PARTIAL REGULARITY OF SOLUTIONS TO THE NAVIER-STOKES EQUATIONS

Vladimir Scheffer

Abstract

At the first instant of time when a viscous incompressible fluid flow with finite kinetic energy in three space becomes singular, the singularities in space are concentrated on a closed set whose one dimensional Hausdorff measure is finite.

§1. Introduction. Let $v: R^{3} \times R^{+} \rightarrow R^{3} \quad$ (where $\quad R^{+}=$ $\{t \in R: t>0\}$ represents time) be a weak solution to the Navier-Stokes equations of incompressible viscous fluid flow in 3 dimensional euclidean space with finite initial kinetic energy and viscosity equal to 1 . Our definition of weak solution coincides with Leray's definition of "solution turbulente" [4, pp. 240, 241, 235]. In that paper, Leray showed that weak solutions always exist for prescribed initial conditions with finite energy. He also proved the following regularity theorem:

Leray's theorem. There exists a finite or countable sequence J_{0}, J_{1}, J_{2}, \cdots such that $J_{q} \subset R^{+}, J_{0}=\{t: t>a\}$ for some a, J_{q} is an open interval for $q>0$, the J_{q} are disjointed, the Lebesgue measure of $R^{+}-\bigcup_{q \geqq 0} J_{q}$ is zero, v can be modified on a set of Lebesgue measure zero so that its restriction to each $R^{3} \times J_{q}$ becomes smooth, and

$$
\sum_{q>0}\left(\text { length }\left(J_{q}\right)\right)^{1 / 2}
$$

is finite.
It is not known whether there exist v with singularities $\left(J_{0}=R^{+}\right.$is a possibility). The purpose of this paper is to prove the following theorem on the nature of possible singularities of v. We assume that v has been modified to be smooth on each $R^{3} \times J_{q}$.

Theorem 1. Let t_{0} be the right endpoint of an interval J_{q} with $q>0$. Then there exists a closed set $S \subset R^{3}$ such that v can be extended to a continuous function on

$$
\left(R^{3} \times J_{q}\right) \cup\left(\left(R^{3}-S\right) \times\left\{t_{0}\right\}\right)
$$

and the 1 dimensional Hausdorff measure of S is finite.

The definition of Hausdorff measure can be found in [2, p. 171]. We note in passing that Leray's theorem yields

Theorem 2. The $1 / 2$ dimensional Hausdorff measure of $R^{+}-\bigcup_{q \geq 0}$ J_{q} is zero.

There is a proof of Theorem 2 in [7]. Research on the Hausdorff dimension of singularities of fluid flow was started by Mandelbrot [5]. The conclusion of Theorem 1 resembles the partial regularity results in [1, IV. 13 (6), p. 126].

Leray's theorem has been generalized by M. Shinbrot and S. Kaniel to flows on a bounded domain [8]. I do not know whether Theorem 1 generalizes to that case.

Notation. We set $(a, b)=\{t: a<t<b\},[a, b)=\{t: a \leqq t<b\}$, and so on for $(a, b]$ and $[a, b]$. If f is a function defined on a subset of $R^{3} \times R$ then $f_{i,} f_{i, i}$, etc. are the partial derivatives $\left(\partial / \partial x_{i}\right) f,\left(\partial^{2} / \partial x_{i} \partial x_{j}\right) f$, etc. where x_{1}, x_{2}, x_{3} are the coordinates of R^{3}. The partial derivative with respect to the R variable is denoted by $f_{1 .}$. We set $D^{0} f=f$, $D^{1} f=D f=\left(f_{1,}, f_{2,}, f_{3,3}\right), D^{2} f=\left(f_{i j}\right)$ for $i, j \in\{1,2,3\}$, and so forth for $D^{n} f$. We let $\left|D^{n} f(x, t)\right|$ be the euclidean norm. If, in addition, f has range R^{3} then f_{t} is the corresponding component of f for $i=1,2,3$. In that case we set $\operatorname{div}(f)=\sum_{i=1}^{3} f_{i, 1}$. The summation convention for repeated indices is used throughout, e.g. $\operatorname{div}(f)=f_{i, i}$. If f is a function defined on a subset of R^{3} then $D f(x)$ and $|D f(x)|$ are the gradient and its norm.

An absolute constant is a finite positive constant that does not depend on any of the parameters in this paper. The symbol C will always denote an absolute constant, and the value of C may change from one line to the next (e.g. $2 C \leqq C$). The symbols $C_{1}, C_{2}, C_{3}, \cdots$ are not treated in this way, and their value does not change in the course of the paper.

We begin to prove Theorem 1. Let $\phi: R^{3} \times\{t: t<0\} \rightarrow R^{+}$be defined by

$$
\begin{equation*}
\phi(x, t)=(2 \sqrt{\pi})^{-3}(-t)^{-3 / 2} \exp \left(|x|^{2} /(4 t)\right) . \tag{1.1}
\end{equation*}
$$

Since ϕ is just the fundamental solution to the heat equation running backwards in time, it satisfies

$$
\begin{equation*}
\phi_{, i i}=-\phi_{, t} \tag{1.2}
\end{equation*}
$$

and

$$
\lim _{\epsilon \downarrow 0} \int_{R^{3}} f(y, t-\epsilon) \phi(y-x,-\epsilon) d y=f(x, t)
$$

if f is continuous at (x, t) and $\int_{R^{3}}|f(y, s)|^{2} d y$ is bounded as a function of
s. We also define $\psi: R^{3} \times\{t: t<0\} \rightarrow R^{+}$by

$$
\begin{equation*}
\psi(x, t)=-(4 \pi)^{-1} \int_{R^{3}} \phi(y, t)|y-x|^{-1} d y \tag{1.3}
\end{equation*}
$$

This Newtonian potential of ϕ satisfies the Poisson equation

$$
\begin{equation*}
\psi_{, i i}=\phi \tag{1.4}
\end{equation*}
$$

We have the estimates

$$
\begin{align*}
& \left|D^{n} \phi(x, t)\right| \leqq E_{n}\left(|x|^{2}-t\right)^{-(n+3) / 2} \tag{1.5}\\
& \left|D^{n} \psi(x, t)\right| \leqq E_{n}\left(|x|^{2}-t\right)^{-(n+1) / 2}
\end{align*}
$$

where E_{n} is an absolute constant for each n.
Two consequences of the definition of weak solution are:

$$
\begin{align*}
& \int_{R^{3}}|v(x, t)|^{2} d x \leqq C_{1} \quad \text { if } \quad t \in \bigcup_{q \geqq 0} J_{q} \\
& \int_{R^{3} \times R^{+}}|D v|^{2} \leqq C_{1} \tag{1.6}
\end{align*}
$$

for some $C_{1}<\infty$, and

$$
\begin{equation*}
\operatorname{div}(v)(x, t)=0 \quad \text { if } \quad t \in \bigcup_{q \geq 0} J_{q} \tag{1.7}
\end{equation*}
$$

