 1, 1, 1, 2d"1& - 1, 1, 2(A2 + A)] .

For k — 3 we obtain the expansion

(7.5)

τ/(A3 + A + I)2 - 4A

= [A3 + A, 1, 2d-1δA - 1, 1, 1, 2d~'b - 1, 1, 2d~ι - 1, 1, 1,

2d-χbA - 1, 1, 2(A3 + A)] .

The formula P 2

+ 1 + Q2

r+1 = ^ 2 is also verified easily, with 2r + 1 =

6(fc - 1) + 1.
For d = 2, δ = 1, A = 4, formula (7.14) does not hold, for in this

case w2 = 425 and is not squarefree.

8. Expansion of w = ^[A^ + (A + I)]2 - 4A; A = 2dδ, δ odd ^
1; d ^ 1; Jfc ̂  2. The formulas hold (for δ and d not both equal 1)

w2 = A2h - 2(A + l)Afc + (A - I)2; [w] = Ah - A - 2

w^Ak-A-2 + r;0<r<l.

The reader will verify easily the following

THEOREM 8. Let A = 2dδ, δ odd ^ 1, ώ ̂  1, be natural numbers,
w2 ~ [Ak — A + I)]2 — 4A squarefree. If k^A is even, the length of
the primitive period in the expansion of w as a periodic continued
fraction equals Ak — 2, and the expansion has the form
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"w = [b0, blt b2, ••-, 6 4 8_!, bis, bis+ι, bis+2, , 2,

(8.2) •

b2(k + l ) _ 4 s _ 1 ( 62(i;+i)_4S-2, δ 2 ( ί ; + 1)_ 4 8_3, , 62, bίf 2b0]

60 = A" - A - 2; b, = 1; 62 = 2i-16A*~2 - 2

δu-i = 2; δ4s - 2<i-16As-1 - 1; 64 s + 1 = 2; ί>43+2 = 2d-1bAk~'-2 - 1

tL

For k = 2, we obtain the expansion

(V{A2 - A - I)2 - 4A

(8.3) = [A2 - A - 2, 1, 2i-16 - 2, 2, 2ί-16 - 2, 1, 2(A2 - A - 2)]

(A > 4) .

If k 2; 5 is odd, the length of the primitive period in the expansion
of w as a periodic continued fraction also equals 4fc — 2, and the
expansion has the form

= l"o» Oίt O2, , O4 s_i, 04s, O 4 s + i , O 4 s + 2 , , O2it_3, 02 j f c_2, 2 , O2j :_2 ,

δ2ϊ;_3, b2, bu 2b0]

( 8 > 4 ) ]60, bu h, bu.u bis, bis+ί, &4s+2 from (8.13); s = 1, 2, , i-(fc - 3)

-L _ O. ϊj _ Qd-lfc /11/2(fc-3) _ 1
^2fc-3 — ^> ^2fc-2 — ^ U-ft -L

For & = 3, we obtain the expansion

(V(A3 - A - I)2 - 4A

(8.5) = [A3 - A - 2, 1, 2d-16A - 2, 2, 2d~16 - 1, 2, 2d"ι6 - 1, 2 ,

2d-ίbA - 2, 1, 2(A3 - A ~ 2)] .

9. Expansion of w = V[(4A)k + (A - I)]2 + 4A; A = 2% b odd;
cί ^ 2. Though, at a first glance, the structure of w looks similar
to that of the §§5-8, there are surprising restrictions on the choice
of A, and k. The reader will verify easily the following expansion
and formulas.

\w2 = (4A)2* + 2(A - l)(4A)fc + (A + I)2

( ' } \[W] = (4A)fc + A - 1; w = (4A)fc + A - l + r ; 0 < r < l .

(9.2) n; = (4A)fc + A - 1 = — Px = (4A)fe"1 + A - 1; Qx = 4A .
x

(9.3)
n; + (4A)* + A - 1 = 2 ( 4 A ) , - i + _1_ .

