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SOME FORMS OF ODD DEGREE FOR WHICH
THE HASSE PRINCIPLE FAILS

MASAHIKO FUJIWARA AND MASAKI SUDO

The object of this paper is to give a family of absolute-
ly irreducible forms of odd degree for which the Hasse
principle fails.

Let K be an algebraic number field and f(X19 , Xn) be a poly-
nomial of n variables Xlf , Xn over K. We say the Hasse prin-
ciple over K, briefly H.P./iΓ, holds for f(Xl9---,XJ when
f(X19 , Xn) = 0 has a solution in K if and only if it has a solution
in Kp for all prime spots p. Here, if / is a form, a solution means
a nontrivial one. Our aim in this paper is to push forward the
method in [3] and thus producing a family of forms of odd degree
for which H. P. fails. As is well known, the Hasse-Minkowski
theorem assures the validity of H. P. for any quadratic forms. So
far as forms of higher degree are concerned, the things are not so
simple if the form is absolutely irreducible of odd degree (see [1],
Chap. I, § 7). For forms of degree 3, there have been found several
counter examples ([2], [4], [5], [6]). Such a form of degree 5 was
discovered by the first author [3]. In this paper, we prove the
following theorem. Let P be the set of primes which satisfy the
conditions in § 2 of this paper. For example {peP; p ^ 1000} = {17,
53, 89, 131, 149, 167, 179, 257, 311, 359, 431, 449, 467, 521, 563, 599,
683, 773, 887, 953, 977}.

THEOREM. H.P./Q does not hold for the following form of
degree lOn + 5

F(x, y, z) = (x3 + 5y3)(x2 + xy + y2)5n+1 - pzί0n+5, where n is any
nonnegative integer and p is in P.

This theorem gives counter examples, for H.P./Q, of any odd
degree divisible by 5. Though the method of the proof is basically
analogous to that of [3], local solvability needs more careful and
involved treatment.

In § 1 we prove that the equation F = 0, actually in a slightly
more general setting, can be solved everywhere locally. It goes
without saying that HenseΓs lemma plays a central role there.

In §2 we show that the equation does not have any integral,
therefore rational, solution. The argument used there enables one
to find as many primes in P as one may want. We remark here
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that, if 5n + 1 is not divisible by 3, the set P in our theorem can
be enlarged to the set Pf also defined in §2. The primes in P' less
than 1000 are, in addition to the primes in P listed above, 47, 137,
191, 227, 281, 353, 389, 479, 587, 641, 677, 821, 911, 983.

Finally, Facom 230 45S 0S2/VS installed at Tokyo Metropolitan
University was made use of in order to find all the primes in P and
P' less than 1000.

1* Local solvability* In this section we consider the question
of the solvability of the following equation

(E) (a?8 + 5y3)(x2 + xy + y 2 ) 5 n + 1 - azίOn+δ = 0 ,

where a is an integer and n is a nonnegative integer, in a local field
Qq. Throughout this section, by a solution, we always mean a non-
trivial one.

Solvability in Qq for q Φ 2, 3, 5 is found in the remark at the
end of § 1 of [3]. Therefore we will deal with the cases q = 2
(Prop. 1), q = 3 (Prop. 2 and 3), and q = 5 (Prop. 4 and 5).

PROPOSITION 1. For any integer a, (E) has a solution in Q2.

Proof. Put (x, y, z) = (1, - 1 , 0), then F(l, - 1 , 0) = - 4 = 0
(mod 2) and (dF/dx)(l, - 1 , 0) = 3 - 4(5n + 1) •£ 0 (mod 2). This as-
sures a 2-adic solution of (E) by HenseΓs lemma (Th. 3, § 5, Chap.

I, HI).
We now consider the solvability in Q3 in two cases, i.e., the case

a ^ 0 (mod 3) and the case a = 0 (mod 3).