A third consequence is the following lemma:
Lemma 1.1. If $\left[t_{1}, t_{2}\right] \subset J_{q}$ then for $i \in\{1,2,3\}$ and $x \in R^{3}$ we have

$$
\begin{aligned}
& v_{i}\left(x, t_{2}\right) \\
& \quad=\int_{R^{3}} v_{i}\left(y, t_{1}\right) \phi\left(y-x, t_{1}-t_{2}\right) d y
\end{aligned}
$$

$$
\begin{align*}
& +\int_{t_{1}}^{t_{2}} \int_{R^{3}} v_{l}(y, t) v_{i}(y, t) \phi_{, /}\left(y-x, t-t_{2}\right) d y d t \tag{1.8}\\
& -\int_{t_{1}}^{t_{2}} \int_{R^{3}} v_{j}(y, t) v_{k}(y, t) \psi_{, i j k}\left(y-x, t-t_{2}\right) d y d t
\end{align*}
$$

Proof. We fix $i \in\{1,2,3\}$ and $x \in R^{3}$. Let $f: R^{3} \times\left\{t: t<t_{2}\right\} \rightarrow R^{3}$ be given by

$$
\begin{align*}
& f_{J}(y, t)=\phi\left(y-x, t-t_{2}\right)-\psi_{, i j}\left(y-x, t-t_{2}\right) \quad \text { if } \quad j=i, \tag{1.9}\\
& f_{J}(y, t)=-\psi_{, i j}\left(y-x, t-t_{2}\right) \quad \text { if } \quad j \neq i .
\end{align*}
$$

We were careful not to write $\psi_{, i i}$ in the first identity of (1.9) because there is no summation over the index i. Using (1.4) we obtain

$$
\begin{align*}
\operatorname{div}(f)(y, t) & =\phi_{, i}\left(y-x, t-t_{2}\right)-\psi_{, i j j}\left(y-x, t-t_{2}\right) \tag{1.10}\\
& =\phi_{, i}\left(y-x, t-t_{2}\right)-\phi_{i i}\left(y-x, t-t_{2}\right)=0
\end{align*}
$$

Now take $0<\epsilon<t_{2}-t_{1}$. The definition of weak solution, (1.10), and the good behavior of f on $R^{3} \times\left[t_{1}, t_{2}-\epsilon\right]$ allow us to write (see (1.6))

$$
\begin{align*}
\int_{R^{3}} & v_{j}\left(y, t_{2}-\epsilon\right) f_{j}\left(y, t_{2}-\epsilon\right) d y \\
& -\int_{R^{3}} v_{j}\left(y, t_{1}\right) f_{j}\left(y, t_{1}\right) d y \\
= & \int_{R^{3} \times\left[t_{1}, t_{2}-\epsilon\right]}\left(v_{j}\right)\left(f_{j, k k}+f_{j, t}\right) \tag{1.11}\\
& -\int_{R^{3} \times\left[t_{1}, t_{2}-\epsilon\right]} v_{k} v_{j ; k} f_{j}
\end{align*}
$$

Integration by parts with respect to the x_{j} and x_{k} variables, (1.6), and (1.7) yield

$$
\begin{aligned}
& \int_{R^{3}} v_{j}\left(y, t_{2}-\epsilon\right) \psi_{, i j}(y-x,-\epsilon) d y=0 \\
& \int_{R^{3}} v_{l}\left(y, t_{1}\right) \psi_{, i j}\left(y-x, t_{1}-t_{2}\right) d y=0 \\
& \int_{t_{1}}^{t_{2}-\epsilon} \int_{R^{3}} v_{j}(y, t)\left(\psi_{, i j k k}\left(y-x, t-t_{2}\right)\right. \\
& \left.\quad+\psi_{, i j t}\left(y-x, t-t_{2}\right)\right) d y d t=0 \\
& \int_{R^{3} \times\left[t_{1}, t_{2}-\epsilon\right]} v_{k} v_{j, k} f_{j} \\
& \quad=-\int_{R^{3} \times\left[t_{1}, t_{2}-\epsilon\right]} v_{k} v_{j} f_{j, k} .
\end{aligned}
$$

Identities (1.9), (1.11), (1.12), (1.2) yield

$$
\begin{align*}
\int_{R^{3}} & v_{i}\left(y, t_{2}-\epsilon\right) \phi(y-x,-\epsilon) d y \\
& -\int_{R^{3}} v_{i}\left(y, t_{1}\right) \phi\left(y-x, t_{1}-t_{2}\right) d y \\
= & \int_{t_{1}}^{t_{2}-\epsilon} \int_{R^{3}} v_{i}(y, t)\left(\phi_{, k k}\left(y-x, t-t_{2}\right)\right. \\
& \left.+\phi_{, t}\left(y-x, t-t_{2}\right)\right) d y d t \tag{1.13}\\
& +\int_{R^{3} \times\left[t_{1}, t_{2}-\epsilon\right]} v_{k} v_{j} f_{j, k} \\
= & 0+\int_{t_{1}}^{t_{2}-\epsilon} \int_{R^{3}} v_{k}(y, t) v_{1}(y, t) \phi_{, k}\left(y-x, t-t_{2}\right) d y d t \\
& -\int_{t_{1}}^{t_{2}-\epsilon} \int_{R^{3}} v_{k}(y, t) v_{j}(y, t) \psi_{, i j k}\left(y-x, t-t_{2}\right) d y d t .
\end{align*}
$$

Now (1.13), (1.6), and (1.2) yield the conclusion of the lemma.
For $a \in R^{3}$ and $0<r<\infty$ we set

$$
\begin{equation*}
B(a, r)=\left\{x \in R^{3}:|x-a| \leqq r\right\} \tag{1.14}
\end{equation*}
$$

If X is a set and $f: X \rightarrow R$ is a function we write

$$
\begin{equation*}
\sup (f, X)=\operatorname{supremum}\{f(x): x \in X\} \tag{1.15}
\end{equation*}
$$

Lemma 1.2. Let $f: B(a, r) \rightarrow R$ be a smooth function and let $B(b, r / 4) \subset B(a, r)$. Then

$$
\int_{B(a, r)}|f|^{2} \leqq C r^{2}\left(\int_{B(a, r)}|D f|^{2}\right)+C r^{3} \sup \left(|f|^{2}, B(b, r / 4)\right)
$$

