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ON Lp, Lq MULTIPLIERS OF FOURIER
TRANSFORMS

RICHARD J. B A G B Y

Let m be a tempered distribution on Rn. We say m is an
Lp, V multiplier (more briefly: m E Mq

p) if, for each φ 6 ^ , the
inverse Fourier transform of mφ is in Lq

9 and there is a constant
C such that \\&~ι(mφ)\\q ^ C| |φ| | p for all such φ. The basic
problem we shall consider is that of establishing sufficient
conditions that a locally integrable function m E Mq in the case
1 < p < q <oo.

1. Introduction. The primary reference for multipliers is
Hδrmander [4], where he proves a number of results. Perhaps the best
known of these is his convexity-symmetry theorem: For a given m E Sf\
the set {(JC, y): m EM]1,^ is a convex subset of [0,1] x [0,1] which is
symmetric about the line x + y = 1. He also proved that when 1 < p ^
2 g q θ o and ί/r = 1/p - II q, Mq

p contains the Lorentz space L(r,°o) and
that only when p ^2^q can a condition \m\^F imply m E Mjj.

Whenever m is a multiplier we have &^~ι{mφ) = K*φ where K E 9"
and K = m. O'Neil [6] showed that if KEL(r',oo) then \\K*φ\\q£
C||K||%||</>||P f o r K p < ? < o o , l/p = l/q + l/r. Thus, any hypotheses
which imply m E L(r', oo) also imply m E Af J. Peetre [7] uses this idea
to prove a multiplier theorem in terms of homogeneous Lipschitz spaces.

Our attack on the multiplier problem is based on a method due to
Hahn [1, 2]. We obtain some extensions of his theorem as well as a
refinement of Peetre's theorem. Our hypotheses include the condition
m E L(r, °°) but do not, in general, imply rh E L{r\ oo). Our conclusions
take the form m E Mq

p for Up = l/q + l/r with ί/p and 1/q sufficiently
close to 1/2.

2. Preliminaries, Let x denote a point in JR". The usual inner
product in Rn is denoted x y. Lebesgue measure in Rn is denoted dx.

The space 5̂  consists of those C00 functions oni?" which, along with
each derivative, vanish more rapidly at infinity than any rational
function. Its dual, Sf\ is called the space of tempered distributions.

The Fourier transform is defined on ίf by

φ(x)= I exp(-2τπx y)φ(y)dy.

The inversion formula is
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φ(x) = &->φ(χ) = I exp(2πix y)φ(y)dy.

The Fourier transform is extended to SP by the formula

<ΰ, φ) = (u, φ) for uGSf",φe&.

If either u or ύ is in L\ then the appropriate integral formula is also
valid. For a simple exposition of Fourier analysis in ίf and SP see Stein
and Weiss [8J.

The symbol ||/||p always denotes the LF norm for functions on Rn,
l^p^co. If m E M% we set

L(p,q) denotes the Lorentz space of measurable functions / on R
whose nonincreasing rearrangement /* on (0, °°) satisfies

when p and q are finite and

when q = oo.
These spaces are treated in Hunt [5] and Stein and Weiss [8J.
For / a function on Rn and h E Rn, the difference operator is given

by

Higher differences are given by

Δjf(x) = ΔΛ(Δr/)(x) = Σ Q/(- l)*-'/(x +/Λ).

With our definition of Fourier transform,

Let fc be a fixed positive integer and suppose / is a function such that
^U for a.e. h E Rn. For A >0, set
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For 0 < a < fc, the homogeneous Lipschitz space W%q consists of those
functions / (modulo polynomials of degree at most some sufficiently large
N) such that λ'aω(λyfp) is in L«((0,°o)?χ~ιdλ). These are essentially
the same spaces treated in Herz [3]; interpolation properties of these
spaces are given in Peetre [7].

3. Convolution products as multipliers. In this section
we offer some improvements and variants of Hahn's results [1, 2].

THEOREM 3.1. Suppose m =/*g, where f E Ls and g E L with
l^s^t, 1/s + l/f ^ 1 . Then m E Mq

p and Mq

p(m)^ c\\f\\s\\g\\t for all
p, q satisfying

(i) 1 ̂  p ^ q g oo
(ii) Up - 1/q = Us + 1/ί - 1
(iii) 1/2 - lit ^ IIq g Up ^ 1/2 4- ί/t.

Proof. When 1/s -f 1/ί = 1 this is the basic theorem in [1]; we shall
use this to prove other cases. Note that 1/s + 1/t >l, s^t implies
s < 2 .