4A x2

P2 - (4A)* - (A - 1); Q2 = 4(A - 1X4A)*-1 + 1
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ίw + (4A)fe - (A - 1) = 2 , _1_ .
(9.4) 4(A - l)(4A) i :-1 + 1 a?, '

ίp 3 = 4(A - 2)(4A)*"1 + (A + 1); & =

(9.5)

(9.6)

(9.7)

4(A - 2X4A)*"1 + (A

P 4 = 4(A - 2X4A)*-1 - (A + 1); Q4 =

+ [A2 - (A + 1)] .

w + (4A)* - 8(4A)*-1 - (A + 1) _ -, ,
_ _ _ _ _ _ _ _ . — 1 "Γ

P 5 =

1 + [A2 - (A + 1)]
1 + A2; Q6 = 4(A + 1X4A)*-1 - [A2 + (A + 1)] .

w + 4(4A) t-1 + A2 = I + _L
fc + 4(4A)fc-1 - [A2 + (A + 1)] x6

P 6 - {AA)k - [2A2 + (A + 1)]; Q6 = 4A2

(9.8) w

4A2

 7

The reader will now verify by induction the following formulas.

(( i ) P 5 s + 2 = (4A)* - [2AS+1 - (A + 1)]

Qδs+2 = 4S+1(A8+1 - l)(4A) i" s- 1 - [A£+1 - (A + 1)]

( i i) P S s + 3 = 48+1(A8+1 - 2X4A)*"8-1 + (A + 1)

Q5s+3 = 48+2(4A)*~8~1; δ 5 s + 2 = 2d~1&A8 — 1

(iii) P 5 s + 4 = 48+1(A8+1 - 2)(4A)ί;-8-1 - ( „ + 1)

,Q „ Q5S+J = 4*+1(A8+1 - 1)(4A)'-5-1 + [A8+2 - (A + 1)]

(iv) P 5 s + 5 = 4s+1(4A) i ;-8-1 + A8 + 2

Q6s+5 = 4 s + 1(A8 + ι + 1X4A)*-*-1 - [As+2 + (A + 1)]

( v ) P 5 s + 6 = (4A)* - [2A8+2 + (A + 1)]; Q5s+6 = 4A8+2; &5s+β

= 2 48+1(4A) i ;-s-2 - 1 .

s = 0, 1, .

Formulas (9.9) are correct for s = 0, in virtue of formulas (9.3)-
(9.8); then it proved that they are correct if s is replaced by s + 1.
Comparing successive Pv — s, we see that the only possibility of
equality is

(9.10) ( I ) -MSs+2 — ",6S + 3
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This implies

(9.11) 4* - A2{s+1)~k; A = 2\ b = 1 .

From (9.11) we obtain 2k = d[2(s + 1) - A], hence

(9.12) fc(d + 2) - 2d(s + 1) .

Solving the Diophantine equation (9.12), we obtain all possible
solutions as follows.

'(a) k = 2nd; s = w(d + 2) - 1; % = 1, 2, -

(b) A = 2%£; d — 2t; s = (t + l)w — 1; t, u — 1, 2,
(9.13) \ 1

(c) k = (2u + ϊ)d; s = - (rf + 2)(2^ + 1) - 1; d = 0(mod2)
A

(d) 2k = (2u + l)d; 4s = (d + 2)(2% + 1) - 4; d = 2(mod 4).

The reader should note the following procedure: after k and d
have been chosen from (9.13), (a)-(d), s is a function of k, d; for
constant k0, d0 we shall denote

(9.14) s0 = F(k0, d0) .

The length of the primitive period in the expansion of w for
any choice of (k, d) from (9.13) then becomes m = 10s0 + 4.

Comparing successive Qv ~ s, we see that the only possibility of
equality is

(9.15) (II) Qδs+4 = Qββ+B .

This implies

(9.16) 4* - A2s+3~k; A = 2d; b = 1 .

From (9.16) we obtain 2k = d(2s + 3 — 1), hence

(9.17) k(d + 2) = d(2s + 3) .

Solving the Diophantine equation (9.17), we obtain all possible
solutions as follows

j(a) k = ud, 2s + 3 = t6(2 + d), u, d = 1(2)

* 9 e l ((b) & = ut; d = 2έ; 2s + 3 = w(ί + 1); u Ξ 1(2); t = 0(2) .