Proof. Let \mathscr{L} be the set of lines L passing through b. Let μ be the rotation invariant Radon measure on \mathscr{L} that satisfies $\mu(\mathscr{L})=1$. For each $L \in \mathscr{L}$ the fundamental theorem of calculus yields

$$
\begin{aligned}
& \int_{B(a, r) \cap L}|f|^{2} \\
& \quad \leqq C r^{2}\left(\int_{(B(a, r)-B(b, r / 4)) \cap L}|D f|^{2}\right) \\
& \quad+C \sup \left(|f|^{2}, B(b, r / 4) \cap L\right) r
\end{aligned}
$$

Hence

$$
\begin{aligned}
\int_{B(a, r)}|f|^{2} \leqq & C r^{2} \int_{\mathscr{L}}\left(\int_{B(a, r) \cap L}|f|^{2}\right) d \mu \\
\leqq & C r^{4} \int_{\mathscr{L}}\left(\int_{(B(a, r)-B(b, r / 4)) \cap L}|D f|^{2}\right) d \mu \\
& +C r^{3} \sup \left(|f|^{2}, B(b, r / 4)\right) \\
\leqq & C r^{2}\left(\int_{B(a, r)-B(b, r / 4)}|D f|^{2}\right) \\
& +C r^{3} \sup \left(|f|^{2}, B(b, r / 4)\right)
\end{aligned}
$$

2. The basic estimate. Throughout this section we fix $0<$ $d_{0}<\left(\text { length }\left(J_{q}\right)\right)^{1 / 2}$, where J_{q} is the interval in the hypotheses of Theorem 1 , and we fix $x_{0} \in R^{3}$. We define $u: R^{3} \times[-1,0) \rightarrow R^{3}$ by

$$
\begin{equation*}
u(x, t)=d_{0} v\left(x_{0}+d_{0} x, t_{0}+d_{0}^{2} t\right) \tag{2.1}
\end{equation*}
$$

where t_{0} is the right endpoint of J_{q} as in Theorem 1, and observe that u satisfies the Navier-Stokes equations with viscosity 1 in the same way as v. Therefore Lemma 1.1 allows us to use the identity

$$
\begin{align*}
u_{i}(x, t)= & \int_{R^{3}} u_{i}(y,-1) \phi^{\prime}(y,-1) d y \tag{2.2}\\
& +\left(\int_{R^{3} \times[-1, t]} u_{j} u_{i} \phi_{,,}^{\prime}\right) \\
& -\int_{R^{3} \times[-1, t]} u_{j} u_{k} \psi_{, i j k}^{\prime}
\end{align*}
$$

for $-1<t<0$, where

$$
\begin{equation*}
\phi^{\prime}(y, s)=\phi(y-x, s-t), \psi^{\prime}(y, s)=\psi(y-x, s-t) \tag{2.3}
\end{equation*}
$$

We also set

$$
\begin{align*}
A_{p} & =\left\{(y, s) \in R^{3} \times R:|y| \leqq 1-2^{-p}, 2^{-2 p}-1 \leqq s<0\right\} \\
B_{p} & =\left\{(y, s) \in R^{3} \times R: 1-2^{1-p} \leqq|y| \leqq 1+2^{1-p},-1 \leqq s \leqq 0\right\} \\
C_{t} & =\left\{(y, s) \in R^{3} \times R:-1 \leqq s \leqq t\right\} \\
D & =\left\{(y, s) \in R^{3} \times R:|y| \leqq 3 / 2,-1 \leqq s \leqq 0\right\} \tag{2.4}\\
E & =\left\{y \in R^{3}:|y| \geqq 3 / 2\right\} \\
F & =\left\{y \in R^{3}:|y| \leqq 2\right\}
\end{align*}
$$

for $p=1,2,3, \cdots$ and $-1<t<0$. In addition we set

$$
\begin{equation*}
A_{0}=\varnothing, \quad B_{-2}=B_{-1}=B_{0}=B_{1} . \tag{2.5}
\end{equation*}
$$

Lemma 2.1. There exist absolute constants C_{2}, C_{3} such that

$$
\begin{aligned}
|u(x, t)| \leqq & C_{3}(t+1)^{-1 / 2} \int_{R^{3}}|u(y,-1)|^{2}(1+|y|)^{-4} d y \\
& +C_{3}(t+1)^{-3 / 2} \int_{C_{1}}|u(y, s)|^{2}(1+|y|)^{-4} d y d s \\
& +C_{3}(t+1)^{-1 / 2} \int_{F}|D u(y,-1)|^{2} d y \\
& +C_{3}(t+1)^{-3 / 2}\left(\int_{B_{1} \cap C_{t}}|D u|^{2}\right) \\
& +C_{3}\left(\sum_{p=1}^{n+1} 2^{2 p} \int_{B_{p}}|D u|^{2}\right) \\
& +C_{2}\left(\sum_{p=1}^{n+3} 2^{-p} \sup \left(|u|^{2}, A_{p} \cap C_{t}\right)\right)+C_{2}^{-1} 2^{-12}
\end{aligned}
$$

holds if $(x, t) \in A_{n+1}-A_{n}$ for $n \geqq 0$.

Proof. We fix $(x, t) \in A_{n+1}-A_{n}$ and define $\phi^{\prime}, \psi^{\prime}$ as in (2.3). We set

$$
\begin{equation*}
G_{p}=\left\{(y, s) \in R^{3} \times R:|y-x| \leqq 2^{1-p}, t-2^{-2 p} \leqq s \leqq t\right\} \tag{2.7}
\end{equation*}
$$

for integers $p \geqq 2$. We have

$$
\begin{equation*}
G_{n+4} \subset G_{n+3} \subset A_{n+2} \cap C_{t} . \tag{2.8}
\end{equation*}
$$

The integer m is defined by the relation

$$
\begin{equation*}
2^{4-2(m-1)}>t+1 \geqq 2^{4-2 m} . \tag{2.9}
\end{equation*}
$$

The requirement $(x, t) \in A_{n+1},(2.9)$, and $t+1<1$ yield

$$
\begin{equation*}
3 \leqq m \leqq n+3, G_{p} \subset C_{t} \quad \text { for } \quad p \geqq m \tag{2.10}
\end{equation*}
$$

For $p \in\{2,3,4, \cdots\}$ the point $x_{p} \in R^{3}$ is defined as follows: If $x \neq 0$ then $x_{p}=x-3 \cdot 2^{-1-p}|x|^{-1} x$, and if $x=0$ we choose x_{p} so that $\left|x_{p}\right|=3 \cdot 2^{-1-p}$ holds. We then set

$$
H_{p}=\left\{(y, s):\left|y-x_{p}\right| \leqq 2^{-1-p}, t-2^{-2 p} \leqq s \leqq t\right\}
$$