First let us suppose t ^ 2. By the Hausdorff-Young inequality we

have iSΓ-'/MII/ll, and ||;r1g||,si||g||. Setting

1 - 1/r = 1/r' = 1/s' + 1/ί' = 2 - 1/s - 1/ί

we have &~\f*g) = {^'λf){^'xg) e Lr' by Holder's inequality. Young's
inequality gives

for 1 g p g g ̂  oo, l/p + l/r' = i/^ + i. The last equation reduces to (ii).
Now we suppose t>2. Fix g G L', φ E. &1, and set l/po =

1/2 + 1/f. Define

First we note | | Γ / | 2 ^ C\\fl\\g\\, UL. Since ,\\f* g i^
this follows by applying PlanchereΓs theorem, Holder's inequality, and
the Hausdorff-Young inequality.

Pick Si so that 1/si + 1/t = 1. Then by the result mentioned above,
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Now we invoke the Riesz-Thorin theorem [10]. Set 1/s =
(1 - θ)/l + 0/s, and l/q0 = (1 - θ)/2 + θ/p0. We obtain

with l/qQ = 1/po — (1/5 + 1/ί - 1), so that the theorem has been proved for
the smallest value of p and q satisfying (i), (ii), and (iii). Hόrmander's
convexity-symmetry theorem [4] completes the proof.

Hahn [2] proved a similar theorem by a more complicated interpola-
tion argument; however, his choice of end points did not yield the full
range of p and q obtained above.

Below we offer a useful variant involving Lorentz spaces.

THEOREM 3.2. Suppose m = /* g where / G L(s, <») and g G L(t, oo)
with Ks^t and l/s + l/t>l. Then m G Mq

p and Mq

p(m)^
C\\f\\U\g\\% for all p,q satisfying

(i) 1< p < q < oo
(ii) 1/p - l/9 = lit + 1/5-1
(iii) 1/2 - lit < IIq < Up < 1/2 + lit.

Proof. We apply the Marcinkiewicz interpolation theorem [5] to
each of the three linear operators obtained by fixing two of the arguments
in

For technical reasons it is convenient to set a = min(l/s, lit), drop
the condition s ^ t and replace l/t by a in (iii) in both Theorems 3.1 and
3.2.

Because of the strict inequalities in Theorem 3.2, we may select
s0 < s < Si so that if l/qt = lip - l/st - l/t + 1, then all the hypotheses of
Theorem 3.1 are satisfied when 5 and q are replaced by 5, and q(

respectively. Regarding /?, t, g, and φ as fixed, we have

U g p Ϊ = 1,2.

Thus interpolation yields

Fixing /?, 5, /, and φ, a similar argument yields
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Finally we fix 5, t, f and g and perform one last interpolation to
obtain

= c\\f\\Ug\\l4Φ\\,

The most obvious application of Theorem 3.2 is to Riesz potentials;
i.e., convolutions with the kernel cαn | JC |α~" E L(n/(n - α), °°).

When I/5 + 1/f = 1 so that p = q the analogue of Theorem 3.2 fails;
clearly /*g is not a multiplier for /(JC) = g(x)~ \x \~nl2. A paper of
Strichartz [9] discusses the failure of the methods above in such a
situation. However, we have a simple proof of a related theorem which
we give below.

THEOREM 3.3. Suppose m =f*g where f E L(s, 1) and g E L(t,00)
with l/s + l/ί = l. Then m E M% and Mp

p(m)^ C| |/ | | ϊ 4 | |g | | ,c. for

Set Γ(/, g, φ) =^" 1((/*g)Φ). Let £ be a measurable set of
finite measure | E \ and let χE denote its characteristic function. Fix
φ E if and consider the mapping

We take to<t< tu l/s0 + l/ί0 = 1, and 1/si + l/tί = 1 with r0 and tx

sufficiently close to t to give | l/p - 1/21 S min(l/50,1/si, l/ί0, l/ίi)
by Hahn's theorem [1] we have

= C\E\v*\\gUφ\\, for i = 1,2.

Now for gEL(t,») we write g = go + gi where go(x) = g(x) if
|g(jc)|>λ and vanishes otherwise. Then go&L"0 and g ^ L ' 1 ;
moreover ||go||e s Cλ '-"^lg | | *^ and | | g l | | ( 1 ^ Cλ '-"•*||g | |*£\ We thus ob-
tain
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Choosing A = lEl^'HgHί,- yields

Now we regard g and φ as fixed and consider the operator

Bf=T(f,g,φ).

