RINGS WHOSE PROPER CYCLIC MODULES ARE QUASI-INJECTIVE

S. K. Jain, Surjeet Singh, and R. G. Symonds

A ring R with identity is a right PCQI-ring (PCI-ring) if every cyclic right R-module $C \neq R$ is quasi-injective (injective). Left PCQI-rings (PCI-rings) are similarly defined. Among others the following results are proved: (1) A right PCQI-ring is either prime or semi-perfect. (2) A nonprime nonlocal ring is a right PCQI-ring iff every cyclic right R-module is quasi-injective or $R \cong \left(\begin{array}{cc} D & D \\ 0 & D \end{array} \right)$, where D is a division ring. In particular, a nonprime nonlocal right PCQI-ring is also a left PCQI-ring. (3) A local right PCQI-ring with maximal ideal M is a right valuation ring or $M^2 = (0)$. (4) A prime local right PCQI-ring is a right valuation domain. (5) A right PCQI-domain is a right Ore-domain. Faith proved (5) for right PCI-domains. If R is commutative then some of the main results of Klatt and Levy on pre-self-injective rings follow as a special case of these results.

Since, in a commutative Dedekind domain D, for each nonzero ideal A, D/A is a self-injective ring, or equivalently D/A is a quasi-injective D-module, every commutative Dedekind domain is a PCQI-ring. An example of a PCQI-ring which is not a Dedekind domain is given in Levy [14]. Commutative PCQI-rings are precisely the pre-self-injective rings characterized by Klatt and Levy [11]. PCI-rings have recently been investigated by Faith [4]. Right self-injective right PCQI-rings are qc-rings which have been studied by Ahsan [1] and Koehler [13].

1. Definitions and preliminaries. Throughout all modules are unitary and right unless specified. An R-module X is called injective relative to an R-module M if for each short exact sequence $0 \rightarrow N \rightarrow M \rightarrow M/N \rightarrow 0$ the sequence $0 \rightarrow \text{Hom}_R(M/N, X) \rightarrow \text{Hom}_R(M, X) \rightarrow \text{Hom}_R(N, X) \rightarrow 0$ is exact. X is called quasi-injective if X is injective relative to itself. Any R-module injective relative to all R-modules is called injective. Relative projectivity is defined dually.

A ring R is called a right q-ring if each of its right ideals is quasi-injective (see Jain, Mohamed, and Singh [9]). For more results, see [7], [8], [13], [15]. Dually, a ring R is called a right q^*-ring if each cyclic right R-module is quasi-projective (see Koehler [12]).

A ring R is right qc-ring if each cyclic right R-module is quasi-injective (see Ahsan [1]). A well-known result of Osofsky [16] states
that R is semisimple artinian iff each cyclic R-module is injective. Koehler [13] showed that R is a right qc-ring iff R is a finite direct sum of rings each of which is semisimple artinian or a rank 0 duo maximal valuation ring. As a consequence, every qc-ring is both a q-ring and q^*-ring.

In this paper the classes of rings initially called q-rings, q^*-rings, and qc-rings have been called Q-rings, Q^*-rings, and QC-rings respectively.

Let $J(R)$ denote the radical of a ring R. R is called semiperfect if $R/J(R)$ is semisimple artinian and idempotents modulo $J(R)$ can be lifted to R. If R is semiperfect, then there exists a finite maximal family of primitive orthogonal idempotents $\{e_i\}_{1 \leq i \leq n}$ such that $R = \bigoplus_{i=1}^{n} e_i R$.

R is called a local ring if it has a unique maximal right ideal which must be the radical $J(R)$.

R is a right valuation ring if the set of all right ideals is linearly ordered. R is a maximal valuation ring if every family of pairwise solvable congruences of the form $x \equiv x_a \pmod{A_a}$ has a simultaneous solution where $x_a \in R$ and each A_a is an ideal in R. R is called an almost maximal valuation ring if each of its proper homomorphic images is a maximal valuation ring.

A ring is right duo if every right ideal is two-sided. A ring R has rank 0 if every prime ideal is a maximal ideal. By duo rings or valuation rings, we shall mean both right and left.

3. General results.

Sublemma 1. Let I be a right ideal in a ring R such that $R/I \cong R$. Then $R = I \oplus J$, where J is a right ideal, and thus $I = eR$, $e = e^2 \in R$.

Proof. $R/I \cong R$ implies R/I is projective, and hence I is a direct summand of R.

Proposition 2. Let R be a right $PCQI$-ring. If I is a right ideal of R such that $R/I \cong R$, then I is contained in every nonzero two-sided ideal of R.