Then $H_{p} \subset G_{p}$ holds and (2.9), (2.10), and $|x|<1$ yield

$$
\begin{equation*}
H_{p} \subset A_{p} \cap C_{t} \quad \text { for } \quad p \geqq m . \tag{2.11}
\end{equation*}
$$

We set $C_{s}^{\prime}=R^{3} \times\{s\}$. For $s \in\left[t-2^{-2 p}, t\right]$ Lemma 1.2 yields

$$
\begin{align*}
& \left.\int_{G_{p} \cap C_{s}^{\prime}} u\right|^{2} \tag{2.12}\\
& \leqq C 2^{-2 p}\left(\int_{G_{p} \cap C_{s}^{\prime}}|D u|^{2}\right)+C 2^{-3 p} \sup \left(|u|^{2}, H_{p} \cap C_{s}^{\prime}\right) .
\end{align*}
$$

Integration of (2.12) with respect to s and (2.11) yield

$$
\begin{equation*}
\int_{G_{p}}|u|^{2} \leqq C 2^{-2 p}\left(\int_{G_{p}}|D u|^{2}\right)+C 2^{-s_{p}} \sup \left(|u|^{2}, A_{p} \cap C_{t}\right) \text { if } p \geqq m \tag{2.13}
\end{equation*}
$$

Observing $G_{m+1} \subset G_{m} \subset B_{1}, B_{1} \cup D=C_{0}, D \cap G_{m}=\varnothing$, we let f_{1}, f_{2}, f_{3} be smooth functions from C_{t} into $[0,1]$ such that $f_{1}+f_{2}+f_{3}=1, f_{1}(y, s)=1$ for $(y, s) \notin B_{1}, f_{1}(y, s)=0$ for $(y, s) \notin D, f_{2}(y, s)=0$ for $(y, s) \notin B_{1}$, $f_{2}(y, s)=0$ for $(y, s) \in G_{m+1}, f_{2}(y, s)=1$ for $(y, s) \notin D \cup G_{m},\left|D f_{2}(y, s)\right| \leqq$ C for $(y, s) \in D \cap B_{1},\left|D f_{2}(y, s)\right| \leqq C 2^{m}$ for $(y, s) \in G_{m}-G_{m+1}, f_{3}(y, s)=$ 0 for $(y, s) \notin G_{m}$ and $f_{3}(y, s)=1$ for $(y, s) \in G_{m+1}$ (note that f_{j} is defined only on C_{t}): Using (1.5) and $x \in A_{n+1}$ we obtain

$$
\begin{align*}
& \left|\int_{C_{1}} u_{j} u_{i} \phi_{,, j}^{\prime} f_{1}\right|+\left|\int_{C_{i}} u_{j} u_{k} \psi_{{ }_{i, j k}}^{\prime} f_{1}\right| \\
& \quad \leqq C \int_{D \cap C_{1}}|u(y, s)|^{2}|y|^{-4} d y d s \tag{2.14}
\end{align*}
$$

We use integration by parts, (1.7), (1.5), the inequality $a b \leqq$ $\epsilon a^{2} / 2+\epsilon^{-1} b^{2} / 2$, (2.13), and (2.9) to estimate

$$
\begin{aligned}
& \left|\int_{C_{1}} u_{1} u_{1} \phi_{,, f}^{\prime} f_{2}\right|+\left|\int_{C_{1}} u_{l} u_{k} \psi_{, i j k}^{\prime} f_{2}\right| \\
& \quad \leqq\left|\int_{C_{1}} u_{j} u_{i, j} \phi^{\prime} f_{2}\right|+\left|\int_{C_{t}} u_{l} u_{i} \phi^{\prime} f_{2, j}\right| \\
& \quad+\left|\int_{C_{1}} u_{j} u_{k, j} \psi_{,, k}^{\prime} f_{2}\right|+\left|\int_{C_{1}} u_{l} u_{k} \psi_{,, k}^{\prime} f_{2, j}\right| \\
& \quad \leqq C\left(\int_{\left(B_{1} \cap C_{t}\right)-G_{m+1}}|u||D u|\left(\left|\phi^{\prime}\right|+\left|D^{2} \psi^{\prime}\right|\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& +C\left(\int_{D \cap B_{1} \cap C_{t}}|u|^{2}\left(\left|\phi^{\prime}\right|+\left|D^{2} \psi^{\prime}\right|\right)\right) \\
& +C \int_{G_{m}-G_{m+1}}|u|^{2}\left(\left|\phi^{\prime}\right|+\left|D^{2} \psi^{\prime}\right|\right) 2^{m} \\
\leqq & C\left(\int_{B_{1} \cap C_{t}}|u||D u| 2^{3 m}\right)+C\left(\int_{B_{1} \cap C_{t}}|u|^{2}\right)+C \int_{G_{m}}|u|^{2} 2^{4 m} \tag{2.15}\\
\leqq & C 2^{3 m}\left(\int_{B_{1} \cap c_{t}}|u|^{2}\right)+C 2^{3 m}\left(\int_{B_{1} \cap C_{t}}|D u|^{2}\right) \\
& +C 2^{2 m}\left(\int_{G_{m}}|D u|^{2}\right)+C 2^{-m} \sup \left(|u|^{2}, A_{m} \cap C_{t}\right) \\
\leqq & C(t+1)^{-3 / 2}\left(\int_{B_{1} \cap c_{t}}|u|^{2}\right) \\
& +C(t+1)^{-3 / 2}\left(\int_{B_{1} \cap C_{t}}|D u|^{2}\right) \\
& +C 2^{2 m}\left(\int_{G_{m}}|D u|^{2}\right)+C 2^{-m} \sup \left(|u|^{2}, A_{m} \cap C_{t}\right)
\end{align*}
$$

We use (2.10), (1.5), (2.13), (2.8), and (2.10) to estimate

$$
\begin{aligned}
& \left|\int_{C_{1}} u_{i} u_{t} \phi_{,, f_{3}}^{\prime}\right|+\left|\int_{C_{i}} u_{j} u_{k} \psi_{,, j k}^{\prime} f_{3}\right| \\
& \quad \leqq C \int_{G_{m}}|u|^{2}\left(\left|D \phi^{\prime}\right|+\left|D^{3} \psi^{\prime}\right|\right) \\
& \quad \leqq C\left(\sum_{p=m}^{n+3} \int_{G_{p}-G_{p+1}}|u|^{2}\left(\left|D \phi^{\prime}\right|+\left|D^{3} \psi^{\prime}\right|\right)\right) \\
& \quad+C \int_{G_{n+4}}|u|^{2}\left(\left|D \phi^{\prime}\right|+\left|D^{3} \psi^{\prime}\right|\right)
\end{aligned}
$$