When f = χE we have | |B/ | | , ^ C | £ | 1 / | | g | | ί , . | |φ | | p ; hence by a result of
Stein and Weiss [8, Chap. V, Th. 3.13] we have

for all /EL(s, 1).

4. Lipschitz functions as multipliers. We begin by de-
riving a representation theorem for Lipschitz functions which is a simple
variant of a theorem of Herz. This theorem expresses Lipschitz func-
tions in terms of convolution products and consequently allows us to use
the results of the previous section.

LEMMA 4.1. Let k be a fixed positive integer. There is a function
φ E Co(O, oo) such that

[exp(2πixι)-l]kφ(\x\)\x\-ndx = l.

Proof. It suffices to produce φ E Co(O, oo) such that the above
integral is nonzero. Since we can construct φm E Co(0,oo) such that

lim ί [exp(2πixι)Ί]kφm(\x\)\x\-ndx

= I [exp(2τrix1)- l ] k exp(- λ π | x \2)dx,

it suffices to show that this last integral is nonzero. If we expand
[exp(2τrixi) - l ] k and recognize some well-known integrals we obtain

n/2 ί [exp(2τri'jc1) - I f exp( - λπ \ x |2) dx

k

j=0

which approaches 1 as Λ | 0.
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LEMMA 4.2. For φ as in Lemma 4.1, set

K(x, y) = f exp(2ir« z)φ(\y\ \z\)dz.

Then

(i) K( 7y)eyforyϊOand\\K( ,y)\\p = Cp\y\-n^\l^p^«>.

(ii) I [exp(2τπx -y)-l]*£(x,y)|y |""dy = 1

for x^O, where K denotes the Fourier transform with respect to x.

Proof. For each y E Rn, the function x —> Φ(|y | | * | ) defines a
function in Sf\ K(yy) is its inverse Fourier transform. A change of
variable yields

\-ίx,e), with|s| = l,

hence

The integral in (ii) is

[exp(2mx-y)-l]k<H\y\\x\)\y\-"dy.

Substituting y = \x \~ιy' and then rotating coordinates to make yx parallel
to x, we obtain the integral of Lemma 4.1.

THEOREM 4.3. Suppose fE.D + Lτ where K r < o o and also
f G Wapq where 0<a<n/p. Then

f{x) = ffκ(x-z, y)ΔJ/(z)| y \-"dydz

with the integral converging absolutely for a.e. x.

Proof First we establish the absolute convergence of the
integral. Set

\K(x-z,y)\ (Δί/(z)| \y\-dydz.

The simplest case occurs when q = 1. Choose 5 so that n{\ - 1/s) =
a and t so that 1/p + 1/s = 1/ί + 1 . By Minkowski's and Young's
inequalities we have
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\K( -z,y)\\^f(z)\dz\\\y\-"dy

j\\K(',y)l\\Ak

yf(-)\\p\y\-'dy

= Γλ-ω(A,/,p)λ-1£ίλ.
Jo

By definition of W%\ the last integral is finite. Thus | F(x)\ < °° a.e. and
the original integral defines a function in IΛ Note p <t <<*>.

The general case is only a little harder. Write F(x) = G(x) + H(x),
where

G(x)= i f \K(x-z9y)\\Δk

yf{z)\\y\-dydz.

Choose s0 and sx so that 0 < 1 - l/s0 < a In < 1 - 1/si < 1/p. Setting
lip 4- l/s{ = 1/4 H-1, the arguments of the previous paragraph yield

and

Since n(l - l/so)< a < n{\ - l/5i), Holder's inequality bounds both of
these by

and by Csuρλ~αω(λ,/,p) if q = <». Set

g(x) = jJK(x-z, y)ΔJ/(z)| y |

We show / = g by showing the tempered distributions / and g can differ
only by a distribution supported at the origin, and hence / - g is a
polynomial. The integrability properties of / and g require such a
polynomial to be zero identically.



ON Lp, Lq MULTIPLIERS OF FOURIER TRANSFORMS 9

Let ψ E 0; i.e., let φ be a C00 function on Rn with compact support
not containing the origin. By absolute convergence,

We have

= (f,[exp(2πix - y)-l]kK(-

From the properties of K and ψ we see easily that the mapping

y-> [exp(2τπjc y ) - l]kK(x, y)Ψ(x) I y I""

defines a continuous mapping from Rn into 5̂  with compact
support. Thus we may write

(g,ψ) = (f,j [eχp(2mx-y)-irK(-,y)ψ(-)\y\-»dy)

- (f,φ) by Lemma 4.2.

Hence g — / is supported at the origin as desired.