PROPOSITION 2. Let a Ξ£ 0 (mod 3). (i) If 3 does not divide
5n + 1, then (E) has a solution in Q3 (ii) If 3 divides 5n + 1,
then (E) has a solution in Qz if and only if (a) a Ξ= 1, (b) a = 4,
(c) a = 5, or (d) α Ξ 8 (mod 9).

We need the following two lemmas in order to prove the case
(ii) of Proposition 2.

LEMMA 1. At least one of the following four congruences

(1) x3
 ΞΞ a (mod 27)

( 2 ) x3 = - a (mod 27)

( 3) 5x3
 ΞΞ a (mod 27)

(4) 5x3 == - α (mod 27)
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has a solution whenever a satisfies (a), (b), (c) or (d) of Proposition 2.

Proof. The case (a). Then we have a = 1, 10 or 19 (mod 27).
If, say, a = 1 (mod 27), (1) has the solutions x == 1, —8, 10 (mod 27).
The other two cases can be done similarly.

The case (b). Then we have a = 4, 13, or 22 (mod 27). If, say,
a = 4 (mod 27), (3) has the solutions x = - 4 , 5, -13 (mod 27).
The other two cases can be done similarly.

The cases (c) and (d) can be treated likewise.

LEMMA 2. The solutions of the congruence

(A) x2 + Sx-l = 0 (mod 27)

are x = 4, —7 (mod 27) and the solutions of the congruence

(B) x2 - 1 = 0 (mod 27)

are x = 1, —1 (mod 27).
And at least one of the solutions found in Lemma 1 for each

a satisfying (a), (b), (c), or (d) satisfies the congruence (A) or (B).

Proof. Straightforward.

Proof of Proposition 2. ( i) As a has a form 3m ± 1 in this case,
we put (x, y, z) = (1, - 1 , +1), then F(l, - 1 , + 1) Ξ - 4 ± 3m + 1 == 0
(mod 3) (signs taken simultaneously), and (dF/dz)(l, — 1, +1) =
— a{lQn + 5) =£ 0 (mod 3). This assures a 3-adic solution of (£7) by
HenseΓs lemma and (i) of our proposition is proved.

(ii) (First step) We prove that (E) has no solution in the case
a Ξ ± 2 (mod 9).

We have only to show that any solution of the congruence

( 5) (xz + 5y*)(x2 + xy + y2fn+ι - αzlo*+5 == 0 (mod 310%+5)

is divisible by 3 (Th. 2, § 5, Chap. I, [1]).
As x* = 0 or ± 1 (mod 9) for any integer x, it is easy to see

that F(x, y, z) ̂  0 (mod 9) for any x, y, z with 3 \ z. Consequently
a solution (x, y, z) of (5) must be such that 3|z. If either one of x
or y is divisible by 3, then both are. Therefore we can assume
that ΆJfxfy and Z\z. Then we can easily show that each of
x2 + xy + y2 and xz + 5τ/3 are divisible by at most 31. Thus the first
term of (5) is divisible by at most 35ίl+2, whereas the second term of
(5) is divisible by 310%+5. This is a contradiction.

(Second step) We prove that (E) has a solution in the cases (a),
(b), (c) and (d) in our proposition. We consider two cases 3 || 5n + 1
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and 321 5n + 1.

Case 1. 3 || 5n + 1. Suppose x0 is a common root of the congru-
ences (1) and (A), as xQ Φ 0 (mod 3), F(x0, 3, 1) = (xl 4- 5 33)
(xl + xo 3 + 32)5%+1 - a s ^(3 2 + ΐ)δn+1 - a (mod 27) Ξ= a? - a == 0 (mod
27) and (dF/dy)(x0, 3, 1) = 15 32(^ + αv3 + 32)5*+1 + (xl + 5.33)(5w + 1)
(xl + xo-3 + 32Yn(x0 + 2-3) = 0 (mod 3) φ 0 (mod 32).

Thus we obtain a 3-adic solution of (E). (2) and (A) can similarly
be done by taking (x, y, z) = (x0, 3, —1) for above x0.