$$
\begin{align*}
\leqq & C\left(\sum_{p=m}^{n+3} 2^{4 p} \int_{G_{p}}|u|^{2}\right) \tag{2.16}\\
& +C\left(\int_{G_{n+4}}\left|D \phi^{\prime}\right|+\left|D^{3} \psi^{\prime}\right|\right) \sup \left(|u|^{2}, G_{n+4}\right) \\
\leqq & C\left(\sum_{p=m}^{n+3} 2^{2 p} \int_{G_{p}}|D u|^{2}\right)+C\left(\sum_{p=m}^{n+3} 2^{-p} \sup \left(|u|^{2}, A_{p} \cap C_{t}\right)\right) \\
& +C 2^{-n} \sup \left(|u|^{2}, A_{n+2} \cap C_{t}\right) \\
\leqq & C\left(\sum_{p=m}^{n+3} 2^{2 p} \int_{G_{p}}|D u|^{2}\right)+C\left(\sum_{p=1}^{n+3} 2^{-p} \sup \left(|u|^{2}, A_{p} \cap C_{t}\right)\right) .
\end{align*}
$$

Combining (2.14), (2.15), (2.16), (2.10), $0<t+1<1$, and $f_{1}+f_{2}+f_{3}=1$ we obtain

$$
\begin{aligned}
& \left|\int_{C_{t}} u_{i} u_{i} \phi_{,,}^{\prime}\right|+\left|\int_{C_{t}} u_{j} u_{k} \psi_{,, \mu k}^{\prime}\right| \\
& \quad \leqq C(t+1)^{-3 / 2} \int_{C_{t}}|u(y, s)|^{2}(1+|y|)^{-4} d y d s \\
& \quad+C(t+1)^{-3 / 2}\left(\int_{B_{1} \cap C_{t}}|D u|^{2}\right) \\
& \quad+C\left(\sum_{p=m}^{n+3} 2^{2 p} \int_{G_{p}}|D u|^{2}\right) \\
& \quad+C\left(\sum_{p=1}^{n+3} 2^{-p} \sup \left(|u|^{2}, A_{p} \cap C_{t}\right)\right)
\end{aligned}
$$

Since $(x, t) \notin A_{n}$, we know that either (I) $|x| \geqq 1-2^{-n}$ or (II) $t+1 \leqq 2^{-2 n}$ holds. If (I) is satisfied then $G_{p} \subset B_{p-4}$ for $m \leqq p \leqq n+3$ (see (2.4), (2.5), (2.7), (2.10), and use ($x, t) \in A_{n+1}$) and hence (see (2.5))

$$
\begin{equation*}
\sum_{p=m}^{n+3} 2^{2 p} \int_{G_{p}}|D u|^{2} \leqq C \sum_{p=1}^{n+1} 2^{2 p} \int_{B_{p}}|D u|^{2} \tag{2.18}
\end{equation*}
$$

if (I) holds. If, on the other hand, (II) holds then (2.9) yields $m \geqq n+2$ and hence (2.9), (2.10), and (2.7) yield

$$
\begin{equation*}
\sum_{p=m}^{n+3} 2^{2 p} \int_{G_{p}}|D u|^{2} \leqq C(t+1)^{-1} \int_{B_{i} \cap C_{1}}|D u|^{2} \tag{2.19}
\end{equation*}
$$

if (II) holds. Hence (2.18), (2.19), and $0<t+1<1$ yield
(2.20) $\sum_{p=m}^{n+3} 2^{2 p} \int_{G_{p}}|D u|^{2} \leqq C\left(\sum_{p=1}^{n+1} 2^{2 p} \int_{B_{p}}|D u|^{2}\right)+C(t+1)^{-3 / 2} \int_{B_{\cap} \cap C_{T}}|D u|^{2}$.

Let g_{1}, g_{2} be smooth functions from R^{3} into $[0,1]$ such that (see (2.4)) $g_{1}+g_{2}=1, g_{1}=1$ outside $F, g_{2}=1$ outside $E,\left|D g_{1}\right| \leqq C$, and $\left|D g_{2}\right| \leqq$ C. Using (1.1) (not (1.5)) we estimate
(2.21) $\left|\int_{R^{3}} u_{l}(y,-1) \phi^{\prime}(y,-1) g_{1}(y) d y\right| \leqq C \int_{E}|u(y,-1)||y|^{-4} d y$.

We use the inequality

$$
\int_{R^{3}}|f|^{6} \leqq C\left(\int_{R^{3}}|D f|^{2}\right)^{3}
$$

valid for smooth functions $f: R^{3} \rightarrow R$ with compact support [3, p. 12], Hölder's inequality, and (1.1) to compute

$$
\begin{align*}
& \left|\int_{R^{3}} u_{i}(y,-1) \phi^{\prime}(y,-1) g_{2}(y) d y\right| \\
& \quad \leqq \int_{R^{3}}\left|g_{2}(y) u(y,-1)\right|\left|\phi^{\prime}(y,-1)\right| d y \\
& \leqq\left(\int_{R^{3}}\left|g_{2}(y) u(y,-1)\right|^{6} d y\right)^{1 / 6}\left(\int_{F}\left|\phi^{\prime}(y,-1)\right|^{1 / 5} d y\right)^{5 / 6} \\
& \leqq C\left(\int _ { R ^ { 3 } } \left(\left|D g_{2}(y)\right||u(y,-1)|\right.\right. \tag{2.22}\\
& \left.\left.\quad+\left|g_{2}(y)\right||D u(y,-1)|\right)^{2} d y\right)^{1 / 2}(t+1)^{-1 / 4} \\
& \leqq C(t+1)^{-1 / 4}\left(\int_{F}|u(y,-1)|^{2} d y\right)^{1 / 2} \\
& \quad+C(t+1)^{-1 / 4}\left(\int_{F}|D u(y,-1)|^{2} d y\right)^{1 / 2}
\end{align*}
$$

