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COUNTEREXAMPLE IN THE THEORY
OF CONTINUOUS FUNCTIONS
ON TOPOLOGICAL GROUPS

P. MlLNES AND J. S. PYM

If G is a topological group and τ is the topology on C{G) of
pointwise convergence on G, a function space M(G) of almost
periodic type is defined by M(G) = {/£ C(G)\{rsf\ s E G} is
relatively r-compact}. Generalizing results of T. Mitchell, C. R.
Rao, and P. Milnes, we show here that M(G) is just the left
uniformly continuous subspace, LUC(G), of C(G) for groups
satisfying a completeness condition and give an example on the
rational numbers which shows that some completeness condition
is necessary for this conclusion to hold. The example also shows
that, if G is a dense subgroup of a topological group G\
functions in M(G) (which are known always to extend to
functions in C{G')) need not extend to functions in M(G'); this
result is at variance with what happens in the case of the familiar
almost periodic or weakly almost periodic functions, where a
function always extends to a function of the same type.

(The conclusions of the theorems of this paper hold in more
general settings than have been described above.)

1. Generalities. Let G be a topological group and let r
denote the topology on C(G) of pointwise convergence on G. We
define a subspace M{G) of C{G) on G by M(G) =
{f EL C(G)\{rsf\s E G} is relatively τ-compact}. (Here rsf is the right
translate of / by s, rsf(t) = f(ts) for all t E G.) If, in this definition, r is
replaced by the norm, resp. weak, topology of C(G), one gets the more
familiar almost periodic, resp. weakly almost periodic, subspace of
C(G). The space M(G) was introduced in a different way by Mitchell
[6] in the more general setting of semitopological semigroups. The
following characterizations of M(G) (which also hold in this more
general setting) are due to Mitchell [6], Baker and Butcher [1], and the
first of the present authors [3]. More definitions and comments follow
the statement of the theorem.

THEOREM 1. LMC(G) is the largest left m-introverted subspace of
C(G). Also, f E LMC(G) if and only if

(i) the function s -+x(lsf) is in C(G) for all x E βG.
If G is also a k-space, then f E LMC(G) if and only if one (hence all) of
the following conditions holds:
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(ii) {lsf\s E K} is weakly compact in C(G) for all compact K CG.
(iii) {lsf\s E K} is σ(C(G), βG)-compact in C(G) for all compact

KCG.
(iv) if the iterated limits limn \imm f(smtn) and limm limn/(smίn) both

exist, where {tn} and {sm} are sequences in G with {sm} relatively compact,
then they are equal.

Here lsf(t) = f(st) for s,tEG, and a subspace X of C(G) is called
left m-introverted if the function s —> x(lsf) is in X whenever / E X and
x E βG; βG is the spectrum of C(G), which we regard as a subset of
C(G)*. A topological space Y is called a k-space if every subset Λ of
Y, for which A Π K is closed for every compact K C Y, is necessarily
closed. The fe-spaces include spaces that are locally compact or first
countable.

It is an easy exercise to show that (i) and (iii) are equivalent (in the
k -space setting). The equivalence of (ii), (iii), and (iv) is proved using
results of Grothendieck [2] and (iv) bears a striking similarity to
Grothendieck's characterization of the weakly almost periodic functions
[2; Proposition 7]. Another easy exercise (like the one showing (i) and
(iii) are equivalent) involving (ii) shows that, in the k -space setting,
/ E M(G) if and only if the function s—>x(lsf) is in C(G) for all
x E C(G)*\ this generalizes Mitchell's result (a), §5, of [6] and Proposi-
tion 4.2 in [3].

One of the hypotheses in the theorem which follows is a complete-
ness assumption. We do not define it explicitly, but remark that locally
compact spaces and complete metric spaces are complete in this sense
and refer the reader to I. Namioka's paper [7] for the definition. Theorem
2 is an immediate consequence of Theorem 2.3 in [7] and generalizes
Mitchell's Theorem 7 in [6] and Theorem 6 in [4] (the latter of which is a
mild improvement of Rao's Theorem 2 in [8]). The full continuity of the
group operations are not required for the proof and, in fact, the
conclusion of Theorem 2 holds for semitopological groups. (We note that
Theorem 2 could also be proved using [7; Theorem 3.1] and Mitchell's
method of proof in the locally compact case [6].)