At this stage we should remark that the hypotheses of Theorem 4.3
appear to be slightly redundant. However, this redundancy resolves any
ambiguity which might appear in the statement / E Wfq, elements of
which are equivalence classes modulo polynomials in Peetre's definition.

THEOREM 4.4. Suppose m E.V + U where 1< r <°° and also
m E Wf with 0 < a In < lit g 1/2. Then m E Mq

pforallp, q satisfying
(i) ί/p-l/q = l/t-a/n
(ii) 1/2 - 1/t ̂  IIq < Up g 1/2 4- 1/ί.

Proof. It suffices to show \{&-\mφ\ψ)\^C\\φ\\p\\ψ\\q, for all
φ,ψey, where l/q'=l- 1/q. We have

= j m(x)φ(x)ψ(x)dx
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by Theorem 4.3. We also have absolute convergence of the above
integral; hence

(9-ι(mφ)9ψ) = f ((K( ,y)*Ak

ym)&φ)\y\-*dy

= j {9-χ[{K( , y)*Ak

ym)Φ], φ)\y \~ndy.

Hence by Holder's inequality

If we set 1-1/5 = a/n then by L e m m a 4.2 | |X( , y ) | | s = C | y | " α ;

hence by Theorem 3.1

Thus

Since ||Δjm ||r = ω(| y |, m, t), we have

I y \~° ||Δϊm Hi I y \'ndy ^ C^ λ'αω(λ, m, t)λ~ιdλ <

for m G WΓ1.

THEOREM 4.5. Suppose m E L1 + Lr wfoere 1< r < oo and
m G WΓ wiίΛ 0 < a In < lit ^ 1/2. Then m G M£/or a//p, q satisfying

(i) l/p-l/q = l/t-a/n
(ii) 1/2 - 1/ί < 1/̂  < Up < 1/2 + 1/t.

Proof. We shall see below that

whenever p and q satisfy (i) with 1/2 ^ 1/p ^ 1/2 + 1/ί. Hence the
Marcinkiewicz interpolation theorem [5] yields

\\SF-\mφ)\\q^CM\\Φl
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for all p and q satisfying (i) and 1/2 < Up < 1/2+ 1/ί; Hόrmander's
convexity-symmetry theorem [4] will then conclude the proof.

We now offer two proofs of the assertion \\9t~\mφ)\\%OD% CM \\φ\\p.
The first uses real interpolation as found in Peetre [7]; the second is
elementary.

Set Tm =9-\mφ) for fixed φ G Sf. Then \\Tm \\^ C\\m \\t\\φ\\p

for Up - 1/ήfo = 1/ί, 1/2 ^ Up ^ 1/2 + 1/ί. If we choose β with a/n <
β/n < 1/ί, Theorem 4.4 implies

Γ: W?Λ-+L* for l/ 9 l = 1/p + β/n - 1/ί, 1/2 =i 1/p g 1/2 + 1/ί,

with norm bounded by C| |φ| | p.
Hence T: [L\ Wf1]^-* [Lq\ Lqi]θoo continuously with norm bounded

by C| |φ | | p ; choosing θ = a/β gives [L\ W^]θfOΰ= W?" and [L*,L«]^ =

The second proof uses a combination of the techniques used in
proving 4.3 and 4.4. Fix r >0, and write m = rao+ mx where

mo(x)= \ K{',y)*Δk

ym{x)\y\'ndy.

Choosing 50 and 5! so that n(l- l/so)< a < n(l- 1/sχ) and setting
l/qt = Up + 1 - 1/5, - 1/ί we obtain

and

λ~n(1~ί/5l)

ω(λ, m, t)λ'ιdk.

Since m G WT, ω(λ, m, ί ) = Cλ°; hence

and

By the usual properties of rearrangements and Lorentz space norms
{5], we have

τυq(Tm)*(τ)^ τ1/«(Γm0)*(τ/2)+ τ
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Choosing r = τ~1/n and simplifying the exponents yields

as desired.

By the Sobolev embedding theorem [3, 7], the hypotheses of
Theorem 4.5 imply m GL(r,oo) where 1/r = 1/t + a/n. When t = 2
Bernstein's theorem [3, 7] implies rh E L(r',°o); this is the case consid-
ered by Peetre [7]. It should be noted that for t>2 and β/n =
1/2- 1/t + a/n, W£qCW?q and the inclusion is proper; thus we are
offering a genuine refinement of Peetre's result.

ADDENDUM. After this paper had been accepted for publication,
the author learned that Y. Uno [Lipschitz Functions and Convolution,
Proc. Japan Acad. 50 (1974), 785-788] has published a result similar to
Theorem 3.1.
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