Now we combine (2.17), (2.20), (2.21), (2.22), $g_{1}+g_{2}=1$, and (2.2) to write

$$
\begin{aligned}
&|u(x, t)| \\
& \leqq C_{2}\left(\int_{E}|u(y,-1)||y|^{-4} d y\right) \\
&+C_{2}(t+1)^{-1 / 4}\left(\int_{F}|u(y,-1)|^{2} d y\right)^{1 / 2} \\
&+C_{2}(t+1)^{-1 / 4}\left(\int_{F}|D u(y,-1)|^{2} d y\right)^{1 / 2} \\
&+C_{2}(t+1)^{-3 / 2}\left(\int_{C_{t}}|u(y, s)|^{2}(1+|y|)^{-4} d y d s\right) \\
&+C_{2}(t+1)^{-3 / 2}\left(\int_{B_{1} \cap C_{t}}|D u|^{2}\right) \\
&+C_{2}\left(\sum_{p=1}^{n+1} 2^{2 p} \int_{B_{p}}|D u|^{2}\right) \\
&+C_{2}\left(\sum_{p=1}^{n+3} 2^{-p} \sup \left(|u|^{2}, A_{p} \cap C_{t}\right)\right)
\end{aligned}
$$

where C_{2} is fixed (see §1). For $\epsilon>0$ we can use the inequality $a b \leqq \epsilon a^{2} / 2+\epsilon^{-1} b^{2} / 2$ to write

$$
\begin{aligned}
& \int_{E} \mid u(y,-1)\left||y|^{-4} d y\right. \\
&=\int_{E}\left(|u(y,-1)||y|^{-2}\right)\left(|y|^{-2}\right) d y \\
& \quad \leqq\left(\epsilon^{-1} / 2\right)\left(\int_{E}|u(y,-1)|^{2}|y|^{-4} d y\right)+(\epsilon / 2)\left(\int_{E}|y|^{-4} d y\right)
\end{aligned}
$$

and, for $w=u$ or $w=D u$,

$$
(t+1)^{-1 / 4}\left(\int_{F}|w(y,-1)|^{2} d y\right)^{1 / 2}
$$

$$
\begin{equation*}
\leqq\left(\epsilon^{-1} / 2\right)(t+1)^{-1 / 2}\left(\int_{F}|w(y,-1)|^{2} d y\right)+\epsilon / 2 \tag{2.25}
\end{equation*}
$$

Since $\int_{E}|y|^{-4} d y$ is finite and C_{2} is fixed, we can choose $\epsilon>0$ so that

$$
\begin{equation*}
C_{2}\left((\epsilon / 2)\left(\int_{E}|y|^{-4} d y\right)+\epsilon\right) \leqq C_{2}^{-1} 2^{-12} \tag{2.26}
\end{equation*}
$$

holds. Now (2.23), (2.24), (2.25), (2.26), and $0<t+1<1$ yield (2.6).
Lemma 2.2. There exists an absolute constant $\epsilon>0$ such that the following holds: If the conditions

$$
\begin{align*}
& (t+1)^{-1} \int_{C_{t}}|u(y, s)|^{2}(1+|y|)^{-4} d y d s \leqq \epsilon \\
& (t+1)^{-1} \int_{B_{1} \cap C_{t}}|D u|^{2} \leqq \epsilon \tag{2.27}\\
& 2^{p} \int_{B_{p}}|D u|^{2} \leqq \epsilon
\end{align*}
$$

are satisfied for all $t \in(-1,0)$ and $p \in\{1,2,3, \cdots\}$ then u can be extended continuously to the closure of A_{1} in $R^{3} \times R$.

Proof. We choose $\epsilon>0$ so that

$$
\begin{equation*}
\text { (12) } C_{3} \epsilon \leqq C_{2}^{-1} 2^{-12} \tag{2.28}
\end{equation*}
$$

holds (see Lemma 2.1). Let $f: \bigcup_{n=1}^{\infty} A_{n} \rightarrow R^{+}$be a continuous function satisfying

$$
\begin{equation*}
C_{2}^{-1} 2^{n-10} \leqq f(x, t) \leqq C_{2}^{-1} 2^{n-7} \quad \text { if } \quad(x, t) \in A_{n+1}-A_{n} \tag{2.29}
\end{equation*}
$$

where $n \geqq 0$ (see (2.5)). We wish to show that (2.27) implies

$$
\begin{equation*}
|u(x, t)| \leqq f(x, t) \quad \text { for all } \quad(x, t) \in \bigcup_{n=1}^{\infty} A_{n} . \tag{2.30}
\end{equation*}
$$

Assume, to the contrary, that (2.27) holds but (2.30) does not. Since u is continuous on $R^{3} \times[-1,0)$ (see first paragraph of $\S 2$) and the continuous function $f(x, t)$ tends to ∞ as (x, t) tends to

$$
\{(x,-1):|x| \leqq 1\} \cup\{(x, t):|x|=1,-1 \leqq t<0\}
$$

there must exist $(x, t) \in \bigcup_{n=1}^{\infty} A_{n}$ such that (2.31) and (2.32) hold:

$$
\begin{equation*}
|u(x, t)|=f(x, t) \tag{2.31}
\end{equation*}
$$

$$
\begin{equation*}
|u(y, s)| \leqq f(y, s) \quad \text { if } \quad(y, s) \in \bigcup_{n=1}^{\infty} A_{n} \quad \text { and } \quad s \leqq t . \tag{2.32}
\end{equation*}
$$

Taking the limit as t tends to -1 in (2.27) and using Fatou's lemma we obtain (recall (2.4))

$$
\begin{align*}
& \int_{R^{3}}|u(y,-1)|^{2}(1+|y|)^{-4} d y \leqq \epsilon, \\
& \int_{F}|D u(y,-1)|^{2} d y \leqq \epsilon \tag{2.33}
\end{align*}
$$

We define n by the condition $(x, t) \in A_{n+1}-A_{n}$ and use Lemma 2.1, (2.33), (2.27), (2.32), the inequality $t+1 \geqq 2^{-2(n+1)}$ (which follows from $\left.(x, t) \in A_{n+1}\right)$, (2.29), (2.28), and $n \geqq 0$ to write

$$
\begin{align*}
&|u(x, t)| \\
& \leqq 4 C_{3}(t+1)^{-1 / 2} \epsilon+C_{3}\left(\sum_{p=1}^{n+1} 2^{p} \epsilon\right) \\
&+C_{2}\left(\sum_{p=1}^{n+3} 2^{-p} \sup \left(f^{2}, A_{p} \cap C_{t}\right)\right)+C_{2}^{-1} 2^{-12} \\
& \leqq C_{3} 2^{n+3} \epsilon+C_{3} 2^{n+2} \epsilon+C_{2}\left(\sum_{p=1}^{n+3} 2^{-p}\left(C_{2}^{-1} 2^{p-8}\right)^{2}\right)+C_{2}^{-1} 2^{-12} \tag{2.34}\\
& \leqq C_{2}^{-1} 2^{n-12}+C_{2}^{-1} 2^{n-12}+C_{2}^{-1} 2^{-12} \\
& \leqq(3 / 4) C_{2}^{-1} 2^{n-10} \leqq(3 / 4) f(x, t) .
\end{align*}
$$

However, (2.34) contradicts (2.31) since $|u(x, t)|=f(x, t) \quad$ is positive. Hence (2.27) implies (2.30).