We again denote s0 = .P(A0, d0), for any choice of fixed k and cί
from (9.18). The length of the primitive period in the expansion
of w for anyc hoice of (k, d) from (9.18) then becomes m = 10s0 + Q-
For d = 1, (6 = 1), we obtain w = τ/(8fe + I) 2 + 8, which is easily
expanded and is left to the reader. We can now state.
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THEOREM 9. Let A = 2d, d ^ 2, w2 = [(4A)fc + (A - I)]2 + 4A
/rββ // (&0, d0, s0) is any solution vector of the Diophantine equation
(9.12), given by the value Table (9.13), (a)-(d), then the primitive
period in the expansion of w as a periodic continued fraction has
length m = 10a + 4, (s0 >̂ 1), and the form

, bδs+2, 4, 6 5 β + 5 , 6 5 s + 6 , , 2 ,

(9.19) |δβ = (4A)*° + A-l;b1 = 2(4A)*°~1

bδs+2 — 2 ; 6 5 s + 3 — 2 ° A 8 1; o 5 s + 4 = o 5 s + 5 = 1 *,

b53+6 = 2 4s+1(4A)*»-«-2 - 1 . s = 0, 1, , s0 - 1 .

If (&0, s0, d0) is any solution vector of the Diophantine equation
(9.17), given by the value table (9.18), (a), (b), then the primitive
period in the expansion of w as a periodic continued fraction has
length m = 10s0 + 9, and the form

(w = [60, blf , &5s+2,

(9.20) •

, 2,

1, 1, 2-o"16A o - 1, 2, •• , δ 1 , 2&0]

where the δ0, 6^ 6δs+2, , bδs+6 a re the same as in (9.19) ,

s = 0, 1, ••-, s0 - 1 .

10. Exapansion of w = τ/[(4A)* + A + I]2 - 4A; A = 2% b odd,
d! ^ 2. The reader will verify easily the following formulas and
expansions

(10.1)
w2 = (44.)** + 2(A + l)(iA)k + (A - I)2; [w] = (4A)k + A

w =

(10.2) w =

r; 0 < r < 1 .

1. P _ - (2A

(10.4)

(10.5)

(10.6)

to (3A - 1) =

4A

P3 = (44.)* - (A

ίw +

1); Q3 =

- (A + 1) = ! , 1.
j (4A)k + iiiA)"-1 - 1 x
(p4 = 4(4A)*~1 + A; Qt = 4(A + (2A - 1).

( w + 4(4A)*"1 + A = 1 + 1_ .
(4A)» - 4(4A)*-1 + 2A - 1 α, '

p 5 = 4(A - 2X4A)*-1 + A - 1; Q5 = 16(4A)!;-1.
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(10.7)

(10.8)

w + 4(A - 2){AA)"-ί + A - 1 = 2 i _ ι & _ i , JL •
lβ^A)*" 1 as, '

Pβ = 4(A - 2)(44)*-1 - (A - 1); Q6 = 4(A - 1X44)*"1

+ [A2 - (A - 1)] .

' - (A - 1) χ _1_

(4A)fc - 4(4A)fc-1 + [A2 - (A - 1)] x7

P 7 = 4(4A)4"1 + A2; Q7 = 4(A + 1)(4A)*-1 - [A2 + (A - 1)] .

f w + 4(44)*-* + A2 = 1 + 1.
(10.9) (4A)* + 4(4A)*-χ - [A2 + (A - 1)] xs

(p 8 = (4A)* - [2A2 + (A - 1)]; Qs = 4A2 .

We now prove by induction the following formulas as before;
they are correct for the parameter s = 0, and it is then proved that
they are correct for substituting s by s + 1:

( i ) P6 3 + 2 = (4A)* - [2AS+1 + (A - 1)]; Q6s+2 = 4AS+1; 6es+2

= 2 48(4A)ί£-s-1 - 1;

( i i) P6s+3 = (4A)* - [2AS+1 - (A - 1)]

Q6s+3 = 4 s+1(A s+ι + 1)(4A)*-S-' - [A*+1 - (A - 1)]

(iii) P 6 s + 4 = 4 +X4A)*—' + A s + 1

Q6s+4 = 4S+1(AS+1 - 1)(4A)4-S-1 + [As+1 + (A - 1)

(10.10)
(iv) P 6 s + 5 - 4S+1(AS+2 - 2)(44.)*—x + A - 1

( v ) P 6 s + 6 = 4S+1(A8+1 - 2X44)*—x - (A - 1)

Q,.+, = 4S+1(AS+1 - l)(4A) i"8-1 + [As+2 - (A - 1)]

(vi) P 6 s + 7 = 4S+1(4A)4"S-1 + As+2

Q6s+7 = 4S+1(AS+1 + 1)(4A)*—' - [Aί+2 + (A - 1)];

δβ,+7=i; s = o, l, ••• .