Suppose y0 is a common root of the congruences (3) and (A),
as Vo m 0 (mod 3), F(3, y0, 1) = (33 + 5^)(32 + 3y0 + y*f*+ι -a =
5yl(S2 + l) 5 ί l + 1 -a = 5yl~a = 0 (mod 27) and (3F/dx)(3, y09 1) =
33(32 + 32/0 + yϊ)β + 1 + (33 + 5yl) (5n + 1) (32 + Sy0 + yJ)5 (2-3 + y0)

 Ξ 0
(mod 3) ξέ 0 (mod 32). For (4) and (A), (x, y, z) = (3, yQ, -1), for
above yQf will suffice to assure a 3-adic solution.

Suppose £0 is a common root of the congruences (1) and (B),
then F(x0, 32, 1) = (xl + 5 36)(α;2 + xo 32 + 34)5w+1 - a (mod 27) =
^ ( 1 + 2?xJ>n+1 - a = χ l - a^O ( m o d 2 7 ) a n d (dF/dy)(x0, 3 2 , 1 ) = 0
(mod 3) =£ 0 (mod 32). For (2) and (B), take (a, #, «) = (x0, 32, - 1 )
for above x0.

Suppose y0 is a common root of the congruences (3) and (B),
*X32, y0, 1) = (36 + 5^/3)(34 + 32τ/0 + yί)5n+1 - α = 5^(1 + 327/0)

5-+1 - α =
5yl - a = 0 (mod 27) and (3i^/3α;)(32, y0, 1) = 0 (mod 3) φ 0 (mod 32).
For (4) and (B), take (x9 y, z) = (32, τ/0, - 1 ) for above ?/0. Thus we
obtain a 3-adic solution of (E) by Ξensel's lemma.

Case 2. 321 5n + 1. Let #0 be a solution of the congruence (1)
or (2), then, as x\ = 1 (mod 3), F(x0, 0, ±1) = xl(xl)δn+1 + α Ξ
ajS{(»S - 1) + 1}5%+1 + o = a;! + a s O (mod 27) (signs taken simulta-
neously according to (1) or (2)), and (dF/dz)(x0, 0, ±1) = ~a(10n + 5) =
~a{2(5n + 1) + 3} = 0 (mod 3) φ 0 (mod 32).

This assures a 3-adic solution of (E) by HenseΓs lemma.
If yQ is a solution of the congruence (3) or (4), then take

(0, yQ, ±1) according to (3) or (4) and we can easily show
JFXO, y0, ±1) = 0 (mod 27) and (dF/dz)(Q, y0, ±1) = 0 (mod 3) ^ 0
(mod 32).

Thus we obtain a 3-adic solution of (E). Therefore Proposition
2 is completely proved.

PROPOSITION 3. Let a = 0 (mod 3). (i) If a = ± 3 (mod 9),

(E) has no solution in Q3. (ii) If a = 0 (mod 9) (α = 3V, r is an
integer ^>2, 3 |α ' ) , ίfeβw (E) has a solution in Q3 if r is a multiple
of lOn + 5 and a' = ± 1 or ± 5 (mod 9).

Proof, ( i ) We consider the following congruence
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( 6 ) (x3 + 5y3)(x2 + xy + yjn+1 - az1On+δ = 0 (mod 310%+6) .

We have only to show that any solution of (6) is divisible by 3.
First suppose (x, y, z) is a solution such that Z\z. Since the
second term of (6) is precisely divisible by 31, if x or y is divisible
by 3, then both are. So we can assume that neither x nor y are
divisible by 3. Then it is easy to see that 31| xs + 5y3 and 3| |
x2 + xy + y2. Therefore the first term of (6) is precisely divisible
by 3β»+2. rpkjs j s a c o ntradiction. Thus the solution, if it exists,
must be such that 3] 2. In this case we have 310%+61 az1On+δ. If
neither x nor y are divisible by 3, we will have a contradiction by
the same discussion as above. If x or y is divisible by 3, then both
are. Therefore any solution (x, y, z) of the congruence (6) is
divisible by 3 and our assertion is proved,

(ii) Consider the equation

( 7 ) (x3 + 5y3)(x2 + xy + y2fn+ι - a'z1On+δ = 0 .