THEOREM 2. Let G be a topological group and suppose that, as a
topological space, G is strongly countably complete and regular. Then
M(G) = LUC(G) = {/ E C(G)\the function s -> If from G into C(G) is
norm -continuous}.

2. The counterexample. The following example shows that
some completeness hypothesis is necessary for the conclusion of
Theorem 2 to hold.
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EXAMPLE. Let G be a dense countable subgroup of the usual
additive real numbers R with the property that every finitely generated
subgroup of G is in fact singly generated. (G could be the dyadic or
ordinary rationals.) We construct a function / E C(R) whose restriction
to G is in M(G)\LUC(G). Take a E JR, a > 0. Let g be a uniformly
continuous function on R with the properties

(i) g(r) = 0 for ί ^ O ;
(ii) g(na) = 0 for all positive integers n;
(iii) there is δ > 0 such that for each n there is an interval

In C[nα,(n + l)α] of length δ with |g(ί)l = 1 for t E /„.
Next, let {wn} be a sequence in G which decreases to zero, is such

that un generates the same subgroup of G as {uu , un], and such that
{un I n = 1,2, } generates G. (For example, if G is the dyadic ration-
als, {un} could be {l/2n}; if G is the rationals, {un} could be {1/rc!}.) Let
H be any nonconstant continuous function on [0,1] with H(0) = H(l) ,
and define h: R -^ R by

h(t) = H((t mod un)lun) if na^t<(n + l)α.

We put f(t)=g(t)h(t) for ί E R.

The function h is continuous on R except possibly at the points na
(n = 1,2,3, * ); since g vanishes at these points, / is continuous.

The oscillation of h in any subinterval of [na, (n + l)α] of length wπ

is equal to the oscillation of H in [0,1]. If un ^ δ, the oscillation of / in
some interval of length un is at least this, by property (iii) of g. Since
un —> 0, / is not uniformly continuous.

We use the criterion (iv) of Theorem 1 to show that the restriction of
/ to G is in M(G). Suppose {sm} and {tn} are sequences in G with {sm}
relatively compact in G. Suppose

* lim lim f(sm + tn) and lim lim f(sm + tn)
n m m n

both exist. We must show they are equal. Without loss, we may
assume that sm —> s E G, and that tn —> + α>. (The cases where {ίn}
converges to t E ί? or to - ^ are easily dealt with.) Since g E M(R), we
may assume

lim lim g(sm + ίπ) = lim lim g(sm + ίn).

Since sm —»s, this last limit equals limπg(5 +.£,), i.e.,
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lim g(sm + ίj-»lim g(s + tn).
n m n

Finally, we may assume (s + tn) mod a-^b (say), and have two cases to
deal with.

(1) If b = 0 or α, then by property (ii) of g and uniform continuity,
limng(s + tn) = 0; this implies that the first of the limits * is 0, since h is
bounded. Similarly, we see that the second limit of * is also 0.

(2) If ί )/0 or α, we consider m large enough so that 0<
(sm - s) + b < α, and then also, for all large enough π, if ka < s + tn <
(k + \)a for some integer fe, in addition

ka <(sm - s) + (5 + tn)<{k + l)α.

In the interval [ka, (k + l)α], /ι behaves like a function of period uk, so
that, if (sm - 5) is in the group generated by uk (which it will be if k is
large enough, and hence if n is large enough),

h(sm + tH) = h((sm -s) + (s + O ) = Λ(s + ίn)

Thus, the second of the limits * equals limrtg(s + tn)h(s + tn), which is the
same as the first limit of *.

REMARKS, (a) A subgroup of R generated by one rational and one
irrational does not have the property we required of G. Whether an
example exists in this case we do not know.

(b) It is no accident that the function in M(G)\LUC(G) has an
extension in C(R); all functions in M(G) have extensions in
C(R). (See [3; Lemma 4.5]; a more general result is proved in
[5].) What may be a little surprising is that there is a function in M(G)
whose continuous extension to R is not in Jί(R). For, every function
almost periodic, resp. weakly almost periodic, on G extends to a function
in C(R) that is almost periodic, resp. weakly almost periodic. (See
[5]. This result also holds more generally.)
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