We set $A=B(0,1 / 4) \times[-3 / 16,0)$ (see (1.14)). From (2.30) and (2.29) we conclude that $|u|$ is bounded on A_{2}. Hence the integrability of $D \phi$ and $D^{3} \psi$ on A (see (1.5)), the boundedness of $D \phi, D^{3} \psi$ outside A, (1.6) and (1.1) allow us to extend the domain of definition of u to include the closure of A_{1} by substitution of $t=0$ in (2.2). The above integrability property allows us to construct infinite sequences of continuous functions ${ }^{m} f_{i}$ and ${ }^{m} g_{i j k}$ for $m=1,2,3, \cdots$ and $i, j, k \in\{1,2,3\}$ such that the restrictions of ${ }^{m} f_{i}$ and ${ }^{m} g_{i j k}$ to A converge as $m \rightarrow \infty$ to $\phi_{, j}$ and $\psi_{i j k}$, respectively, in the L^{1} norm; and such that ${ }^{m} f_{j,}{ }^{m} g_{i j k}$ coincide with $\phi_{i j}, \psi_{i, j k}$ outside A. We use (1.1), (1.5), (1.6) to define

$$
\begin{aligned}
{ }^{m} u_{i}(x, t)= & \int_{R^{3}} u_{i}(y,-1) \phi^{\prime}(y,-1) d y \\
& +\int_{R^{3} \times[-1, t]}\left(u_{j} u_{i}\left({ }^{m} f_{i}^{\prime}\right)-u_{j} u_{k}\left({ }^{m} g_{i j k}^{\prime}\right)\right)
\end{aligned}
$$

for $-1<t \leqq 0$, where ϕ^{\prime} is as in (2.3), ${ }^{m} f_{j}^{\prime}(y, s)={ }^{m} f_{i}(y-x, s-t)$, ${ }^{m} g_{i j k}^{\prime}(y, s)={ }^{m} g_{i j k}(y-x, s-t)$. The statements in this paragraph and (2.2) imply that ${ }^{m} u$ converges to u uniformly on the closure of A_{1}. The conclusion of the lemma follows because each ${ }^{m} u$ is continuous.
3. The basic estimate and Hausdorff measure. As before, J_{q} is the interval in Theorem 1, and its right endpoint is t_{0}. We recall (1.14) and we define $S(a, r)=\left\{x \in R^{3}:|x-a|=r\right\}$ for $a \in R^{3}$. The integral of f over $S(a, r)$ with respect to area measure will be denoted $\int_{s(a, r)} f(x) d x$ for simplicity.

Lemma 3.1. There exists an absolute constant $\delta>0$ such that the following holds: If $x_{0} \in R^{3}, 0<d<$ (length $\left.\left(J_{q}\right)\right)^{1 / 2}$, and condition

$$
\begin{gather*}
d^{-2} \int_{t_{0}-d^{2}}^{t_{0}} \int_{R^{3}}|v(x, t)|^{2}\left(1+\left|x-x_{0}\right| / d\right)^{-4} d x d t \\
\quad+\int_{t 0-d^{2}}^{t_{0}} \int_{B\left(x_{0}, 2 d\right)}|D v(x, t)|^{2} d x d t \leqq \delta d \tag{3.1}
\end{gather*}
$$

is satisfied then v can be extended continuously to $\left(R^{3} \times J_{q}\right) \cup\left(V \times\left\{t_{0}\right\}\right)$, where V is a neighborhood of x_{0} in R^{3}.

Proof. We fix $x_{0} \in R^{3}$ and $0<d<$ length $\left(J_{q}\right)^{1 / 2}$, and define functions $k_{1}, k_{2}: R \rightarrow\{t \in R: t \geqq 0\}$ by (see first paragraph of $\S 3$)

$$
\begin{align*}
k_{1}(t)= & d^{-2} \int_{R^{3}}|v(x, t)|^{2}\left(1+\left|x-x_{0}\right| / d\right)^{-4} d x \\
& +\int_{B\left(x_{0}, 2 d\right)}|D v(x, t)|^{2} d x \quad \text { if } \quad t \in\left(t_{0}-d^{2}, t_{0}\right) \tag{3.2}
\end{align*}
$$

$$
\begin{aligned}
& k_{2}(r)=\int_{t_{0}-d^{2}}^{t_{0}} \int_{S(x, r)}|D v(x, t)|^{2} d x d t \quad \text { if } \quad r \in(0,2 d), \\
& k_{1}(t)=0=k_{2}(r) \quad \text { if } \quad t \notin\left(t_{0}-d^{2}, t_{0}\right) \quad \text { and } \quad r \notin(0,2 d) .
\end{aligned}
$$

We let $M k_{t}$ be the cubic Hardy-Littlewood maximal function of $k_{t}[9, p$. 53]. That is,

$$
\begin{equation*}
M k_{l}(a)=\sup \left\{(2 b)^{-1} \int_{a-b}^{a+b} k_{l}(c) d c: 0<b<\infty\right\} \tag{3.3}
\end{equation*}
$$

We let $\left\|\|_{1}\right.$ denote the L^{1} norm and | | denote Lebesgue measure. The Hardy-Littlewood theorem for L^{1} [9, (3.5) on p. 55] implies that (3.4) holds for some absolute constant C_{4} :

$$
\begin{align*}
& |A| \leqq d^{2} / 8 \quad \text { where } \quad A=\left\{t: M k_{1}(t)>C_{4}\left(d^{2} / 8\right)^{-1}\left\|k_{1}\right\|_{1}\right\} \tag{3.4}\\
& |B| \leqq d / 8 \quad \text { where } \quad B=\left\{r: M k_{2}(r)>C_{4}(d / 8)^{-1}\left\|k_{2}\right\|_{1}\right\}
\end{align*}
$$

We have $\left|\left\{e \in[d / 2, d]: t_{0}-e^{2} \in A\right\}\right| \leqq d^{-1}|A| \leqq d / 8$. This and (3.4) imply the existence of $d_{0} \in[d / 2, d]$ such that $t_{0}-d_{0}^{2} \notin A$ and $d_{0} \notin B$. Now (3.2), (3.3), and (3.4) yield

$$
\begin{align*}
& (2 b)^{-1} \int_{t_{0}-d_{0}^{2}}^{t_{0}-d_{0}^{2}+b} d^{-2} \int_{R^{3}}|v(x, t)|^{2}\left(1+\left|x-x_{0}\right| / d\right)^{-4} d x d t \tag{3.5}\\
& \quad+(2 b)^{-1} \int_{t_{0}-d_{0}^{2}}^{t_{0}-d_{0}^{2}+b} \int_{B\left(x 0_{0}, 2 d\right)}|D v(x, t)|^{2} d x d t \\
& \quad \leqq 8 C_{4} d^{-2}\left\|k_{1}\right\|_{1} \text { for } 0<b<d_{0}^{2} \\
& (2 b)^{-1} \int_{t_{0}-d^{2}}^{t_{0}} \int_{d_{0}-b \leqq\left|x-x_{0}\right| \leqq d_{0}+b}|D v(x, t)|^{2} d x d t \\
& \leqq 8 C_{4} d^{-1}\left\|k_{2}\right\|_{1} \text { for } \quad 0<b \leqq d_{0} \tag{3.6}
\end{align*}
$$