Comparing successive Pv — s and Qv — s, we obtain the cases

(10.11) ( I ) Qes+3 = Q6ε+i .

This implies

(10.12) A" = A 2 ί s + 1 ) - k ; A = 2d;b = l .

From (10.12) we obtain 2k = d[2(s + 1) - &],
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(10.13) (d + 2)fc = 2d(s + 1) .

(10.13) is the same equation as (9.12) and its solutions are given by
(9.13). If (k0, d0, s0) is a solution vector of (10.13), then the length
of the primitive period in the expansion of w equals m = 10s0 + 7.

(10.14) (II) Q6s+β = Qes+7

This implies

(10.15) 4* - A 2 s + 3 ~ k ; A = 2d; b = 1 .

From (10.15) we obtain 2k = d(2s + 3 - k),

(10.16) k(d + 2) = d(2s + 3) .

Equation (10.16) is equation (9.17), and its solutions are given
by (9.18), (a), (b). If (fc0, <Z0, s0) is a solution vector of (10.16), then
the length of the primitive period in the expansion of w equals m =
10s0 + 13. The restriction on d ^ 2 results from the value of b5 —
2d~1 — 1 in (10.7). If d = 1, we would have bδ = 0, which is impossible.
The case d — 1, A = 2, yields w = l/(8* + 3)2 — 8, and the expansion
of this w is left to the reader. We can now state.

THEOREM 10. Let A = 2\ d ^ 2, w2 = [(4A)k + (A + I)]2 - 4A
squarefree. If (k0, dQ, s0) is any solution vector of the Diophantίne
equation (10.13), given by the value table (9.13), (a)-(ώ), then the
primitive period in the expansion of w as a periodic continued
fraction has length m — 10s0 + 7, and the form

jW —

(10.17) -

•,&„ 260]

6, = (4A)* + A; 6t = 1 ,

ό6s+2 = 2 48(4^)*o—1 - 1; δ e s + 3 = bβs+i = 1

66s+5 = 2i°-1A - 1; 66s+6 = b6s+7 = 1 .

If (kQ, d0, s0) is any solution vector of the Diophantine equation
(10.16), given by the value table (9.18), (a), (b), then the primitive
period in the expansion of w as a periodic continued fraction has
length m = 10s0 + 13, and the form

(10.18)

2f b 6 s + 3 , o 6 s + 4 , 6 β s + 5 , 6 6 s + 6 , 6 6 s + 7 ,

1, 1, 2 4 s o(4A)^o-i _ i, . . . , 6 ^ 260]

\K K 66s+2, , 668+7 from (10.17), s = 0, 1, - , s0 - 1 .

11. Expansion of w - V[Ak + (A - I)]2 + 4A; A = 2db + 1; d ^
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1; & odd* This expansion is remarkable in the sense that the cycles of
the period are of length eleven; so are the cycles in the next two
sections, while in the last section the length of the cycle is even twelve.

We obtain the formulas

(11.1)
w2 = A2k + 2(A - l)Ak + (A + I)2; [w] = Ak + A - 1; w

= Ak + A — l + r ; O < r < l .

The reader will easily verify the following:

THEOREM 11. Let A = 2db + 1, d ^ 1, b odd, w2 = [Ak + (A- I)]2 +

ίA squarefree; let further k = 4(mod 6), k ^ 4, s0 = (l/6)(fc — 4). Then

the length of the primitive period in the expansion of w as a periodic

continued fraction equals l/3(llfc — 14), and the expansion has the

form, for k ^ 10,

(11.2)

s + 3> *f "Us0

bo — A + A 1; b1 — 2 bAk_2Ί bnsQ+2 — l j o 1 1 S o + 3 — 2A

^11SΛ+4 — "^*-l/2fc— 2* ^lls+2 — -*-> ^lls + 3 — £A£Λ. — ± j

6 '=z 2dlbA ' b = 2' b = 2dlbA

b = 2A f c ~ 3 ( s + 1 ) 1* b = 1* b = 2d~1bA

~L __ ij I . ik _ . 2^ — 1 /)A 2 *

s = O, 1, , s0 - 1; Au = (A - l)"1(A t t+1 - 1); u = 0, 1,

If ft = 4, the expansion of w has the form

(VIA* + (A - I)] 2 + 4A = [A4 + A - 1, 2 i-1δ(A? + A + 1), 1 ,

(11.3) 2A - 1, 2d~% 2, 2d~% 2A - 1, 1, 2i~16(A2 + A + 1 ) ,
4 + A - 1)]

