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LATTICE ORDERINGS ON THE REAL FIELD

ROBERT ROSS WILSON

Since every total order is a lattice order, and the real
field R is a totally ordered field, it is a lattice-ordered field.
In 1956 Birkhoff and Pierce raised the question of whether
R can be made into a lattice-ordered field in any other way.
In this paper we answer their question affirmatively by show-
ing that there are, in fact, 2C such orderings, where c is the
cardinal of R.

Introduction. We answer the question of the existence of such
orderings, raised by Birkhoff and Pierce in [2, p. 68], in Theorem
1, and find the number of orders in Corollary 1.2. We denote the
rational field by Q, the positive cone of R (i.e., the set of reals ^ 0 )
in the usual order by R+, and the positive cone of Q by Q+.

THEOREM 1. Let L be any subfield of R except Q. Let K be any
proper subfield of L, such that L is algebraic over K. Then there
is a relation ^ on L, with positive cone PL, such that <L, ̂ > is a
lattice-ordered field which is not totally ordered. Moreover:

( 1 ) The order ^ restricted to K is the usual total order (K Π

PL = Kf]R-);

( 2 ) K is the largest totally ordered subfield of L under ^ .
( 3 ) The order ^ is a distributive lattice order.
( 4 ) The order ^ is R-compatible (PL £ R).

( 5 ) L f] R+ is quotient-represented by PL, in the sense that

for each le Lf]R+, there exist p, qe PL with q Φ 0, such that I — p/q.

We will give the proof in Section 2, where we state the main
lemma (see 2.2). We will use the assertion (2) in counting the number
of such orders, and we will need the technical feature (5) in the
construction process.

COROLLARY 1.1. Let L be a subfield of R containing ιc distinct
subfields K such that L is algebraic over K. Then L admits at least
fc distinct lattice orders.

Proof. By (2), these distinct subfields give distinct orders.

COROLLARY 1.2. R admits exactly 2C and the algebraic numbers
A admit exactly 2*° lattice orders.

Proof. R is known to be algebraic over 2C distinct subfields and
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A over 2No.
In fact, R may be replaced by any uncountable subίield in Corollary

1.2. Similarly, A may be replaced by any other countable subfield
which is algebraic over 2*° subfields.

We observe that incompatibility excludes from consideration many
orders on proper subfields L. For example, for every incompatible
order on Q(λ/ 2) the non-trivial field automorphism produces another
order which is not iί-compatible. Even though it can be shown that
incompatibility follows from quotient-representability, which plays
an important role in the construction process, we require incompa-
tibility during the inductive step to show that quotient-representability
extends. Thus we cannot dispense with iί-compatibility and, indeed,
must prove it independently.

When PM is the positive cone for an order <Ξ on some subfield
M of R, we will refer order expressions to PM by (wrt PM) meaning
with respect to PM.

I am especially indebted to K. Baker for many valuable sugges-
tions and to the reviewer for extensive clarifying remarks.

2* Main lemma and proof of Theorem 1* Our method of
proof employs judiciously chosen algebraic bases to extend orders.
Thus, if K is ordered by ^ with positive cone Pκ, if M is an extension
field of K, and if B is a basis for M over K, we write PK(B) for
the set of finite sums of the form X, kfii with kt e Pκ and bt e B.
For B = {b19 , 6m}, we write Pκ(blf , bm).

REMARK. 2.1. If Pκ is the positive cone for a lattice order on
K and B is a basis for M over K, then it is immediate that PK(B)
is closed under addition and that PK{B) induces a lattice order tS-
on M considered as a group (since ordering, like addition, is computed
'coordinatewise'). Moreover, if the order on the 'coordinate' field is
total, then 5j is distributive.

To prove Theorem 1, we start with Pκ = K Π R+ and consider
the collection xn = {(M, B)} where M is an intermediate field and
where B = BM is a basis for M over K such that B c L Π R+ and
such that:

(a) Pκ(B) is closed under multiplication (for which it will be
sufficient to show that b-cePκ(B) for all 6 and c in B):

(b) PK(B) is iί-compatible;
(c) PK(B) quotient-represents M Π R+; and
(d) leB.
By (a) and (c) above and Remark 2.1 we see that the order ^

on M with positive cone PK(B) make <ikΓ, ^> into a lattice-ordered
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field satisfying (3) and (5). Our original choice of Pκ as K Π R+ and
(d) give (1) while the fact that distinct elements of B are incomparable
with respect to ^ gives us (2). Finally, (4) is just (b).