Proof. Let S be a nonzero two-sided ideal of R. Then R/S is a qc-ring, hence is semiperfect. Let $f: R/I \to R$ be an isomorphism. Since $1 + I$ generates R/I, $\bar{R} = xR$, where $x = f(1 + I)$. Then $I = \text{ann } x = \{r \in R | xr = 0\}$. So there exists $y \in R$ such that $xy = 1$. Since R/S is semiperfect, $(x + S)(y + S) = 1 + S = (y + S)(x + S)$. Then $1 - yx \in S$. Let $a \in I$, i.e., $xa = 0$. Then $(1 - yx)a = a - yxa = a$, hence $a \in S$. So $I \subseteq S$.
PROPOSITION 3. Let R be a right PCQI-ring. Then either R is a prime ring or R is semiperfect with nil radical.

Proof. Suppose R is not prime, and $P \neq 0$ is a prime ideal. Then R/P is a qc-ring, and hence a q-ring. So R/P is simple artinian [9]. Thus P is maximal, hence primitive. So the Jacobson radical is nil.

Since R is not prime, there exist nonzero ideals A, B such that $AB = 0$. Since R is a right PCQI-ring, R/A and R/B are semiperfect, hence each of them has finitely many prime ideals. Since every prime ideal of R contains A or B, it follows that R has finitely many prime ideals as well. Thus $R/J(R)$ is semisimple artinian, and since $J(R)$ is nil, R is semiperfect.

4. Nonlocal semiperfect PCQI-rings. By Proposition 3, all nonprime right PCQI-rings are semiperfect, so the results of this section hold for the class of nonprime nonlocal right PCQI-rings. The case of local right PCQI-rings is discussed in the next section.

LEMMA 4. Let R be a semiperfect ring. Then R/A is a proper cyclic right R-module, for all nonzero right ideals A.

Proof. There exists a positive integer n such that R is a direct sum of n indecomposable right R-modules, and R cannot be expressed as a direct sum of more than n right R-modules. Now, if $R/A \cong R$, then, by Lemma 1, $R = A \oplus B$ and $B \cong R$. So $A = (0)$, proving the lemma.

Let R be a nonlocal semiperfect ring, and let $\{e_i\}_{1 \leq i \leq n}$ be a maximal set of primitive orthogonal idempotents in R. Then $R = \bigoplus_{1 \leq i \leq n} e_i R$ and $n \geq 2$. Throughout this section, e_i's will denote primitive idempotents. We shall often use a well-known fact that if $A \oplus B$ is a quasi-injective module then any monomorphism $A \rightarrow B$ splits.

LEMMA 5. Let R be a semiperfect nonlocal right PCQI-ring. If $\sigma \in \text{Hom}_R(e_i R, e_j R)$ such that $\sigma \neq 0$, where $i \neq j$, then $\ker \sigma = (0)$.

Proof. Suppose $\ker \sigma \neq (0)$, where $0 \neq \sigma \in \text{Hom}_R(e_i R, e_j R)$, $i \neq j$. Then $R/\ker \sigma \cong \bigoplus_{1 \leq i \leq n} e_i R \times \text{Im} \sigma$, and $R/\ker \sigma$ is quasi-injective. Since $\text{Im} \sigma \subseteq e_j R$, the inclusion map $i: \text{Im} \sigma \rightarrow \bigoplus_{1 \leq i \leq n} e_i R$ is a monomorphism. Since $R/\ker \sigma$ is quasi-injective, the inclusion map splits. So $\text{Im} \sigma$ is a direct summand of $e_j R$, hence $\text{Im} \sigma = e_j R$. Since $e_j R$ is projective, $\sigma: e_i R \rightarrow e_j R$ splits. Thus $\ker \sigma = (0)$.
Lemma 6. Let \(R \) be a semiperfect nonlocal right PCQI-ring with decomposition \(\bigoplus_{i=1}^{n} e_i R \), where \(n > 2 \). Then \(\text{Hom}_R(e_i R, e_j R) \neq 0 \) iff \(e_i R \cong e_j R \), i.e., \(e_i Re_i \neq 0 \) iff \(e_j R \cong e_i R \).

Proof. Let \(\sigma \in \text{Hom}_R(e_i R, e_j R) \) such that \(\sigma \neq 0 \). By Lemma 5, \(\ker \sigma = 0 \). Since \(n > 2 \), \(e_i R \bigoplus e_j R \cong R / \bigoplus_{k \neq i, j} e_k R \) is quasi-injective. Then \(\sigma \) splits, and \(0 \neq \text{Im} \sigma \) is a direct summand of \(e_j R \). So \(\text{Im} \sigma = e_j R \), and \(\sigma \) is an isomorphism. The converse is trivial.