If ft = 3, the expansion has the form

(11.4)

i/[A3 + (A - I)]2 + 4A = [6β> & u . . , δ Λ δ13) δ14, δ12, , blt 2b0]

b0 = A3 + A - 1; b, = 2d~1b(A + 1); δ2 - 1; δ8 = 2A - 1

64 = 2d~% b6 = 2; 6β = 2 i"16(A + 1); b7 = b8 = 1;

δ9 = 2 i-1δ(A2 + A) + A - 1; bl0 = 2A2 + 1; δ u = 1;

δ12 = 2 i"1δ - 1; 6U = &M = 1 .

The length of the primitive period in the expansion of w for
ft = 3 equals 27. Let further be ft = 1 (mod 6), ft ^ 7, s0 = (l/6)(ft - 7).
Then the length of the period in the expansion of w as a periodic
continued fraction equals l/3(llft — 14), and the expansion has the
form, for k ^ 13,
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(11.5)

b0 = Ak+A - 1;

ollso-v4 = 2 6 A 1 /

2i-1δA*_ί; δ11So+2 = 1; ό11So+3 = 2A1'11*"1 - 1

6 l l S o + 5 = 2; o l l s o + 6 = 2 oA 1 / 2(K5) >

lls 0~9 — ^ C '^ il/2(fc-3) -1- >

nβ+2, ^ L + 3 , , &U.+12 a s in (11.19); s = 0, 1, s0 - 1 .

It is left to the reader to find the expansion of w for the cases
k = 5, 6, 7.

12. Expansion of w = V[Ak — (A — I)]2 + 4A; A = 2db + 1; d
1; 6 odd* We use the notation, as before,

A tt+i _ 1 — / y l 1^>4 - i / — 0 1 . . . * A

^ 1 2 < 1 ) = 1; —(A κ + 1 - 1) = 2"-16Aa .

(12.2)

The following formulas hold:

2 = A2* _ 2(A - l)Afc + (A + I)2; [w] = Ak - A

= A f e - A + l + r, 0 < r < 1 .

The reader will easily verify the following

THEOREM 12. Let A = 2db + 1, d ^ 1, h odd, w2 = [Ak - { A - I)]2 +

AA squarefree; let further k = 1 (mod 6), k ^ 7, sQ = (l/6)(fc — 7). ΓΛβ^
ίfee length of the primitive period in the expansion of w as a periodic
continued fraction equals 11/3 (k — 1), and the expansion has the
form, for k ^ 13,

(12.3)

> ^l lsθ+lθ> " l l s

O/13S + 1

^ils + 7 — ^ υ^13s + l X> ^ l l s+9 — < ώ / ±

^lls-rlO = : ^ ^-^3s + 2? O0 = ^4. -A +

h __ OΛ U2(k-5) 1 ft — Λ
^1180 + 2 — ί Λ l Λ ^9 ^ H 3 0 + 5 — u l l s 0

1 h —
-L> #lls o +7 —

^llso^9 — ^ Λ -L> °lls o + lθ — ^

s = 0, 1, , s0 - 1; Au = (A -

_ 2d~1bA Λ. — 1 *

(s + l) 1 .
• * - >

. ^ __ 2d~ίbA Λ. '

[~ιbA {k — 1

\AU+1 — 1), u = 0, 1,
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For k — 7, the expansion has the form

V / [ A 7 - ( A - 1 ) ] 2 + 4 A - [60, KK •••,&„, 2, δ10, , 62> 6,, 26 0 ],

l
( # } |

δ0 = A7 - A + 1; δ, - 2 ^ A 5 ; δ2 = 2A - 1

|δ 3 = 65 = δ6 - δ8 - 1; δ4 - 2d~1bA, - 1; 6, = 2

δ9 = 2A4 - 1; δ10 - 2 ^ A 2 .