Thus, Theorem 1 will be proven if we show that (L, BL) belongs
to m. In fact, we will employ induction, in the form of Zorn's
lemma (though we may also view it as a transfinite induction using
successive simple extensions) to choose a maximal (Mo, BMo) from m
and we will see that Mo = L. For the inductive step we will require
the following lemma.

MAIN LEMMA 2.2. Let M and W be subfields of R with Mr a
finite algebraic extension of M. Suppose that PM is the positive cone
of a lattice order ^ on M which quotient-represents Mf]R+. Then
there exists a e Mr such that

( i ) Mf = M[a],
(ii) a satisfies an = an^an~ι + + aϋ with a^ePM (where n

is the degree of Mr over ikf),
(iii) PM(1, a, •• ,αw~1) is R-compatϊble, and
(iv) PM(1, a, , α*"1) quotient-represents M' Π /?+.

The proof will be given in the next section.

For the inductive step we suppose (M, B) is a member of m so
that B is a basis for M over K satisfying (a), (b), (c) and (d). We
suppose that M Φ L, so that there exists a proper simple extension
AT of M with M' C.L. We choose ae M' using the Main Lemma
and consider B' = {ba*\b e B, 0 £ i <̂  n - 1}. Now B'' i) B and is a
basis for M' over K satisfying (a), (b), (c) and (d). Thus (M'f Bf) e
m. Clearly, any maximal member Mo of m must be L.

3* Proof of Main Lemma* In outline, the proof proceeds as
follows:

Step 1. We find a β such that W - M[β], β > l(wrt R), and
β satisfies βn = bn_xβ

n~ι + + δ0 with bt e M Π R+. That is, (ii)
holds except that M f] R+ replaces PM, (This step depends only on
the usual topology of R and C and the usual order structure of R.)

Step 2. We use quotient-representability to replace β by a e Mr

so that (i) W = M[a], a > 1 (wrt R+), and a satisfies (ii). We write
P'M for PM(l,a, --^a"-1). It is clear that P'M<zMf\R+ (i.e., that
P'M satisfies (iii)).

For use in the remaining steps we define
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which is the positive cone of an incompatible partial order on Mr.

Step 3. To show P'M quotient-represents Mf Π R+ it is clearly
sufficient to show M' Π R+ c Q'M To this end, we show that Q+ c Q'M
and, after defining the concept of Q-approximabίlity, we show how
Q-approximability of M' implies I ' ί l Λ + c Q'M.

Step 4. We show that a is Q-approximable, that every element
of M is Q-approximable and that the Q-approximable elements of W
constitute a subring and therefore must be M[a] = M' itself.

Details of Step 1. We let 7 be such that W = M[Ύ] and its
minimal polynomial is h(x). We suppose 7 = 7lf 72, , 7n are all
the (necessarily distinct) roots of A in C. We show below how to
construct a non-singular linear fractional transform T with rational
coefficients so that β = T(Ύ) > l(wrt R+) and ίor 2 ^ i <, n the ft =
Tr(7ί) are "sufficiently close" to —1/n. Since the coefficients are con-
tinuous in the roots, a comparison with (x + l/n)^1 shows that
(x — ft) (x — β») = ί̂ 71"1 + cΛ_2»

n"2 + + c0 satisfies 1 = c»_i >
cn_2 > > c0 > 0. (See [3, L. 6.2, p. 40] for details, including proof
that "sufficiently close" means "within e = 1/n2".) Therefore g(x) =
(x - β)*(x - ft) (x - βn) = xn - δ^a*-1 - - δ0 where δ̂  = etβ -
c<_! > cf — (?<_! > 0 for 1 ^ i ^ n — 1 and δ0 = co/9 > 0. We note that
g(x) is the minimal polynomial of β over M and is computed by
clearing the denominators of h{T~\x)) and scaling.