Proposition 7. Let \(R \) be a semiperfect nonlocal right PCQI-ring with decomposition \(R = \bigoplus_{i=1}^{n} e_i R \), where \(n > 2 \). Then \(R \) is a qc-ring.

Proof. For each \(i \), \(e_i R \cong R / \bigoplus_{k \neq i} e_k R \). So \(e_i R \) is quasi-injective, for each \(i \). Let \(A_i \) be the sum of all those \(e_i R \) which are isomorphic to each other. Then \(R = \bigoplus_{i} A_i \). We claim that \(A_i \) is a two-sided ideal of \(R \), for each \(i \). Clearly \(A_i \) is a right ideal. Consider \(e_j R \) such that \(e_j R \not\subseteq A_i \). Define \(f: e_i R \to e_j R \), where \(e_i R \subseteq A_i \), by \(f(e_ir) = e_j xe_i r \), for \(x \in R \). Then \(f \in \text{Hom}_R(e_i R, e_j R) \). Since \(e_i R \) and \(e_j R \) are not isomorphic, \(f = 0 \) by Lemma 6. So, for \(e_i R \subseteq A_i \), \(e_j RA_i = 0 \). So \(RA_i \subseteq A_i \). Since \(A_i \) is a finite direct sum of isomorphic quasi-injective right ideals, \(A_i \) is quasi-injective, hence a qc-ring. Thus, by Koehler [13], \(R \) is a qc-ring.

Proposition 8. Let \(R \) be a semiperfect right PCQI-ring such that \(R = e_1 R \bigoplus e_2 R \). If \(e_i R \cong e_2 R \), then \(R \) is a qc-ring.

Proof. Now \(e_i R \cong e_2 R \) and \(R / e_i R \cong R / e_2 R \), hence \(e_i R \) and \(e_2 R \) are quasi-injective. Since \(e_i R \cong e_2 R \), \(R = e_1 R \bigoplus e_2 R \) is quasi-injective, hence right self-injective. So \(R \) is a qc-ring.

Proposition 9. Let \(R \) be a semiperfect right PCQI-ring such that \(R = e_1 R \bigoplus e_2 R \). If \(e_1 Re_2 = 0 \) and \(e_2 Re_1 = 0 \), then \(R \) is a qc-ring.

Proof. If \(e_1 Re_2 = 0 \) and \(e_2 Re_1 = 0 \), then \(e_1 R \) and \(e_2 R \) are two-sided ideals of \(R \). Thus \(e_1 R \cong R / e_2 R \) and \(e_2 R \cong R / e_1 R \) are qc-rings. Then \(R = e_1 R \bigoplus e_2 R \) is a qc-ring.

Proposition 10. Let \(R \) be a semiperfect right PCQI-ring such that \(R = e_1 R \bigoplus e_2 R \). If \(e_1 Re_2 \neq 0 \) and \(e_2 Re_1 \neq 0 \), then \(R \) is a qc-ring.

Proof. \(e_1 Re_2 \neq 0 \) and \(e_2 Re_1 \neq 0 \) imply that there exist nonzero homomorphisms, hence monomorphisms by Lemma 5, from \(e_i R \) to \(e_j R \) and from \(e_j R \) to \(e_i R \). Thus, by Bumby [2], \(e_i R \cong e_j R \), and Proposition 8 yields the result.
PROPOSITION 11. Let $R = e_1R \oplus e_2R$ be a semiperfect right PCQI-ring where $e_1R \neq e_2R$ and exactly one of e_1Re_2 or e_2Re_1 is zero. Then R is nonprime with nil radical.

Proof. It follows from the fact that if $e_1Re_2 \neq 0$, then e_1Re_2 is a nilpotent ideal.

THEOREM 12. Let R be a nonlocal right PCQI-ring. Then R is semiperfect iff R is nonprime or simple artinian.

THEOREM 13. Let R be a semiperfect nonlocal ring. Then R is a right PCQI-ring iff either (i) $R = \bigoplus_{i=1}^r R_i$, where R_i is semisimple artinian or a rank 0 duo maximal valuation ring or (ii) $R = \left(\begin{array}{cc} D & D \\ 0 & D \end{array} \right)$, where D is a division ring.