Let further be k = 4 (mod 6); s0 = (l/6)(fc - 4); fc ̂  4. Then the
length of the primitive period in the expansion of w equals ll/3(& — 1),
and the expansion has the form, for k ^ 10,

(12.5)
K &11.+1, δπ.+2, , Ks+n as in (12.18)

h — 2dlbA * b = 2A1/2(fe~2) 1 *

I, z= \* b — 2d-1δA 1

s = 0, 1, , s0 - 1; Au as in (12.18) .

For k — 4, the expansion has the form

(12.6)

V[A 4 - (A - I)]2 + 4A - [δ0, &lf δ2, δ3, δ4, 1, 1, δ4, 63, K K 2δ0]

δ0 - A4 - A + 1; δx - 2rf-^A2; δ2 = 2A - 1; δ3 = 1

δ4 - 2d'1bAί - 1 .

13. Expansion of wV{Ak + A + I)2 - 4A; A = 2dδ + 1; d ^ 1; δ
odd.

THEOREM 13. Lei A = 2dδ + 1, d ^ 1, δ odd, w2 = (AΛ + A + I)2 -

4A squarefree; let further k = 4 (mod 6), fc ̂  4; s0 = l/6(yfc — 4). T%e%
ίfee length of the primitive period in the expansion of w as a con-
tinued fraction equals l/3(10& — 7), and the expansion has the form,
for k ^ 10,

(13.1)

1> 1> δ 1 O S o + 4 , δ 1 O β o + 3, δ 1 0 S o + 2, , &!, 2 δ 0 ]

6 0 = A * + A ; 6, = 1; δ 1 1 S o + 2 = 2 i " 1 δ A ι / 2 , ; 6 1 0 S 0 + 3 = 2 A ί l 2 ^

δiθίO+4 = = 2 δA1/2(fc-2)> δ 1 0 s + 2

 = : 2 oAfc_3s_2 )

°10s+3 — «<«. , O 1 0 s + 4 — ώ C//tfc_3(8 + 1) ,

^10s+5 r = r fy.Os+6 ^ ^108 + 10 = = ^108 + 11 ~ •*•> ^108+7 = = ^ ^ * 3s + l 9

°10s+8

{ s = 0, 1, - • , s0 - 1; AM+1 - 1 = (A - 1)A11; u = 1, 2,

For k = 4, the expansion has the form
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(13.2)
A + I ) 2 - 4 A - [δ0, bly δ2, δ3, δ4, 1, 1, δ4, δ3, &a, *>i, 2δ0] ,

δ 0 = A 4 + A ; b, = 1; 62 = = 2 A ; δ 5 = + 1) .

Let further k = l (mod 6), k ^ 7, s0 = (l/6)(& - 7). Then the length
of the primitive period in the expansion of w as a periodic continued
fraction equals l/3(10& — 7), and the expansion has the form, for
k ^ 13,

(13.3)

&0> &1> &i0β + 2, ^lOs + 2, ' ' , &1O* + 11 a S ^ ( 1 3 . 1 7 ) , S = 0 , ,

o I h — Qd-il, Λ h — O Λi/2(k-5) .
>0 X > ° Ί θ s o + 2 — ^ υ-^±l/2(k + Z)j ^ 1 0 s 0 - r 3 — ώ Λ ?

For & = 7, the expansion of w has the form

(13.4)

A + I)2 - 4A = [δ0, bly b2, - , 69, 1, 1, 69, - • -, 62? ftx, 260]

60 = A7 + A; 6, = 1; δ2 = 2d~1bA5; b, = 2A; 64 = 2d~ίbAi

δ5 - δ6 = 1; δ7 - 2d'ιbAι; δ8 - 2A4; δ9 = 2d~1bA2 .

14. Expansion of w = V[Ak - (A + I)]2 - 4A; A = 2dδ + 1; d ^
1; δ Ξ> 1 odd. This case is the most interesting of all treated in this
part of the paper, since the length of the cycle is greater than any
previous one, namely 12. With the previous notation, Au±1 — 1 =
(A — 1)AU, u = 0, 1, •; Ao = 1, the reader will easily verify the
following expansions and formulas.

(14.1)
w* = Aϊk - 2(A + l)Ak + (A- I)2; [w] = Ak - A - 2

w = Ak - A - 2 + r, 0 <r <1 .

(14.2) w = Ak - A - 2 + — P, = Ak - (A + 2); Qt = 2Ak + 2,(2A + 1) .
x

= 1 + - ; P> = A

x2

= 2ί"16A,_2 - 2

— 3

(14.4)

(14.5) ;

-; P, = A* - (5A -

- (A -

Λk-l
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(14.6)

(14.7)

(14.8)

w + Ak-Ak-:-A + l2 = { A _ 1 ) + λ .