Defining u by means of (2.1), using $d / 2 \leqq d_{0} \leqq d$, rewriting (3.5) and (3.6) in terms of u, and recalling (2.4), we obtain (3.7) and (3.8):

$$
\begin{equation*}
2^{p} \int_{B_{p}}|D u|^{2} \leqq C d^{-1}\left\|k_{2}\right\|_{1} \quad \text { for } \quad p=1,2,3, \cdots \tag{3.8}
\end{equation*}
$$

From (3.2) we obtain

$$
\begin{align*}
\left\|k_{2}\right\|_{1} \leqq & \triangleq k_{1} \|_{1} \\
= & d^{-2} \int_{t_{0}-d^{2}}^{t_{0}} \int_{R^{3}}|v(x, t)|^{2}\left(1+\left|x-x_{0}\right| / d\right)^{-4} d x d t \tag{3.9}\\
& +\int_{t_{0}-d^{2}}^{t_{0}} \int_{B\left(x_{0}, 2 d\right)}|D v(x, t)|^{2} d x d t .
\end{align*}
$$

Now (3.7), (3.8), and (3.9) imply the existence of an absolute constant $\delta>0$ such that (3.1) yields (2.27). The conclusion of the lemma follows from Lemma 2.2.

We fix the constant δ in Lemma 3.1 and set

$$
\begin{equation*}
Q=\left\{\left(x_{0}, 2 d\right) \in R^{3} \times\left(0,2\left(\text { length }\left(J_{q}\right)\right)^{1 / 2}\right):(3.1) \text { does not hold }\right\} \tag{3.10}
\end{equation*}
$$

Lemma 3.2. There exists a finite constant N that depends only on C_{1} (see (1.6)) such that the following holds: If
(3.11) $0<d<\left(\text { length }\left(J_{q}\right)\right)^{1 / 2}, B \subset R^{3},(b, 2 d) \in Q \quad$ if $\quad b \in B$, $\{B(b, 2 d): b \in B\}$ is a family of disjointed sets
is satisfied then the number of points in B is at most N / d.
Proof. Let (3.11) hold. The disjointedness hypothesis implies that (3.12) holds for some absolute constant C_{5} :

$$
\begin{equation*}
\sum_{b \in B}(1+|x-b| / d)^{-4} \leqq C_{5} \quad \text { for every } \quad x \in R^{3} \tag{3.12}
\end{equation*}
$$

Now (3.11), (3.10), (3.12), and (1.6) yield

$$
\begin{aligned}
= & \sum_{b \in B} \delta d \\
\leqq & \sum_{b \in B} d^{-2} \int_{t_{0}-d^{2}}^{t_{0}} \int_{R^{3}}|v(x, t)|^{2}(1+|x-b| / d)^{-4} d x d t \\
& +\sum_{b \in B} \int_{t 0-d^{2}}^{t_{0}} \int_{B(b, 2 d)}|D v(x, t)|^{2} d x d t \\
\leqq & C_{5} d^{-2} \int_{t 0-d^{2}}^{t_{0}} \int_{R^{3}}|v(x, t)|^{2} d x d t \\
& +\int_{t 0-d^{2}}^{t_{0}} \int_{R^{3}}|D v(x, t)|^{2} d x d t \leqq C_{5} C_{1}+C_{1} .
\end{aligned}
$$

Hence we can set $N=\left(C_{5} C_{1}+C_{1}\right) / \delta$.
The following lemma is a consequence of the Besicovich covering theorem [2, 2.8.14, 2.8.9].

Lemma 3.3. There exists an integral absolute constant K with the following property: If $0<d<\infty$ and $A \subset R^{3}$ then there exist $Y_{k} \subset A$ for $k=1,2, \cdots, K$ such that (I) and (II) hold:
(I) $A \subset \cup\left\{B(y, 2 d): y \in \bigcup_{k=1}^{K} Y_{k}\right\}$
(II) For each $k,\left\{B(y, 2 d): y \in Y_{k}\right\}$ is a family of disjointed sets.

We can now finish the proof of Theorem 1. Let A be the set of points $x_{0} \in R^{3}$ such that (3.1) fails to hold for every d satisfying $0<d<$ (length $\left.\left(J_{q}\right)\right)^{1 / 2}$. Lemma 3.1 implies that there exists an open set $U \subset R^{3}$ such that $A \cup U=R^{3}$ and v can be extended to a continuous function on

$$
\left(R^{3} \times J_{q}\right) \cup\left(U \times\left\{t_{0}\right\}\right) .
$$

We set $S=R^{3}-U$. Since $S \subset A$, all tht remains to show is that the 1 dimensional Hausdorff measure of A is at most $4 K N$.

It suffices to show [2, p. 171] that for every $0<d<\left(\text { length }\left(J_{q}\right)\right)^{1 / 2}$ there exists $Y \subset R^{3}$ such that

$$
A \subset \cup\{B(y, 2 d): y \in Y\}
$$

and

$$
\sum_{y \in Y} \operatorname{diameter}(B(y, 2 d)) \leqq 4 K N .
$$

We apply Lemma 3.3 to find sets $Y_{k} \subset A$ satisfying (I) and (II). Lemma
3.2, (3.10), and the definition of A yield $\Sigma_{y \in Y_{k}}(4 d) \leqq 4 N$ for each k. Hence, setting $Y=\bigcup_{k=1}^{K} Y_{k}$, we obtain $\sum_{y \in Y}(4 d) \leqq 4 K N$. Theorem 1 is proved.

References

1. F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Memoirs of the American Mathematical Society 165, Providence, R. I., 1976.
2. H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.
3. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, revised English edition, Gordon \& Breach, New York, 1964.
4. J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
5. B. Mandelbrot, Les Objets Fractals, Flammarion, Paris, 1975.
6. V. Scheffer, Géométrie fractale de la turbulence. Équations de Navier-Stokes et dimension de Hausdorff, C. R. Acad. Sci. Paris, 282 (January 12, 1976), Série A 121-122.
7. -, Turbulence and Hausdorff dimension, to appear in the proceedings of the conference on turbulence held at U. of Paris at Orsay in June, 1975; Lecture Notes in Mathematics, Springer-Verlag, New York.
8. M. Shinbrot, Lectures on Fluid Mechanics, Gordon \& Breach, New York, 1973.
9. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971.

Received April 6, 1976.
Stanford University
Stanford, CA 94305