Proof. Let R be a right PCQI-ring. By Propositions 7-10, R is a qc-ring unless $R = e_1R \oplus e_2R$, where e_1R and e_2R are not isomorphic and exactly one of e_1Re_2 or e_2Re_1 is zero, say $e_1Re_2 \neq 0$ and $e_2Re_1 = 0$. If R is a QC-ring, we get (i) by Koehler [13]. Otherwise, we have $R \cong \left(\begin{array}{cc} e_1Re_2 & e_2Re_2 \\ 0 & e_1Re_2 \end{array} \right)$. We claim that e_1Re_1 and e_2Re_2 are isomorphic division rings and $M = e_1Re_2$ is a (D, D)-bimodule such that $\dim_M M = 1 = \dim_M D$, where $D \cong e_1Re_1 \cong e_2Re_2$. Clearly e_1Re_2 is nilpotent ideal and since it is nonzero, R is not prime. So, by Proposition 3, the radical N of R is a nil ideal. Thus e_2Ne_2 is nil. We claim that $e_2Ne_2 = 0$. Let $e_2xe_2 \in e_2Ne_2$. Define $\sigma: e_2R \rightarrow e_2R$ by $\sigma(e_1y) = e_1xe_2y$. Then $\sigma \in \text{Hom}_R(e_1R, e_2R)$, and since e_2xe_2 is nilpotent, σ is not a monomorphism. So ker $\sigma \neq (0)$. Since $\text{Hom}_R(e_1R, e_2R) \neq 0$, there exists an embedding $\gamma: e_2R \rightarrow e_1R$. Now $\gamma \sigma: e_2R \rightarrow e_1R$, and since ker $\sigma \neq (0)$, ker $\gamma \sigma \neq (0)$. By Lemma 5, $\gamma \sigma = 0$. Since γ is a monomorphism, we have $\sigma = 0$. Thus $e_2xe_2 = 0$, and $e_2Ne_2 = 0$. So e_2Re_2 is a division ring. Further $e_2Re_2 = e_1R$ since $e_2Re_1 = (0)$. Thus $e_2N = 0$, and e_2R is a minimal right ideal. Now e_1R is uniform because it is quasi-injective and indecomposable. Since $0 \neq e_1Re_2R$ is the sum of the images of all R-homomorphisms of e_1R into e_1R, the fact that e_1R is minimal and e_2R is uniform yields that e_1Re_2R itself is the unique minimal right subideal of e_1R, is isomorphic to e_2R, and is contained in every nonzero right subideal of e_1R. We claim that $e_1Ne_1 = 0$. Let $0 \neq e_1xe_1 \in e_1Ne_1$. Since N is nil, e_1xe_1 is nilpotent. Then $\sigma: e_1R \rightarrow e_1R$ defined by $\sigma(e_1r) = e_1xe_1r$ is an endo-
morphism of \(e_iR\) with \(\ker \sigma \neq (0)\). Let \(A = \ker \sigma\). Then \(e_iRe_iR \subseteq A\), and we have \(e_ixe_iRe_i = (0)\). On the other hand, \(e_iRe_iR \subseteq e_ixe_iR\) yields that \(e_ixe_iRe_i \neq (0)\). This is a contradiction. Hence \(e_iNe_i = (0)\), and \(e_iRe_i\) is a division ring. Now using the fact that \(\text{Hom}_R(e_iR, e_iR)\) is a division ring and that \(e_iR\) is quasi-injective, it follows that every member of \(\text{Hom}(e_iRe_iR, e_iRe_iR)\) admits a unique extension to an endomorphism of \(e_iR\). Further, every endomorphism of \(e_iR\) maps \(e_iRe_iR\) into itself since \(e_iRe_iR\) is the unique minimal subideal of \(e_iR\). Thus \(\text{Hom}(e_iRe_iR, e_iRe_iR) \cong \text{Hom}(e_iR, e_iR)\). Since \(e_iRe_iR \cong e_iR\), we obtain \(e_iRe_i \cong e_iRe_i\).

Now \(e_iN = e_iNe_i\) because \(e_iNe_i = (0)\). Since \(e_iRe_iR \subseteq e_iN\), we get \(e_iN = e_iRe_i = e_iRe_iR\). Thus \(M = e_iRe_i\) is a one-dimensional right vector space over \(D = e_iRe_i\). We show that \(M\) is also a one-dimensional left \(e_iRe_i\)-space. Let \(X = \left(\begin{array}{c}e_iR \\ M \\ 0 \\ 0 \end{array}\right) \cong R/A\), where \(A = \left(\begin{array}{c}0 \\ 0 \\ 0 \\ D \end{array}\right)\).