By Proposition 2, (7) has a 3-adic solution (x, y, z). Put a = 3I(10Λ+JW
for some integer I. Then (3ιx, 3ιy, z) is a 3-adic solution of (E).

We now enter the discussion of the solvability in Qδ. We
consider two cases, i.e., the case α ΐ O (mod 5) and the case a = 0
(mod 5).

PROPOSITION 4. Let a =£ 0 (mod 5). Then (E) has a solution
in Qδ.

Proof. If a = ± 1 (mod 5), we put (x, y, z) = (±1, 0, 1), then
F(±l, 0, 1) = (±1) - (±1) = 0 (mod 5) (signs taken simultaneously)
and (dF/dy)(±l, 0, 1) = ±l(5n + 1)(±1) =£ 0 (mod 5). This assures
a 5-adic solution of (E) by HenseΓs lemma

If a Ξ ±2 (mod 5), put (x, y, z) = (2, 0, ±1) if n is even, then
.F(2,0, ±1) Ξ= 0 (mod 5) (signs taken simultaneously), and dF/dy
(2, 0, ±1) ΐ 0 (mod 5). For odd n, put (a?, y, z) = (2, 0, +1).

PROPOSITION 5. If a = 0 (mod 5) (α = 5rα', r is a positive
integer, 5 \ a!), then (E) has a solution in Q5 if r is a multiple of
lOn + 5.

Proof. Put a — 5ι<lθΛ+5>α' for some integer I and consider the
equation

( 8 ) (x3 + 5?/3)(x2 + α?i/ + y2fn+1 - a! z10n+5 = 0 .

By Proposition 4, (8) has a 5-adic solution (x, y, z). Then (5^, 5ιy, z)
is a 5-adic solution of (E).
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REMARK 1. In connection with Proposition 3 (ii), we can tell a
little more. If a = 0 (mod 9) (α = 3^10"+5>+V, r is an integer s.t.
lOn + 5 > r > 0 , I is a nonnegative integer and a' is not divisible
by 3), then

(E) has no solution in Q3 unless r = 5n + 2.

2. In relation to Proposition 5, we can also tell more. If a = 0
(mod 5) (a = 5Z(10*+5)+V, r is an integer s.t. lOn + 5 > r > 0, I is
a nonnegative integer and a! is not divisible by 5), then

(E) has no solution in Qδ unless r = 1.

Next we give some sufficient conditions for the equation (E) to
have a solution in Qδ when r = 1 above.

(E) has a solution in Q5 if
( i ) a' = 1 or - 1 (mod 125)

or
(ii) the congruences

x2 + 25x Ξ 1 or - 1 (mod 125)

x3 = α' or - α ' (mod 125)
α common root.

Remark 1 can be easily proved and 2 can also be done similarly
as in Proposition 2.

Summing up all the results of Proposition 1 up to Proposition
5 and Remarks 1 and 2, we obtain the following.

PROPOSITION 6. (I) For any integer a, the form (E) has a
q-adic solution except q = 3 and 5.

(II) Solvability of (E) in Q3. (a) In case a φ. 0 (mod 3). (i) //
3 does not divide 5n + 1, (E) has a solution, (ii) // 3 divides
5n + 1, (E) has a solution if and only if a = 1, 4, 5, or 8 (mod 9).
(b) In case a = 0 (mod 3). (i) If a = 3 or 6 (mod 9), (E) has no
solution, (ii) If a = 0 (mod 9) and a = 3V (r is a multiple of
lOn + 5, 3^α/), £Aβ% (E) has a solution if and only if af = ± 1 or
± 5 (mod 9). (iii) If r is not a multiple of lOn + 5 in (ii), then
(E) has no solution unless r = 5n + 2 (mod 10^ + 5).