To construct T we let ε = 1/n2 as above and choose rationale t
and s such that 0 < ί(l/e + 1/2) < min | £ - ft | for i ^ 2 and 0 <
β/t — s < 1/2. Then Γ is the composition of the following maps:
x —> x/t; x —• x — s; x —> 1/x; a? —> α — 1/w. (After the first two the image
of 7 is in the interval (0, 1/2) and the rest of the roots are outside
a circle of radius 1/ε centered at 0, and after the last β = ί/(τ — ts) —
1/n > 1 and the other βt are within ε of —1/n.)

Details of Step 2. Using quotient-represent ability, we choose
dePM so that dbt e PM for 0 <; i ^ ^ — 1 and so that d > l(wrt JB+).
(The latter Condition may be achieved by positive integer scaling
without affecting the former conditions.) Then a = dβ has f(x) =
dng(x/d) — xn — a^x™'1 — — a0 as its minimal polynomial over M
and at = dn~% e PM for 0 ^ i ^ n — 1. That is, a satisfies (ii). Clearly
M[a] = M[β] = M[Ύ] = M'.

Details of Step 3. Let r 6 Q+ and p e P'M. We may scale p by
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positive integers, as above, and by reciprocals of such using [1, Thm.
3, p. 293] with the result rp in P'M. Since we may write r = rp/p
for any non-zero p, we see that r e Q'M.

We say that m e Mf is Q-approximable if for each positive rational
t there is a rational s such that m < s < m + £(wrt Q'M). (Of course,
m — t < s — t < m(wrt Q'M) also.)

Now if m > 0(wrt R+) and m is Q-approximable, we choose a
positive rational t so that m — t > 0(wrt iί+) and rational s so that
m < s < m + t(wτt Q'M). By jβ-compatibility

s - t > m - t > 0(wrt R) ,

and since Q+ c Q*, s - ί e Q^. Thus m = ((m + ί) - s) + (s - t) e Q^
by the additive closure of Q'M.

Details of Step 4. To show M is θ-approximable, we arbitrarily
choose m in M and ί positive in Q. By density of Q in /?, there is
a rational s such that m < s < m + ί(wrt i?+) and by quotient-repre-
sentability of ilί Π R+ by P^ these inequalities hold wrt QM. But
Qjf CIQM so m < s < m + t(wrt Q'M), which is Q-approximability.

To verify that a is Q-approximable, we again choose an arbitrary
positive t in Q. Since f(x) = 0 and / is separable, the derivative
f'(cή is non-zero. Because a > l(wrt R+) this implies there is a
rational s > l ( w r t i ? + ) such that 0 < f(s) < ί(wrt i?+). For such s
we show α: < s < a + ί(wrt Q'M) and hence that a is Q-approximable:

First, since s, /(s), and ί are in Λf and M is quotient-representable,
we see that s > 1 and 0 < f(s) < t(wrt QM) and hence (wrt Q'M). Next
we note that Q'M is closed under division and s — oc — f(s)/(f(s)/(s — aήΐ),
so, to show s — a > 0(wrt Qi), we need only show f(s)/(s - a)e Q'M.
Now /(s) - f(s) - f{a) = (s% - O - a,,-^-1 - α "1) - ^(s - a).
Thus /(s)/(s - α) = sn-χ + ώ%_2s

%"2 + + d0, where the dt = α""*"1 -
tt*-^""*"2 — . . . ~ α i+1 are "scaled truncations" of f(a). In fact, dt =
(fiμ) + aτa* + + ao)/ai+1 = (α,αί + .. + ao)/ai+1 e Q'M. Since s* >
1 > 0(wrt Qi), /(s)/(s - α) > 1 > 0(wrt Q'M). Thus 0 < s - a < /(*) <
ί(wrt Q.v) so that a < s < a + ί(wrt Q^).

To finish Step 4 and thus the proof of the Main Lemma, we
need to show the set of Q-approximable elements of M is a subring.
The proof of closure under subtraction is straightforward, after
recalling that we can approximate below also. The proof of closure
under multiplication, though resembling the proof of the product rule
for derivatives, takes some care. At several points when dealing
with the rationale used as "epsilons and deltas" by the approximating
process it is necessary to switch from R+ to Q'M using Q+ c Qf

M or
from Qf

M to R+ using iί-compatibility.
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4* Alternate theorem, examples and questions* By a slight
modification in the proof of Theorem 1 we can prove Theorem 1*,
which differs from Theorem 1 in that (1) and (2) are replaced by
their complete opposites (1*) and (2*) and in that (0*), which has
no counterpart in Theorem 1, is added.