Then \(X\) is quasi-injective. Let \(0 \neq x \in M\), and let \(y \in M\). Consider \(\sigma: \left(\begin{array}{c}0 \\ M \\ 0 \\ 0 \end{array}\right) \to \left(\begin{array}{c}0 \\ M \\ 0 \\ 0 \end{array}\right)\) defined by \(\sigma(0 x^c) = (0 y^c)\), for \(c \in D\). Then \(\sigma\) is an \(R\)-endomorphism, so it can be extended to an endomorphism \(\eta\) of \(X\). Let \(\eta(\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \end{array}\right)) = (a b)\). Then we have \(\left(\begin{array}{c}0 \\ y \\ 0 \\ 0 \end{array}\right) = \sigma(\left(\begin{array}{c}0 \\ x \\ 0 \\ 0 \end{array}\right)) = \eta(\left(\begin{array}{c}0 \\ x \\ 0 \\ 0 \end{array}\right)) = (0 a x)\). Thus \(y = ax\), so \(M = e_iRe_ix\). So \(M\) is a one-dimensional left vector space over \(e_iRe_i\). Thus, for each \(d \in e_iRe_i\), there exists a unique \(d' \in e_iRe_i\) such that \(dx = xd'\). Define \(\theta: e_iRe_i \to e_iRe_i\) by \(\theta(d) = d'\). Then \(\theta\) is an isomorphism, and we may identify \(d\) and \(d'\). Then \(\eta: \left(\begin{array}{c}D \\ D \\ 0 \\ 0 \end{array}\right) \to \left(\begin{array}{c}D \\ M \\ 0 \\ D \end{array}\right)\) defined by \(\eta(\left(\begin{array}{c}a \\ b \\ 0 \\ c \end{array}\right)) = (a b x)\) is an isomorphism.

Conversely, if \(R\) satisfies (i), then, by Koehler [13], \(R\) is a QC-ring, hence a PCQI-ring. If \(R\) satisfies (ii), then straightforward computation shows that \(R\) is a right PCQI-ring.

Since every right QC-ring is a left QC-ring and \(\left(\begin{array}{c}D \\ D \\ 0 \\ D \end{array}\right)\) is also a left PCQI-ring, we get the following corollary.

COROLLARY. A nonlocal semiperfect right PCQI-ring is also a left PCQI-ring.

5. **Local PCQI-rings.** Theorem 13 and Theorems 14, 15, and 16 which follow generalize Klatt and Levy's [11] theorems for commutative pre-self-injective rings which are not domains. Throughout this section \(M\) will denote the unique maximal right ideal of a local ring \(R\). \(M\) is then the Jacobson radical of \(R\), and \(R/M\) is a division ring.

Theorem 14. Let \(R\) be a local right PCQI-ring with maximal ideal \(M\). Then either \(R\) is a right valuation ring or \(M^2 = (0)\) and \(M_R\) has composition length 2.
Proof. First note that for all nonzero right ideals A, R/A is indecomposable quasi-injective and hence uniform. Now we show that all nonzero right ideals are either minimal or essential. Let A, B be nonzero right ideals such that $A \cap B = (0)$. We claim that A is minimal. Let C be a nonzero right ideal properly contained in A. Then R/C is quasi-injective and not uniform since $A/C \cap (B + C)/C = 0$. This is a contradiction, so A is minimal. Similarly, B is minimal. In particular, it follows that any maximal independent family of minimal right ideals can contain at most two members.

If $\text{Soc } R = (0)$, then all nonzero right ideals are essential. Let A, B be two nonzero right ideals. If neither $A \subseteq B$ nor $B \subseteq A$, then $R/A \cap B$ is quasi-injective but not uniform since $A/(A \cap B) \cap B/(A \cap B) = (0)$. As before, this is a contradiction. So either $A \subseteq B$ or $B \subseteq A$.

If $\text{Soc } R$ consists of a unique minimal right ideal then it is clear that R is a right valuation ring.

Finally, suppose $\text{Soc } R = A \oplus B$, where A, B are minimal right ideals. Then R cannot be prime. Let $x \in M$, and consider xR. If xR is not minimal, then xR is quasi-injective and decomposable. Then $xR = A \oplus B$. In any case, for all $x \in M$, $x \in \text{Soc } R$. This implies that $M^2 = (0)$, and the composition length of M is 2, completing the proof.

The next two theorems give the structure of non-prime local right PCQI-rings. Prime local PCQI-rings are discussed in the next section.

Theorem 15. For a nonprime right valuation ring R, the following are equivalent:

(i) R is a right PCQI-ring.

(ii) R is a right duo almost maximal valuation ring of rank 0 such that any left ideal containing a nonzero right ideal is two-sided.