(III) Solvability of (E) m Q5. (1) In case a =£ 0 (mod 5). (E)
&αs α solution. (2) 1% case a = 0 (mod 5). T%βw (i) If a — 5raf

and r is a multiple of lOn + 5 (5 \ a'), (E) has a solution, (ii) If
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r is not a multiple of lOn + 5 in (i), then (E) has no solution un-
less r Ξ 1 (mod lOn + 5). (iii) When a = 5ιa0n+δ)+W (I is a non-
negative integer, 5 |α ' ) , (E) has a solution if a' = ±1 (mod 125),
or the congruences x2 + 25x = 1 or — 1 (mod 125) and xz = α' or — α'
(mod 125) fecwe α common zero.

2. Global nonsolvability* In this section, we assume p to be
a prime satisfying (~S/p) = — 1, foreseeing that the condition will
be included in the definition of P and P'.

Let (x, y, z) be a nontrivial integral solution of

( 1 ) F(x, y, z) = (x* + 5y*)(x2 + xy + ?/2)57l+1 - p^1 0 % + 5 = 0

in our theorem. Then we can assume x and y are coprime. Let
d denote the largest common divisor of

( 2 ) x* + W

and

( 3 ) x2 + xy + y2 .

Assume qn divides both (2) and (3). Then qn divides (2) —(3) cc =
5yz — x2y — xy2 = y(5y2 — x2 — xy). Here we can assume q divides
neither x nor y, for if q divides one of x, y then it divides the other.
Hence qn divides 5y2 — x2 — xy. Thus qn divides (x2 + xy + y2) +
(5y2 -x2- xy) = 6y2.

Therefore qn divides 6. If 2 divides d then both x and y must
be even by (2) and (3). Therefore d = 1 or 3. In the following, we
show that d — 3 is impossible. When n is zero, this fact is proved
in p. 273 [3]. So we assume n >̂ 1. Assume d = 3, then we get,
by the second term of (1),

( 4 ) 310*+51 (x3 + 5y*)(x2 + xy + yψ+ι .

We note here that 341 (x* + 5τ/3) or 341 (xz + xy + τ/2) leads to a con-
tradiction (p. 273 [3]). Therefore, by (4), there are three possibilities
to be considered.

( i ) If 3 \\(x2 + xy + τ/2), then 35 % + 1 | | (x2 + xy + y2)δn+1 .

So we have 35%+41 (x3 + 5τ/3). This is a contradiction since 5w + 4 ^ 4.

(ii) If 32 \\(x2 + xy + y2), t h e n 3 1 0 ί l + 2 | | (x2 + xy + y2)5n+ι .

So we get 331 (xz + 5y*) by (4). This is against our assumption d — 3.
(iii) If 33 \\(x2 + xy + y2), we have 315π+3||(x2 + xy + r T w + 1 and 3
||(x3 + 5?/3). So the first term of (1) is precisely divisible by 315%+4,
but the second term of (1) is divided at least by 320w+10. This is a
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contradiction. Therefore we have proved d = 1. Then, using the
assumption ( — 3/p) = — 1 and the same argument as in p. 274 [3] we
see that the equation or* + 5y3 = pu1On+δ has a nontrivial integral
solution (x, y, u) such that (x, y) = 1. Put u2n+1 = Z. Then the
equation

\(x, V) = 1

must have an integral solution.

The next lemma is a slight generalization of Lemma 2 of [3],

LEMMA 3. Let K be a cubic field over Q and p a prime which
is unramified and factors in K as a product of a prime divisor
p of degree 1 and a remaining factor q. If ζ is an integer of K
with Sp(ζ) = 0 and q | ζ, then p divides ζ.