1 + (A - 1); Q5 = (2A- l)Ak'1 -2[2A2-(A- 1)] .

Ak - Ak~ι + A - 1
2A* - A"'1 - 2[2A2 - (A - 1)] a;6'

Ps = Ak- [4A2 - (A - 1)]; Q6 = 4A2.

w + A" - 4A2 + A - 1

4A2 - 1 + —

P7 = A* - [2A2 + (A - 1)]; Q7 = (A2 - 1)A*"2 - [A2 + (A - 1)]

(w + Ak - 2A2 - A + 1
(14.9) A*

I P8 = (A2 - 2)A*-2 - (A - 1); Qs = AAk~2

(w + A* - 2A*"2 - (A - 1)

(14.10)

4A*-2

= 2ί"1δA1 - 1 + — P 9 = (A2 - 4)Afe-2 + (A - 1); Q9

= 2(A2 - 2)A*-2 - [A3 - 2(A - 1)]

w + Ak - 4Afe~2 + (A - 1)

(14.11)
A& - 4Afc"2 - A3 + 2(A - 1)

= 1 + — Pa = Ak - [A3 - (A - 1)]; Q10 = A3

X1Q

(14.12)

(14.13)

(14.14)

(14.15)

w + A" - A3 + A - 1 _ 2

P n = A" - [A3 + (A - 1)]

Qu = 2(A3 - 2)A*~3 - [A3 + 2(A - 1)]

f w + Ak - A3 - (A - 1) = i • _ L .
2A* - 4A*-3 - A3 - 2(A - 1) χa '

\Pa = (A3 - 4)A*-3 - (A - 1); Qa = 4A*-3

w + A" - 4A*-3 - (A - 1) = = 2d.ιbA _1 + JL;

P1S = (A3 - 2)A*~3 + (A - 1)

Qι3 = (A3 - 1)A«=-3 - [A* - (A - 1)]

ίw + A- - 2A*-3 + (A - 1) = « + - L •
A" - A*"3 - A4 + (A - 1) »M '

lP14 = Afc - [2A4 - (A - 1)]; QM = 4A4
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(14.16)
w + Ak - 2A* + (A -

4A4 H-s x15

We now prove the formulas:

fP 1 2 s + 3 = A" - [4A3 s + 1 + (A - 1)]

Q 1 2 s + 3 = (2A3 8 + 1 - l ) ^ - 3 3 " 1 - 2[2A 3 s + I + (A - 1)]; δ 1 2 s + 3 = 1

P 1 2 a + 4 = (A3 8 + 1 - l ) ^ - - 1 - (A - 1)

/ ^ __ Λk-Zs-1. Iv O /13S + 1 O .
^$128+4 — **- > y12s+4 — *•-"• ^ >

P 1 2 s + 5 = (A 3 β + 1 - l ) ^ - - 1 + ( A - 1)

Q m + 5 = (2A 3 S + 1 - l J A - - 1 - 2[2A 3 S + 2 - ( A - 1)]; δ 1 2 8 + 5 = 1

P 1 2 s + 6 = A*- [4A 3 + 2 - ( A - 1)]

O ΛAZs+2. Zv 9d~1hΔ 1
^12s + 6 — ^ ^ > 012S+6 — « v u f c _ 3 ( 8 + 1) 1 ,

P 1 2 s + 7 = A* - [2A 3 ' + 2 + ( A - 1)]

Q12s+7 = (A 3 S + 2 - 1)A*~ 3 - 2 - [A 3 S + 2 + ( A - 1] ; δ 1 2 s + 7 = 2

P 1 2 s + 8 = (A 3 8 + 2 - 2)A f t - 3 s - 2 - ( A - 1)
Π — ΛΔk-38-2. I. __ Od-lhΛ I .