Proof. (i) ⇒ (ii). Since R is not prime, M is nil by Proposition 3. So, if xR is a nontrivial principal right ideal of R, xR is quasi-injective. Since xR is essential in R, the injective hull of xR is the same as that of R. Hence, by Johnson and Wong [10], $RxR \subseteq xR$. So xR is a two-sided ideal of R. Thus R is a right duo ring. Since each proper homomorphic image of a PCQI-ring is a QC-ring, the proof of (i) ⇒ (ii) as well as that of (ii) ⇒ (i) is completed by a theorem of Koehler [13].

Theorem 16. For a local ring R with $M^2 = (0)$ and the composition length of M_R equal to 2, the following are equivalent:
(i) \(R \) is a right PCQI-ring.

(ii) For each nonzero right ideal \(A \) in \(R \) and for each \(m_1, m_2 \in A \), the congruence \(xm_1 \equiv m_2 \pmod{A} \) has a solution, \(x = \alpha \), such that \(\alpha A \subseteq A \).

Proof. Under the hypothesis the only nonzero right ideals \(A \) of \(R \) different from \(M \) and \(R \) are minimal right ideals, and \(M/A \) is a simple right \(R \)-module.

(i) \implies (2) Let \(A \) be a nontrivial right ideal in \(R \), and let \(m_1, m_2 \in R \) such that \(m_1, m_2 \in A \). Then \(\bar{m}_1 R = M/A = \bar{m}_2 R \), and the mapping \(\sigma : M/A \to M/A \) which sends \(\bar{m}_1 r \) to \(\bar{m}_2 r \) is a well-defined \(R \)-homomorphism. Since \(R/A \) is quasi-injective, \(\sigma \) can be lifted to \(\sigma^* \in \text{Hom}_R(R/A, R/A) \). Let \(\sigma^*(\bar{1}) = \bar{a} \). Then \(\bar{a}m_1 = \bar{m}_2 \). Hence \(xm_1 \equiv m_2 \pmod{A} \) has a solution \(x = \alpha \). Clearly \(\alpha A \subseteq A \).

(ii) \implies (i) We only need to prove that if \(A \) is a nontrivial right ideal of \(R \) and \(\sigma : M/A \to R/A \), is a nonzero \(R \)-homomorphism, then \(\sigma \) can be extended to an \(R \)-homomorphism \(\sigma^* : R/A \to R/A \). Let \(m \in M \), where \(m \in A \). Then \(M/A = \bar{m} R \). Also, \(\sigma(M/A) = M/A \). Let \(\sigma(\bar{m}) = \bar{m} r \). Since \(M^* = (0), r \in M \). So \(r \) is invertible, and \(mr \in A \). Let \(\alpha \in R \) be chosen such that \(\alpha m = mr \pmod{A} \), and \(\alpha A \subseteq A \). Then \(\sigma^*(\bar{r}) = \bar{\alpha} R \) is well-defined, and it extends \(\sigma \), completing the proof.

The example which follows shows that a local right PCQI-ring is not necessarily a left PCQI-ring.

Example. Let \(F \) be a field which has a monomorphism \(\rho : F \to F \) such that \([F : \rho(F)] > 2 \). Take \(x \) to be an indeterminate over \(F \).

Make \(V = xF \) into a right vector space over \(F \) in a natural way. Let \(R = \{(a, x\beta) \mid a, \beta \in F \} \). Define

\[
(a_1, x\beta_1) + (a_2, x\beta_2) = (a_1 + a_2, x\beta_1 + x\beta_2)
\]

and

\[
(a_1, x\beta_1)(a_2, x\beta_2) = (a_1a_2, x(\rho(a_1)\beta_2 + \beta_1\beta_2)).
\]

Then \(R \) is a local ring with identity with the maximal ideal

\[
M = \{(0, xa) \mid a \in F \}.
\]

In fact, \(M \) is also a minimal right ideal and \(M^2 = (0) \). Thus \(R \) is a right PCQI-ring. Further, if \(\{\alpha_i\}_{i \in I} \) is a basis of \(F \) as a vector space over \(\rho(F) \) then straightforward computations yield that \(M = \bigoplus \sum R(0, xa_i) \) as a direct sum of irreducible left \(R \)-modules \(R(0, xa_i) \). Since card \(I > 2 \), it follows by Theorem 14 that \(R \) is not a left PCQI-ring.
6. Prime local $PCQI$-rings.

Theorem 17. Let R be a prime local right $PCQI$-ring. Then R is a right valuation domain, hence right semihereditary.

Proof. By Theorem 14, R is a right valuation ring. Let A denote the intersection of all nonzero two-sided ideals of R. The proof that R is a domain falls into three cases.