Proof. Let q%||ζ, where n is a positive integer. By the assump-
tion we have ζ3 + αζ + b = 0 for some a, beZ. Since —b = N(ζ),
we have p2ί l |6. Since aζ — — ζ3 — b, it follows that (q, α) =£ 1 and
so p|α. Therefore ζ3 is divisible by p, and we have p\ζ3, p\ζ. Thus
we obtain p\ζ.

Denoting ¥Ί> by 0, the field Q(θ) has 1, θ, θ2 as an integral basis,
has class number 1 and has 1 — Aθ + 2ΰ2 as its fundamental unit.

When ( — Zjp) = — 1 and p > 5, p remains prime in Q(l/ — 3).
Therefore, by the remark at the end of § 1 of [3], p does not remain
prime in Q( ΦΊΓ). Since the composite field of QCl/"1!;) and Q( ̂ ΊΓ)
is the Galois closure of Q( V 5), it is easy to see that p does not
completely split in Q( V 5). Thus, p factors in Q( V 5) as a product
of a prime divisor ft of degree 1 and a prime divisor & of degree 2.

By Lemma 3, if p2 divides x + yθ, p divides θ(x + yθ), for
Sp(0(# + yθ)) = 0. So p divides x + yθ and thus both as and y. This
contradicts (a?, #) = 1.

Therefore by following the arguments in p. 275, [3], x + yθ
must take the form of one of the following types: π^5, π^ζ5, π^ζ5,
π^ζ5, π^ζ5, where ζ is an integer of Q{θ), ε is the fundamental unit
1 — Aθ + 2Θ2 in Q(θ), and π1 is an integer generating ft. Write
πt = I + J# + ϋΓ#2, where /, J and K are rational integers. In the
following we will define a set Pr consisting of primes and its subset
P and then show that x + yθ can never take any one of those five
forms if p in (1) belongs to P'm

Put ζ = u + vθ + wθ2 where u, v, w e Z. Then

ζ5 = (u + 0(t; + w0))5 = t6δ + 5A ,
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where A is an integer of Q(θ).
As ε = 1 - 40 + 2Θ\ ε2 = -79 + 120 + 2O02, ε3 = -359 + 5280 - I8602

and ε4 = 8641 + 1040 - 3O1602, putting (I + Jθ + Kff)? = α, + 6,0 + c,0*
(i = 0, , 4), we obtain c0 = K, c, = 21 - 4/ + if, c2 = 20/ + 12/ -
Ί9K, c3 = -186/ + 528/ - 359iΓ, c4 = -3016/ + 104/ + 864UΓ.

Now let P' be the set of all primes p that satisfy the follow-
ing conditions

5 < p9 (—-) = —I* 5Jfct(ί = 0, , 4) or equivalently 5 < p ,

(-3/p) = -1 and 5J(Kf2I+J + K,2J+K, -I+ZJ+K, -I-J + K.
And let P be the set of all primes in Pf that satisfy the condition
p & ±2 (mod 9).

Let p be an element of P'. lΐ x + yθ takes one of the above-
mentioned forms then, for some i,

x + yθ = (α< + 6,0 + c,02)ζ5 - (α* + 6,0 + c.02)^5 + 5A)

= a,u5 + 5B + (biU* + 5C)0 + (c.u5 + 5Z>)02 ,

where B, C, D are rational integers. Since 5 does not divide ct, this
equality shows that 5 divides u. Consequently 5 divides x + yθ and
thus both x and y. This contradicts our assumption (x, y) = 1.
Therefore we have proved xz + 5y* — pZ5 has no nontrivial integral
solution with (x, y) = 1 when p belongs to P'. Therefore (1) does
not have a nontrivial integral solution for any p in P'm

On the other hand, the equation (1) has obviously a nontrivial
solution in R and has already been shown, in Proposition 6, to have
solutions everywhere locally for each p in P (even in P' if 3 \ 5n + 1).
Therefore, we have completely proved the theorem.
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