(0*) There are no totally ordered subfields of L under <̂ .
(1*) The order :g restricted to K is the trivial partial order.

(In particular, 1 > 0.)
(2*) K is the largest trivially ordered sub field of L under ^ .

Before we prove Theorem 1*, we note that Corollaries 1.1 and
1.2 also hold for this type of order. In the proof of Theorem 1*
we indicate by * the changes from the proof of Theorem 1.

We again start with Pκ = K Π R+ and seek j?* c L Π R+ satisfying
(a), (b) and (c) as before, but

instead of (d). Now (3), (4) and (5) follow as before and (d*) implies
(1*). To see this, we suppose (1*) false and pick JceKf) PK(B*) with
k Φ 0. Then 0 < k(wrt R+) by JB-compatibility and so AT1 £ K Π R+.
Thus 0 < (k'^k = l(wrtP*(£*)), contradicting (d*).

The fact that every b e .B* satisfies 0 < δ(wrt PK(B*)) gives (2*)
while (1*) shows that Q must be trivially ordered and this gives (0*).

The Main Lemma is unaltered and applies as before during the
inductive step to show that (a), (b), (c) and (d*) are preserved by finite
extensions. Thus, in order to achieve (d*), we start the induction
so that the first nontrivial finite extension has basis 2?* = {ct, a2, ,
an} rather than {1, a, •••, an~x). Then we note that, in the proof of
the Main Lemma, the bt in step 1 and hence the at in step 2 are all
nonzero. Thus 1 = (an — an^an~ι — . . . — a^/ao $ PK(B*), which is
(d*).

The following examples illustrate how bases are constructed using
the Main Lemma. Of course, all of them satisfy (a), (b), and (c) and
either (d) or (d*).

EXAMPLE 4.1. We let M = Q, M' = Q(7) where 72 = 2 and 7 >
0(wrt R+) and choose t = 1, s = 1. This gives β satisfying /S2 = 2/3 + 1
and choosing d = 1 gives a = β. Thus B = {1, a] satisfies (d) and
JB* = {α, a2} satisfies (d*). Note that 7 is neither in Pq(B) nor in
PQ(B*).

EXAMPLE 4.2. We let M= Q{ά), M' = Q(Y) where 7'2 = 7 and 7' >
0(wrt R+), and choose t = 1/2, s = 2. This gives βr satisfying βn =
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(a — ϊ)β' + (2>a — l)/4. The coefficients, while positive w r t i ί + are
not positive in either order of 4.1. If PM — PQ(1, a), then a — 1 =
(a + l)/a and 3a — 1 = (5<2 + 3)/α:. Thus we choose d — a and get
α' satisfying an = (a + l)af + (5a2 + 3α)/4. This gives B = {1, α, α',
αα'}. On the other hand, if PM = PQ(a, α2), then a — 1 = (a2 + a),
Za — 1 — (5a2 + Za)ja2 and we choose d = <̂ 2. This gives a* satisfying

We note that Corollaries 1.1 and 1.2 fail to determine the cardinality
of the class of lattice orders for those countable subfields L which
are algebraic over only countably many subfields K. For instance,
Corollary 1.1 only accords finitely many lattice orders to simple
extensions L of Q, but:

COROLLARY 4.3. // L is a simple extension of Q then L admits
at least ^ 0 lattice orders.

Proof. We recall from the proof of Theorem 1* that in f(x) =
xn — an^xn~ι — — a0, the minimal polynomial of a, the (rational)α*
are greater than 0(i.e., a satisfies (ii)). Thus there are y$0 distinct
sufficiently small rationals r such that the minimal polynomial of
a — r still satisfies (ii).

Questions 4.4.
(a) Do any countable subfields L of R which are algebraic over

no more than ^ 0 subfields have 2Ko orders?
(b) Are there any JS-compatible lattice orders on subfields L

of R which do not quotient-represent L Π i?+?
(c) Besides the /^-compatible orders constructed here and those

on subfields related to Jϊ-compatible orders by automorphisms, what
other lattice orders are there? In particular, are there any non-in-
compatible orders on R itself?
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