(i) $A = (0)$.

Let $x, y \in R$ such that $xy = 0$. Suppose $y \neq 0$. Then yR is a nonzero right ideal of R. Since R is right valuation and $A = (0)$, yR must contain a nonzero two-sided ideal of R. Further, each proper homomorphic image of R is a local QC-ring, hence a duo ring [13]. This implies that yR is two-sided. Hence $x = 0$, and R is an integral domain.

(ii) $A \neq (0)$ and $A \neq M$.

Under these hypotheses, A cannot be a prime ideal. So there exist $x, y \in R$ such that $xRy \subseteq A$, $x \notin A$ and $y \notin A$. Since R is right valuation, $A \subseteq xR$ and $A \subseteq yR$. So both xR and yR are two-sided ideals. For definiteness, let $xR \subseteq yR$. Then $(xR)^2 \subseteq (xR)(yR) \subseteq AR = A$ gives that $(xR)^2 = A$ by the minimality of A. Also $A = A^2$, hence $(xR)^2 = (xR)^1$. It follows that $x^2R = x'R$. Then $x^2 = x'r$, for some $r \in R$, and $x^2(1 - x^2r) = 0$. So $x^2 = 0$. Thus $A = (0)$, and this case cannot occur.

(iii) $A = M$.

Let $S \subseteq R$, and let $r(S)$ denote the right annihilator of S in R. Let $Z(R) = \{x \in R | r(x) \text{ is an essential right ideal}\}$. Then $Z(R)$ is an ideal in R called the right singular ideal.

Since R is a right valuation ring, R is immediately a domain if $Z(R) = (0)$.

So assume that $Z(R) \neq (0)$. Then $Z(R) = M$, and each element in M is a right zero divisor. So $x \in M$ implies that xR is proper cyclic, hence quasi-injective. Also xR is an essential right ideal in R. By Johnson and Wong [10], $RxR \subseteq xR$. Hence xR is two-sided. So R is a prime right duo ring, and it follows that R is a domain.

7. $PCQI$-domains. In this section we discuss right $PCQI$-rings which are integral domains and prove that these are right Ore-domains. This generalizes the result of Faith [4]. Our proof, in this case, though it runs on the same lines as that of Faith, does not use Faith's result.

Proposition 18. Let R be a right $PCQI$-domain, and let I be a nonessential right ideal of R. Then R/I is an injective right R-
module containing a copy of R.

Proof. Since I is nonessential, there exists a nonzero right ideal J in R such that $I \cap J = 0$. Let $a \in J$ such that $a \neq 0$. Then $aR \cap I \subseteq J \cap I = 0$. Consider $r(a + I) = \{x \in R | ax \in I\}$. Clearly $r(a + I) = 0$. So R/I contains a copy of R. Since R/I is also quasi-injective, this implies that R/I is injective by [17].

For a right R-module A, let \hat{A} denote the injective hull of A.

Proposition 19. Let R be a right PCQI-domain which is not a right Ore-domain. Then R is finitely presented.

Proof. Let $a \in R$ such that $a \neq 0$ and aR is not essential. Then R/aR is injective. Since R/aR contains a copy of R and is injective, R/aR contains a copy of \hat{R}. Then $R/aR = Y/aR \oplus X/aR$, where $X/aR \cong \hat{R}$. Now Y/aR is cyclic. So $Y = aR + bR$, for some $b \in R$, and the short exact sequence $0 \to Y \to R \to Y/aR \cong X/aR \cong \hat{R} \to 0$ shows that \hat{R} is finitely presented.

Theorem 20. A right PCQI-domain R is a right Ore-domain.