P 1 2 s + 9 = (A 3 3 + 2 - 4 ) i l » - - * + ( A - 1)

(14.17) { Qi2s+g = 2 ( A 3 S + 2 - 2 ) A 4 - 3 - 2 - [A 3 ( s + 1 ) - 2(A - 1)]; 6 1 2 ί + 9 = 1

12S + 10 — Λ L ^ 1 - V^ -L/J »

12S + 10 " Λ » ϋ12s + 10 — ^ ^ ^ ^

P 1 2 % u = A«- [A3<s+1> + ( A - 1)]

Q 1 2 S + 1 1 = 2(A 3 ( S + 1 ) - 2)Ah~Us+ί) - [A3(s+1» + 2(A - 1)]

^ 1 2 8 + n r = : •*• y

P 1 2 S + 1 2 = (A3 ( s + 1» - 4)A f c - 3 ( s + 1 ) - ( A - 1)

^ 1 2 8 + 12 — ***• y ^12S + 12 — ώ U'txZs+2 *• >

P 1 2 8 + 1 3 = ( A 3 ί s + 1 ! - 2)A fc-3(8+1» + ( A - 1)

Qi 2 s + l3 = (A3 ! 8 + 1» - l ) A * - « i + 1 ) - [ A 3 ( s + 1 ) + I - ( A - 1)]

^I2s + 13 ~ •" 9

P 1 2 S + 1 4 = A" - [2A3 (*+ 1>+ 1 - ( A - 1)]; Qm+lt = 4 A 3 ( ί + 1 ' + 1

1̂2s + 14 ~ ^ ^ - 3 ί s + l)-2 1

s = 0, 1.

Comparison of successive P v — s and Qv — s shows that equality-

takes place in the following cases:

[P1 2 s + 7 = P1 2 8 + 8 implying k = 2(3s + 2); k ~ 4(mod 6)
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(14.19)
^β+is = Pito+u implying k = 6(s + 1) + 1; k = l(mod 6)

s0 = —\fc Ί) .
b

The length of the primitive period in the expansion of w equals,
in case (14.18), m = 4 + 24 l/6(Jfe - 4) + 8 + 2 - 4& - 2; in case (14.19)
the length of the primitive period equals m = 4 + 24 (l/6)(& — 7) +
20 + 2 = 4k — 2. We can now state.

THEOREM 14. Let A = 2<*δ + 1, d ̂  1, 6 odd, w2 = [Afc - (A + I)]2 -
4A squarefree; let further k = 4(mod 6), & ̂  4, s0 = (l/6)(& — 4). Then
the length of the primitive period in the expansion of w as a periodic
continued fraction equals 4k — 2, and the expansion has the form
k^ 10,

(14.20)

1 2 s o+3> * * *t V2, Olf Δθ0\

b0 = A k - A - 2; b, = 1; b2 = 2d'1bA^2 - 2; δ 1 2 s o + 3 = 6 1 2 s o + 5 = l

9d~1hΛO Λl'2Uc-2)

2s+3 : = βl2s+5 = = ~^"^12s + 7 :=:::: ^12s+9 ~ ^12β+ll ^^ "Z"^12s+l3 = : -»• >

— Δ<™ Δ> ϋ12s+6 — ^ V

— Od-lhΛ Λ' h — O Λk-3(s+l)

__ od~1hΔ 1 h z=z 2,d~~ίhA 1

s == 0, 1, , s0 - 1; Au+1 - 1 = (A - 1)AU; u = 0, 1,

For k = 4, we obtain the expansion

(l/[A4 - (A + I)]2 - 4A

(14.21) - [A4 - A - 2, 1, 2d~1bA2 - 2, 1, 2A - 2, 1, 2d~16A1, 2,

I 2<*-16A1, 1, 2A - 2, 1, 2d"16A2 - 2, 1, 2(A4 - A - 2)] .

Let further k = l(mod 6); k^7, so = l/6(k - 7). Then the length
of the period in the expansion of w as a periodic continued fraction
equals 4k — 2, and the expansion has the form

12so+3> * ' '9 ^2> "i*

111 (14.20), S = 0, 1,

2 1
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_ _ θΛl/2(fc-δ) _ _ O. ϊ, _ Oώ-lϊjJ _ 1 .
280 + 4 •— ̂ ^ 1 ^> ^12so + 6 — Δ υ ^ l/2(k + ί) ± 1

__ Od-lfrA 1 . 7j — O ΛV2UC + 1) O .
280+8 — & υ-*±l/2ίk-5) -M y 12s 0 + 10 — &**- ^ 1

Od-ll, Λ 1
2SQ + 12 — & υ^±l/2(k-3) •*•

The reader will have no difficulty to formulate the theorem for
the case k = 7.
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