Proof. Let R be a right PCQI-domain. Suppose R is not a right Ore-domain. Then, as in Proposition 19, there exists $a \in R$ such that $R/aR = Y/aR \oplus X/aR$, where $X/aR \cong \hat{R} \cong R/Y$ and $Y = aR + bR$. We also get that $R = X + Y$, where $X \cap Y = aR$. This yields an exact sequence $0 \to aR \to X \times Y \to R \to 0$ which splits. So $X \times Y \cong aR \times R \cong R \times R$. This implies that $Y = aR + bR$ is a finitely generated projective right ideal. Since $\hat{R} \cong R/Y$, $0 \to Y \to R \to \hat{R} \to 0$ is exact. Then $Y \otimes R \hat{R} \to R \otimes R \hat{R} \to \hat{R} \otimes R \hat{R} \to 0$ is exact. Also, a finitely generated projective R-module is essentially finitely related. So, by Cateforis ([3], Proposition 1.7), $(aR + bR) \otimes R \hat{R}$ is projective as an \hat{R}-module. Then $Y \otimes R \hat{R}$ is a direct summand of a free \hat{R}-module. Now $Z(\hat{R}_R) = 0$, hence $Z(Y \otimes R \hat{R}) = 0$ because $Y \otimes R \hat{R}$ is a direct summand of a free \hat{R}-module. Now consider $Y \otimes R \hat{R} \hat{R} \to R \otimes R \hat{R} \to R \otimes R \hat{R} \to 0$. Again, by Cateforis ([3], Lemma 1.8), $\ker i = Z(Y \otimes R \hat{R}) = 0$. So $0 \to Y \otimes R \hat{R} \hat{R} \to R \otimes R \hat{R} \to R \otimes R \hat{R} \to 0$ is exact. Since $R \otimes R \hat{R} \cong \hat{R}$, let $f: R \otimes R \hat{R} \to \hat{R}$ be the canonical isomorphism. Then $Y \otimes R \hat{R} \to \hat{R}$ is a monomorphism, and $Y \otimes R \hat{R} \cong Y \hat{R}$. Since Y is finitely generated, $Y \hat{R}$ is a finitely generated right ideal of \hat{R}. So $Y \hat{R} = e \hat{R}$, where $e^2 = e$. Thus we have the following exact sequence: $0 \to e \hat{R} \to \hat{R} \otimes R \hat{R} \to 0$, and $\hat{R} \otimes R \hat{R} \cong \hat{R}/e \hat{R} = (1 - e) \hat{R}$. Hence $\hat{R} \otimes R \hat{R}$ is isomorphic to a direct summand of \hat{R}. Since $Z(\hat{R}_R) = 0$, $Z(\hat{R} \otimes R \hat{R}) = 0$. Since $\hat{R} = xR$, for some $x \in \hat{R}$, the
kernel of the canonical map \(f: \hat{R} \otimes_R \hat{R} \to \hat{R} \) defined by \(f(a \otimes b) = ab \) is contained in \(Z(\hat{R} \otimes_R \hat{R}) \) and hence must be zero. Since \(f \) is surjective, \(f \) is an isomorphism. By Silver ([18], Proposition 1.1), there exists an epimorphism in the category of rings from \(R \) to \(\hat{R} \).

Let \(M \) be a right \(\hat{R} \)-module which is quasi-injective as a right \(R \)-module. We claim that \(M \) is quasi-injective as a right \(\hat{R} \)-module. Let \(0 \to A_\hat{R} \to M_\hat{R} \to B_\hat{R} \to 0 \) be exact. Consider \(0 \to \text{Hom}_R(B_\hat{R}, M_\hat{R}) \to \text{Hom}_R(M_\hat{R}, M_\hat{R}) \to \text{Hom}_R(A_\hat{R}, M_\hat{R}) \). By Silver ([18], Corollary 1.3), \(\text{Hom}_R(N, N') \cong \text{Hom}_R(N, N') \), where \(N, N' \) are right \(\hat{R} \)-modules. Also \(0 \to \text{Hom}_R(B, M) \to \text{Hom}_R(M, M) \to \text{Hom}_R(A, M) \to 0 \) is exact since \(M_\hat{R} \) is quasi-injective. Thus \(0 \to \text{Hom}_R(B, M) \to \text{Hom}_R(M, M) \to \text{Hom}_R(A, M) \to 0 \) is exact. So \(M_\hat{R} \) is quasi-injective. Let \(K \) be a cyclic right \(R \)-module. Then \(K \) is a cyclic right \(R \)-module. Since \(R \) is a right \(PCQI \)-domain, \(K_\hat{R} \) is quasi-injective. Thus \(K_\hat{R} \) is quasi-injective. Since \(\hat{R} \) is right self-injective, \(\hat{R} \) is a \(QC \)-ring. So \(\hat{R} \) is semiperfect and simple, hence simple artinian. Thus \(\hat{R} \) is a division ring. This proves that \(R \) is a right \(\tilde{O} \)-domain.

We conclude by a remark that we have not studied arbitrary prime right \(PCQI \)-rings. This case remains open. Indeed, a characterization of right \(PCQI \)-domains has not yet been obtained.

References

2. R. Bumby, *Modules which are isomorphic to submodules of each other*, Archiv. der Math., 16 (1965), 184-185.

Received November 19, 1976.

Ohio University, Athens, Ohio

Present address: Surjeet Singh, Guru Nanak Dev University, Amritsar, India.
Present address: Robin Symonds, Indiana University at Kokomo, Kokomo, Indiana 46901.